An Algorithm for Field Operations on Algebraic Numbers

J. O. Shallit
University of California, Berkeley
Written around 1979

Abstract

This note describes an algorithm for computing the coefficients of a polynomial having $\alpha+\omega$ (or $\alpha-\omega, \alpha \cdot \omega$ or α / ω) as a root, given the coefficients of polynomials f, g such that $f(\alpha)=g(\omega)=0$. If $\operatorname{deg} f=m, \operatorname{deg} g=n$, the algorithm requires $O\left(m^{4} n^{4}\right)$ (possibly multiprecise) integer operations.

Let α be a root of $f(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}=0$ and ω be a root of $g(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}=0$, where $a_{i}, b_{j} \in \mathbb{Z}$. Thus α and ω are algebraic integers. First we compute polynomials for the sum, difference, and product of the roots, postponing quotient, as well as the case where f and g are not monic.

We now show how to compute certain matrices of integers related to α and ω. Suppose R is a finitely generated integral domain with field of fractions K. If $x \in K$ and $\sigma R \subseteq R$ and x_{1}, \ldots, x_{k} generates R over \mathbb{Z} then

$$
\sigma\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{k}
\end{array}\right)=M(\sigma)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{k}
\end{array}\right)
$$

for some k by k matrix $M(\sigma)$ with entries in \mathbb{Z}. (Note: M is not necessarily unique.) Then

$$
\left(\sigma I_{k}-M(\sigma)\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{k}
\end{array}\right)=0
$$

where I_{k} is the k by k identity matrix. Hence

$$
\operatorname{det}\left(\sigma I_{k}-M(\sigma)\right)=0
$$

and so σ is a root of the characteristic polynomial for the matrix $M(\sigma)$, which we denote by $p_{\sigma}(x)$. It can be computed from $M(\sigma)$ in $O\left(k^{4}\right)$ steps by Frame's algorithm [1,2]. This algorithm uses only integer operations.

Now the ring $\mathbb{Z}[\alpha]$ is generated by

$$
1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}
$$

and in a similar fashion, the ring $\mathbb{Z}[\omega]$ is generated by

$$
1, \omega, \omega^{2}, \ldots, \omega^{n-1}
$$

Therefore the ring $\mathbb{Z}[\alpha, \omega]$ is generated by the $m n$ products $a^{i} \omega^{j}, 0 \leq i \leq m-1,0 \leq$ $j \leq n-1$.

If we order these products and define

$$
\begin{gathered}
\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
=\left(1, \omega, \ldots, \omega^{n-1}, \alpha, \alpha \omega, \ldots, \alpha \omega^{n-1}, \ldots, \alpha^{m-1}, \alpha^{m-1} \omega, \ldots, \alpha^{m-1} \omega^{n-1}\right)
\end{gathered}
$$

then the matrix $M(\alpha)$ such that $\alpha \mathbf{v}=M(\alpha) \cdot \mathbf{v}$ has an especially simple form:

$$
M(\alpha)=\left[\begin{array}{c}
0\left[\begin{array}{c}
\\
I_{n(m-1)}
\end{array}\right] \\
{\left[-a_{0} I_{n}\right]\left[-a_{1} I_{n}\right] \cdots\left[-a_{m-1} I_{n}\right]}
\end{array}\right]
$$

We can form $M(\alpha)$ in $O\left(m^{2} n^{2}\right)$ operations.
If we now choose a new ordered set of generators

$$
\begin{gathered}
\mathbf{v}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \\
=\left(1, \alpha, \ldots, \alpha^{m-1}, \omega, \alpha \omega, \ldots \alpha^{m-1} \omega, \ldots, \omega^{n-1}, \alpha \omega^{n-1}, \ldots, \alpha^{m-1} \omega^{n-1}\right)
\end{gathered}
$$

then the matrix $M^{\prime}(\omega)$ for

$$
\omega\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
x_{k}^{\prime}
\end{array}\right)
$$

has a similar form. We would like to perform operations on $M(\alpha)$ and $M^{\prime}(\omega)$; but $M^{\prime}(\omega)$ is paired with \mathbf{v}^{\prime} and $M(\alpha)$ is paired with \mathbf{v}. By reordering the rows and columns of $M^{\prime}(\omega)$, however, we can get a new matrix $M(\omega)$ compatible with $M(\alpha)$.

In fact, if

$$
\pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & n & n+1 & \cdots & m n \\
1 & m+1 & 2 m+1 & \cdots & (n-1) m+1 & 2 & \cdots & m n
\end{array}\right)
$$

then $\mathbf{v}_{i}^{\prime}=\mathbf{v}_{\pi i}$ and so $M^{\prime}{ }_{\pi i, \pi j}(\omega)$ is also paired with \mathbf{v}. We can form $M(\omega)$ in $O\left(m^{2} n^{2}\right)$ operations.

Now

$$
\begin{aligned}
& (\alpha+\omega) \mathbf{v}=\alpha \mathbf{v}+\omega \mathbf{v} \\
& =M(\alpha) \cdot \mathbf{v}+M(\omega) \cdot \mathbf{v} \\
& =(M(\alpha)+M(\omega)) \cdot \mathbf{v}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \alpha \omega \mathbf{v}=\alpha M(\omega) \cdot \mathbf{v} \\
& =M(\alpha) M(\omega) \cdot \mathbf{v}
\end{aligned}
$$

Thus, for example, $\operatorname{det}\left((\alpha+\omega) I_{k}-(M(\alpha)+M(\omega))=0\right.$ gives a monic polynomial with $\alpha+\omega$ as a root. This is the same as performing Frame's algorithm on $M(\alpha)+M(\omega)$. The total operation count is $O\left(m^{4} n^{4}\right)$ integer operations. The coefficients of the resulting polynomial get large quickly, but this is an inherent feature of the problem, since the resulting polynomial will almost always be irreducible.

In a similar fashion, the characteristic polynomial for $M(\alpha) M(\omega)$ will have $\alpha \omega$ as a root. Since if $p \in \mathbb{Z}$ then $p \omega \mathbf{v}=p M(\omega) \mathbf{v}$, we see that the characteristic polynomial for $p M(\omega)$ has $p \omega$ as a root. In particular, for $p=-1$ this gives the fact that the characteristic polynomial for $M(\alpha)-M(\omega)$ has $\alpha-\omega$ as a root. This solves the problem for sum, difference, and product.

It is easy to convert the case where f and g are not monic to the problem treated above. We do this for $\alpha+\omega$, the other cases being treated in a similar fashion.

Suppose $f(x)=a_{m} x^{m}+\cdots+a_{0}, g(x)=b_{n} x^{n}+\cdots+b_{0}$. Then $a_{m}^{m-1} b_{n}^{m} f(x)=f_{1}\left(a_{m} b_{n} x\right)$, $a_{m}^{n} b_{n}^{n-1} g(x)=g_{1}\left(a_{m} b_{n} x\right)$, where f_{1} and g_{1} are monic polynomials in $a_{m} b_{n} x$. Applying the procedure described above, we find a monic polynomial $p(x)$ with $a_{m} b_{n}(\alpha+\omega)$ as a root. Then $\left(a_{m} b_{n}\right)^{m n} p\left(\frac{x}{a_{m} b_{n}}\right)$ is a polynomial with integer co-efficients with $\alpha+\omega$ as a root.

It remains to determine the polynomial for α / ω. This can be done if the constant term b_{0} is non-zero (otherwise remove powers of x). The method is to observe that if ω is a root of

$$
g(x)=b_{n} x^{n}+\cdots+b_{0}=0
$$

then ω^{-1} is a root of

$$
g_{2}(x)=x^{n} g(1 / x)=b_{0} x^{n}+\cdots+b_{n}=0
$$

Hence we simply reverse the coefficients of g before performing the multiplication algorithm.
The author has implemented the above algorithm in APL, and has used the results to form inputs to a continued fraction algorithm for real roots of polynomials [3].

References

1. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Freeman, San Francisco, 1963.
2. T. A. Bickart, APL Program for Frame's Algorithm, APL Quote-Quad, No. 4 (January, 1970).
3. D. Rosen and J. Shallit, A Continued Fraction Algorithm for Approximating All Real Polynomial Roots, Mathematics Magazine 51 (1978), 112-116.
