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Abstrat

Let � be a �nite alphabet, and let h : �

�

! �

�

be a morphism on the free monoid.

We give new proofs of the haraterization of the �nite and one-sided in�nite �xed

points of h, i.e., those words w for whih h(w) = w. We also estimate the size of the

minimal non-empty �nite �xed point.

1 Introdution and De�nitions

Let � be a �nite alphabet, and let h : �

�

! �

�

be a morphism on the free monoid, i.e.,

a map satisfying h(xy) = h(x)h(y) for all x; y 2 �

�

. Head [4℄ and Head and Lando [5℄

haraterized the �nite and one-sided in�nite �xed points of h, i.e., those words w for whih

h(w) = w. In this paper we give new proofs for these fats (our Theorems 3 and 5), whih

are more \�xed point" in avor than previous ones. (We over the ase of two-sided in�nite

words in a later paper [8℄.) We also dedue some new onsequenes.

We �rst introdue some notation, some of whih is standard and an be found in [6℄.

For single letters, that is, elements of �, we use the lower ase letters a; b; ; d. For �nite

words, we use the lower ase letters u; v; w; x; y; z. For in�nite words, we use bold-fae letters

t;u;v;w;x;y; z. We let � denote the empty word. If w 2 �

�

, then by jwj we mean the length

of, or number of symbols in w. If S is a set, then by Card S we mean the number of elements

of S. We say x 2 �

�

is a subword of y 2 �

�

if there exist words w; z 2 �

�

suh that y = wxz.

�

Researh supported in part by a grant from NSERC.
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If h(a) 6= � for all a 2 �, then h is non-erasing. If there exists an integer j � 1 suh that

h

j

(a) = �, then the letter a is said to be mortal. The set of mortal letters assoiated with a

morphism h is denoted by M

h

. The mortality exponent of a morphism h is de�ned to be the

least integer t � 0 suh that h

t

(a) = � for all a 2M

h

. Note that M

h

= ; i� h is non-erasing.

In this ase, we take t = 0. We write the mortality exponent as exp(h) = t. It is easy to

prove that exp(h) � Card M

h

.

We let �

!

denote the set of all one-sided right-in�nite words over the alphabet �. Most

of the de�nitions above extend to �

!

in the obvious way. For example, if w = 

1



2



3

� � � ,

then h(w) = h(

1

)h(

2

)h(

3

) � � � . If L � �

+

is a set of nonempty words, then we de�ne

L

!

= fw

1

w

2

w

3

� � � : w

i

2 L for all i � 1g:

Perhaps slightly less obviously, we an also de�ne the word

!

h

!

(a) for a letter a, provided

h(a) = wax and w 2 M

�

h

. In this ase, there exists t � 0 suh that h

t

(w) = �. Then we

de�ne

!

h

!

(a) = h

t�1

(w) � � � h(w)w axh(x)h

2

(x) � � � ;

whih is in�nite i� x 62M

�

h

.

In�nite �xed points of morphisms have reeived a great deal of attention in the literature.

The \usual way" to generate in�nite �xed points is to take a morphism h and a letter a suh

that h(a) = ax for some x 62M

�

h

. In this ase, h is said to be \prolongable" on a [7℄, and

!

h

!

(a) = axh(x)h

2

(x) � � �

is learly an in�nite �xed point of h. As we will see in Setion 3, however, this approah

does not neessarily generate all the in�nite �xed points of h.

The lassial example of a �xed point of a prolongable morphism is the Thue-Morse word

[9, 1℄

t = t

0

t

1

t

2

� � �

= 0110100110010110 � � �

where t

i

is the sum of the bits in the binary representation of n, taken modulo 2. Then t is

a �xed point of the morphism � whih sends 0 ! 01 and 1 ! 10; in fat, t =

!

�

!

(0). The

in�nite word t is of interest in part beause it is ube-free, that is, it ontains no nonempty

subword of the form www. Similarly, the morphism 2 ! 210, 1 ! 20, and 0 ! 1 has as a

�xed point the in�nite word

210201210120 � � �

whih is square-free (ontains no nonempty subword of the form ww).
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2 Finite Fixed Points

In this setion we give a new proof of Head's haraterization [4℄ of the �nite �xed points of

a morphism. We start with a general lemma that appears to be new.

Lemma 1 Let h : �

�

! �

�

be a morphism. Let w 2 �

+

be a �nite nonempty word suh

that w is a subword of h(w). Then there exists a letter a 2 � ourring in w suh that a

ours in h(a).

Proof. Let w = 

1



2

� � � 

n

, where 

i

2 � for 1 � i � n. For 0 � i � n de�ne s

w

(i) =

jh(

1



2

� � � 

i

)j. (If the word w is lear, we omit the subsript.) In partiular, s(0) = 0.

Let h(w) = d

1

d

2

� � � d

s(n)

, where d

i

2 � for 1 � i � s(n). Hene

h(

i

) = d

s(i�1)+1

� � � d

s(i)

for 1 � i � n. Sine w is a subword of h(w), we know there must exist an integer t,

0 � t � s(n)� n, suh that w = d

t+1

� � � d

t+n

. Hene 

i

= d

t+i

for 1 � i � n.

Consider the least index j � 1 for whih s(j) � t + j. Suh an index must exist, sine

the inequality holds for j = n. There are now two ases to onsider.

Case 1: j = 1: Then s(1) � t+1. Hene h(

1

) = d

1

d

2

� � � d

s(1)

ontains d

t+1

= 

1

. Let a = 

1

.

Case 2: j > 1: Then by the de�nition of j we must have s(j � 1) < t + j � 1. Hene

s(j� 1)+1 < t+ j, and sine h(

j

) = d

s(j�1)+1

� � � d

s(j)

, we know h(

j

) ontains d

t+j�1

d

t+j

=



j�1



j

as a subword. Let a = 

j

.

As a onsequene, we dedue the following useful orollary.

Corollary 2 If w 2 �

+

is a nonempty �nite word with h(w) = w, then there exist words

w

1

; w

2

; w

3

; w

4

2 �

�

and a letter a 2 � suh that w = w

1

w

2

aw

3

w

4

, h(w

1

w

2

) = w

1

, h(a) =

w

2

aw

3

, and h(w

3

w

4

) = w

4

.

Proof. If h(w) = w, then, using Lemma 1, we have t = 0 and s(n) = n. Let

w

1

= d

1

� � � d

s(j�1)

;

w

2

= d

s(j�1)+1

� � � d

j�1

;

a = d

j

;

w

3

= d

j+1

� � � d

s(j)

;

w

4

= d

s(j)+1

� � � d

n

:

The veri�ation is straightforward.
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Now de�ne

A

h

= fa 2 � : 9 x; y 2 �

�

suh that h(a) = xay and xy 2M

�

h

g

and

F

h

= fh

t

(a) : a 2 A

h

and t = exp(h)g:

Note that there is at most one way to write h(a) in the form xay with xy 2 M

�

h

.

Furthermore, note that if h is non-erasing, then the only letters a in A

h

are those for whih

h(a) = a. In this ase F

h

= A

h

.

We now state Head's result [4℄:

Theorem 3 Let h : �

�

! �

�

be a morphism. Then a �nite word w 2 �

�

has the property

that w = h(w) if and only if w 2 F

�

h

.

Proof. ((=): Suppose w 2 F

�

h

. Then we an write w = w

1

w

2

� � �w

r

, where eah w

i

2 �

�

,

and there exist letters a

1

; a

2

; : : : ; a

r

2 A

h

suh that w

i

= h

t

(a

i

), with t = exp(h).

Sine a

i

2 A

h

, we know that there exist x

i

; y

i

with x

i

y

i

2 M

�

h

suh that h(a

i

) = x

i

a

i

y

i

.

Sine t = exp(h), we have h

t

(x

i

) = h

t

(y

i

) = �. Hene

h

t+1

(a

i

) = h

t

(x

i

)h

t

(a

i

)h

t

(y

i

) = h

t

(a

i

):

Thus h(w

i

) = w

i

for 1 � i � r, and so h(w) = w.

(=)): We prove the result by ontradition. Suppose h(w) = w, and assume w is the

shortest suh word with w 62 F

�

h

. Clearly w 6= �.

By Corollary 2 there exist w

1

; w

2

; w

3

; w

4

; a suh that w = w

1

w

2

aw

3

w

4

, h(w

1

w

2

) = w

1

,

h(a) = w

2

aw

3

, and h(w

3

w

4

) = w

4

.

Now a is a subword of w, so h(a) is a subword of h(w) = w, and hene by an easy

indution, it follows that

h

i

(a) is a subword of w for all i � 0: (1)

Then we must have w

2

w

3

2M

�

h

, sine otherwise the length of

h

i

(a) = h

i�1

(w

2

) � � � h(w

2

)w

2

aw

3

h(w

3

) � � �h

i�1

(w

3

)

would grow without bound as i!1, ontraditing (1). It follows that h

t

(w

2

w

3

) = �, where

t = exp(h).

Now we have w

1

= h(w

1

w

2

), so by applying h

t

to both sides, we see

h

t

(w

1

) = h

t+1

(w

1

w

2

) = h

t+1

(w

1

)h

t+1

(w

2

) = h

t+1

(w

1

):

Hene, de�ning y

1

= h

t

(w

1

), we have h(y

1

) = y

1

. In a similar fashion, if we set y

2

= h

t

(w

4

),

then h(y

2

) = y

2

. Sine jy

1

j; jy

2

j < jwj, it follows by the minimality of w that y

1

; y

2

2 F

�

h

.

Now

w = h

t

(w) = h

t

(w

1

)h

t

(w

2

)h

t

(a)h

t

(w

3

)h

t

(w

4

) = y

1

h

t

(a) y

2

;

and hene w 2 F

�

h

, a ontradition.
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We now examine the following question. Suppose h possesses a nonempty �nite �xed

point w. How long an the shortest w be, as a funtion of the desription of h?

Theorem 4 If a morphism h possesses a nonempty �nite �xed point, then there exists suh

a �xed point w with jwj � m

n�1

, where n = Card � and m = max

a2�

jh(a)j. Furthermore,

this bound is best possible.

Proof. As we have seen in Theorem 3, a word w is a �nite �xed point i� w 2 F

�

h

. Hene,

if there exists a nonempty �nite �xed point, the shortest suh must lie in F

h

. But

F

h

= fh

t

(a) : a 2 A

h

and t = exp(h)g:

Sine a 2 A

h

, we have h(a) = xay with xy 2 M

�

h

. Hene a 62 M

h

and so exp(h) �

Card M

h

� n � 1. If m = max

a2�

jh(a)j, then learly jh

i

(a)j � m

i

for all i � 0. It follows

that jwj = jh

t

(a)j � m

n�1

.

To see that the bound is best possible, onsider the morphismh de�ned on � = fa

1

; a

2

; : : : ; a

n

g

as follows:

h(a

1

) = a

1

a

m�1

2

;

h(a

i

) = a

m

i+1

for 2 � i � n � 1;

h(a

n

) = �:

Then

w = a

1

a

m�1

2

a

m(m�1)

3

� � � a

m

n�2

(m�1)

n

is a �xed point of h, and

jwj = 1 + (m� 1) +m(m� 1) + � � �+m

n�2

(m� 1) = m

n�1

:

3 One-Sided In�nite Fixed Points

Let w = 

1



2



3

� � � be an in�nite (one-sided) word over �, and let h be a morphism. Head

and Lando [5℄ haraterized those w for whih h(w) = w. We now give a di�erent proof of

this haraterization.

Theorem 5 The in�nite word w is a �xed point of h if and only if at least one of the

following two onditions holds:

(a) w 2 F

!

h

; or

(b) w 2 F

�

h

!

h

!

(a) for some a 2 �, and there exist x 2 M

�

h

and y 62 M

�

h

suh that

h(a) = xay.

Note that there is at most one way to write h(a) = xay with x 2M

�

h

and y 62M

�

h

.
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Proof. ((=): First, suppose ondition (a) holds. Then we an write w = w

1

w

2

w

3

� � � ,

where eah w

i

2 F

h

. Then by Theorem 3 we have h(w

i

) = w

i

. It follows that h(w) = w.

Seond, suppose ondition (b) holds. Then we an write w = v z, where v 2 F

�

h

and

z =

!

h

!

(a), where h(a) = xay for some x 2 M

�

h

, y 62 M

�

h

. Then from Theorem 3, we have

h(v) = v.

Sine x 2M

�

h

, we have h

t

(x) = �, and hene

z =

!

h

!

(a) = h

t�1

(x) � � � h(x)xa y h(y)h

2

(y)h

3

(y) � � � :

Sine y 62M

�

h

, it follows that jh

i

(y)j � 1 for all i � 0, and hene z is indeed an in�nite word.

We then have

h(z) = h

t

(x) � � � h(x)xa y h(y)h

2

(y)h

3

(y) � � � = z

and so h(w) = h(vz) = vz = w.

(=)): Now suppose w = 

1



2



3

� � � is an in�nite word, with 

i

2 � for i � 1, and

h(w) = w. As before, we de�ne s

w

(i) = jh(

1



2

� � � 

i

)j for i � 0. There are several ases to

onsider.

Case 1: s

w

(i) = i for in�nitely many integers i � 1. Suppose s(i) = i for i = i

0

; i

1

; i

2

; : : : .

Clearly we may take i

0

= 0. Then we an write

w = y

1

y

2

y

3

� � �

where y

j

= 

i

j�1

+1

� � � 

i

j

and h(y

j

) = y

j

for j � 1. It follows that w 2 F

!

h

.

Case 2: s

w

(i) = i for �nitely many i � 1, and at least one suh i. Let s(i) = i for

i = i

0

; i

1

; : : : ; i

r

, and again take i

0

= 0. Then for some integer r � 1 we an write

w = y

1

y

2

y

3

� � � y

r

x

where y

j

= 

i

j�1

+1

� � � 

i

j

and h(y

j

) = y

j

for 1 � j � r, and h(x) = x. Furthermore, if we

write x = d

1

d

2

d

3

� � � for d

i

2 �, i � 1, then

s

x

(i) 6= i for all i � 1: (2)

If we an show that (2) implies that x =

!

h

!

(a), where h(a) = xay for some x 2M

�

h

, y 62M

�

h

,

we will be done. This leads to Case 3.

Case 3: s

w

(i) 6= i for all i � 1. Suppose there exist i; j with 1 � i < j and

s(i) > i but s(j) < j: (3)

Among all pairs (i; j) with 1 � i < j satisfying (3), let j

0

be the smallest suh j. Next,

among all pairs (i; j

0

) satisfying (3), let i

0

be the largest suh i. Suppose there exists an

6



integer k with i

0

< k < j

0

. If s(k) < k, then j

0

is not minimal, while if s(k) > k, then i

0

is not maximal. Hene s(k) = k. But this is impossible by our assumption. It follows that

j

0

= i

0

+ 1. Then s(i

0

) > i

0

, but s(i

0

+ 1) < i

0

+ 1, a ontradition, sine s(i

0

) � s(i

0

+ 1).

It follows that either (a) s(i) < i for all i � 1, or (b) there exists an integer r � 1 suh

that s(i) < i for 1 � i < r and s(i) > i for all i � r.

Case 3a: s

w

(i) < i for all i � 1. Sine this is true for i = 1, in partiular we see that

h(

1

) = �. Now let j

1

be the least index suh that

h(

j

1

) ontains 

1

; (4)

suh an index must exist sine h(w) = w. We then have h(

2

) = h(

3

) = � � � = h(

j

1

�1

) = �,

so the �rst ourrene of 

j

1

in w is at position j

1

.

Now indutively assume that we have onstruted a stritly inreasing sequene j

0

= 1 <

j

1

< � � � < j

t

suh that the �rst ourrene of 

j

i

in w is at position j

i

, for 1 � i � t.

Let j

t+1

be the least index suh that h(

j

t+1

) ontains 

j

t

. Assume j

t

� j

t+1

. Sine

s(i) < i for all i, we have h(

j

t+1

) = 

k

� � � 

l

with l < j

t+1

� j

t

. Sine h(

j

t+1

) ontains 

j

t

,

this implies that 

j

t

ours to the left of position j

t

, a ontradition. Hene j

t

< j

t+1

.

Thus we an onstrut an in�nite stritly inreasing sequene j

0

< j

1

< � � � suh that

the �rst ourrene of 

j

i

in w is at position j

i

. It follows that the letters 

j

0

; 

j

1

; : : : in �

are all distint. But � is �nite, a ontradition. Hene this ase annot our.

Case 3b: There exists an integer r � 1 suh that

s

w

(i) < i for 1 � i < r and s

w

(i) > i for all i � r: (5)

Put a = 

r

. Then h(a) = 

s(r�1)+1

� � � 

s(r)

. If r = 1, then (5) implies that s(r) > r, so

h(a) = xay for x = � and some y 2 �

+

. If r > 1, then (5) implies that s(r � 1) + 1 < r

and s(r) > r, so h(a) = xay for some x; y 2 �

+

. More preisely, the onditions (5) imply

that we an write w = uav for some u 2 �

�

, v 2 �

!

, and h(w) = h(u)xa y h(v) suh that

u = h(u)x. An easy indution now gives

h

i

(w) = h

i

(u)h

i�1

(x) � � �h(x)xa y h(y) � � �h

i�1

(y)h

i

(v) (6)

and

u = h

i

(u)h

i�1

(x) � � �h(x)x (7)

for all i � 0. Sine juj < 1, it follows from letting i ! 1 in Eq. (7) that there exists an

integer j � 0 suh that h

j

(x) = �. Hene x 2 M

�

h

, and so h

t

(x) = �, where t = exp(h).

Now u = h(u)x, so h

t

(u) = h

t+1

(u)h

t

(x) = h

t+1

(u). De�ne u

0

= h

t

(u); then h(u

0

) = u

0

.

Hene, putting j = ju

0

j, it follows that s(j) = j. Hene j = 0 and u

0

= �.

Now, to get a ontradition, suppose that y 2 M

�

h

. Then h

t

(y) = �. De�ne z = h

t

(a).

Then

h(z) = h

t+1

(a) = h

t

(h(a)) = h

t

(xay) = h

t

(x)h

t

(a)h

t

(y) = h

t

(a) = z:

Hene, putting j = jzj, we see that s(j) = j, a ontradition sine jzj � 1. Hene y 62M

�

h

.

Now, letting i!1 in (6), we see that w =

!

h

!

(a).
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We stated Theorem 5 for right-in�nite words, but of ourse the same arguments work for

left-in�nite words. Let �

�!

denote the set of all left-in�nite words, whih are of the form

w = � � � 

�2



�1



0

. We write h(w) = � � �h(

�2

)h(

�1

)h(

0

): If L � �

+

is a set of nonempty

words, we de�ne L

�!

to be the set of left-in�nite words formed by onatenating in�nitely

many words from L, that is,

L

�!

= f� � �w

�2

w

�1

w

0

: w

i

2 L for all i � 0g:

If h(a) = wax, and w 62M

�

h

, x 2M

�

h

, then by

 

h

!

(a) we mean the left-in�nite word

� � �h

2

(w)h(w)w axh(x) � � �h

t�1

(x);

where h

t

(x) = �. Again, if the fatorization of h(a) as wax exists, with w 62 M

�

h

, x 2 M

�

h

,

then it is unique. Then we have

Theorem 6 The left-in�nite word w is a �xed point of h if and only if at least one of the

following two onditions holds:

(a) w 2 F

�!

h

; or

(b) w 2

 

h

!

(a)F

�

h

for some a 2 �, and there exist x 62 M

�

h

and y 2M

�

h

suh that h(a) = xay.

4 Non-Trivial In�nite Fixed Points

Call an in�nite �xed point trivial if it is in F

!

h

. Our last result shows that, up to appliation

of a oding (i.e., a letter-to-letter morphism), all non-trivial in�nite �xed points an be

generated in the \usual way", i.e., by iterating a morphism f on a letter b suh that f(b) = b u

with u 62M

�

f

.

Theorem 7 Suppose h : �

�

! �

�

is a morphism and w 2 �

!

is an in�nite word suh

that h(w) = w and w 62 F

!

h

. Then there exists an alphabet �, a non-erasing morphism

f : �

�

! �

�

, a oding g : � ! �, a nonempty word u 2 �

+

and a letter b 2 � suh that

f(b) = bu and g(

!

f

!

(b)) = w.

Proof. If w 62 F

!

h

, then by Theorem 5, there exists a 2 � suh that w 2 F

�

h

!

h

!

(a), and

h(a) = xay with x 2M

�

h

and y 62M

�

h

. Thus, if t = exp(h), there exists v 2 F

�

h

suh that

w = v h

t�1

(x) � � �h(x)xa y h(y)h

2

(y) � � � :

De�ne z = vh

t�1

(x)h

t�2

(x) � � � h(x)x, and let r = jzj. If r = 0, then v = x = �, and the

desired result follows by taking f = h and g = the identity map.
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Hene assume r > 0 and write z = b

1

b

2

� � � b

r

for b

i

2 �, 1 � i � r. Introdue r + 1 new

symbols b; a

2

; : : : ; a

r

; a

r+1

, and set � = � [ fb; a

2

; : : : ; a

r

; a

r+1

g.

For d 2 � de�ne

f(d) =

8

>

>

>

<

>

>

>

:

b a

2

if d = b;

a

i+1

; if d = a

i

with 2 � i � r;

y; if d = a

r+1

;

h(d); if d 2 �:

Then we have

!

f

!

(b) = b a

2

� � � a

r

a

r+1

y h(y)h

2

(y) � � � :

Finally, de�ne the oding g : �! � as follows:

g(d) =

8

>

>

>

<

>

>

>

:

b

1

; if d = b;

b

i

; if d = a

i

with 2 � i � r;

a; if d = a

r+1

;

d; if d 2 �:

It follows that

g(

!

f

!

(b)) = b

1

b

2

� � � b

r

a y h(y)h

2

(y) � � � = w;

as desired.

Note that f is non-erasing i� h is. In any event, by a theorem of Cobham [2℄, there exists

a letter , a non-erasing morphism f

0

, and a oding g

0

suh that w = g

0

(

!

f

0

!

()).
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