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Abstract

This note describes an algorithm for computing the coefficients of a polynomial
having α + ω (or α − ω, α · ω or α/ω) as a root, given the coefficients of polynomials
f, g such that f(α) = g(ω) = 0. If deg f = m, deg g = n, the algorithm requires
O(m4n4) (possibly multiprecise) integer operations.

Let α be a root of f(x) = xm + am−1x
m−1 + · · · + a0 = 0 and ω be a root of

g(x) = xn + bn−1x
n−1 + · · · + b0 = 0, where ai, bj ∈ Z. Thus α and ω are algebraic

integers. First we compute polynomials for the sum, difference, and product of the roots,
postponing quotient, as well as the case where f and g are not monic.

We now show how to compute certain matrices of integers related to α and ω. Suppose
R is a finitely generated integral domain with field of fractions K. If x ∈ K and σR ⊆ R
and x1, . . . , xk generates R over Z then
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for some k by k matrix M(σ) with entries in Z. (Note: M is not necessarily unique.) Then
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where Ik is the k by k identity matrix. Hence

det(σIk − M(σ)) = 0

and so σ is a root of the characteristic polynomial for the matrix M(σ), which we denote
by pσ(x). It can be computed from M(σ) in O(k4) steps by Frame’s algorithm [1,2]. This
algorithm uses only integer operations.

Now the ring Z[α] is generated by

1 , α , α2 , . . . , αm−1

and in a similar fashion, the ring Z[ω] is generated by

1 , ω , ω2 , . . . , ωn−1.

Therefore the ring Z[α, ω] is generated by the mn products aiωj, 0 ≤ i ≤ m − 1 , 0 ≤

j ≤ n− 1.
If we order these products and define

v = (x1, x2, . . . , xk)

= (1, ω, . . . , ωn−1, α, αω, . . . , αωn−1, . . . , αm−1, αm−1ω, . . . , αm−1ωn−1)

then the matrix M(α) such that αv = M(α) · v has an especially simple form:

M(α) =





0

[

In(m−1)

]

[−a0In] [−a1In] · · · [−am−1In]





We can form M(α) in O(m2n2) operations.
If we now choose a new ordered set of generators

v
′ = (x′

1, . . . , x′

k)

= (1, α, . . . , αm−1, ω, αω, . . . αm−1ω, . . . , ωn−1, αωn−1, . . . , αm−1ωn−1)

then the matrix M ′(ω) for
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has a similar form. We would like to perform operations on M(α) and M ′(ω); but M ′(ω) is
paired with v

′ and M(α) is paired with v. By reordering the rows and columns of M ′(ω),
however, we can get a new matrix M(ω) compatible with M(α).
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In fact, if

π =

(
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then v
′

i = vπi and so M ′

πi,πj(ω) is also paired with v. We can form M(ω) in O(m2n2)
operations.

Now
(α + ω)v = αv + ωv

= M(α) · v +M(ω) · v

= (M(α) +M(ω)) · v

and similarly
αωv = αM(ω) · v

= M(α)M(ω) · v.

Thus, for example, det((α + ω)Ik − (M(α) + M(ω)) = 0 gives a monic polynomial
with α + ω as a root. This is the same as performing Frame’s algorithm on M(α) +M(ω).
The total operation count is O(m4n4) integer operations. The coefficients of the resulting
polynomial get large quickly, but this is an inherent feature of the problem, since the resulting
polynomial will almost always be irreducible.

In a similar fashion, the characteristic polynomial for M(α)M(ω) will have αω as a root.
Since if p ∈ Z then pωv = pM(ω)v, we see that the characteristic polynomial for pM(ω) has
pω as a root. In particular, for p = −1 this gives the fact that the characteristic polynomial
for M(α) − M(ω) has α − ω as a root. This solves the problem for sum, difference, and
product.

It is easy to convert the case where f and g are not monic to the problem treated above.
We do this for α + ω, the other cases being treated in a similar fashion.

Suppose f(x) = amx
m+· · ·+a0, g(x) = bnx

n+· · ·+b0. Then am−1
m bmn f(x) = f1(ambnx),

anmb
n−1
n g(x) = g1(ambnx), where f1 and g1 are monic polynomials in ambnx. Applying the

procedure described above, we find a monic polynomial p(x) with ambn(α + ω) as a root.
Then (ambn)

mnp( x
ambn

) is a polynomial with integer co-efficients with α + ω as a root.
It remains to determine the polynomial for α/ω. This can be done if the constant term

b0 is non-zero (otherwise remove powers of x). The method is to observe that if ω is a root
of

g(x) = bnx
n + · · ·+ b0 = 0

then ω−1 is a root of

g2(x) = xng(1/x) = b0x
n + · · ·+ bn = 0.

Hence we simply reverse the coefficients of g before performing the multiplication algorithm.
The author has implemented the above algorithm in APL, and has used the results to

form inputs to a continued fraction algorithm for real roots of polynomials [3].
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