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Abstract

Let ¥ be a finite alphabet, and let A : 3* — 3* be a morphism. Finite and
infinite fixed points of morphisms — i.e., those words w such that h(w) = w — play
an important role in formal language theory. Head characterized the finite fixed points
of h, and later, Head and Lando characterized the one-sided infinite fixed points of
h. Our paper has two main results. First, we complete the characterization of fixed
points of morphisms by describing all two-sided infinite fixed points of k, for both the
“pointed” and “unpointed” cases. Second, we completely characterize the solutions to
the equation h(zy) = yz in finite words.

1 Introduction and definitions

Let ¥ be a finite alphabet, and let h : ¥* — ¥* be a morphism on the free monoid, i.e., a
map satisfying h(zy) = h(z)h(y) for all z,y € ¥*. If a word w (finite or infinite) satisfies the
equation h(w) = w, then we call w a fixed point of h. Both finite and infinite fixed points of
morphisms have long been studied in formal languages. For example, in one of the earliest
works on formal languages, Axel Thue [21, 3] proved that the one-sided infinite word

t =0110100110010110- - -

is overlap-free, that is, contains no subword of the form azaza, where a € {0,1}, and
z € (0 + 1)*. Define a morphism g by p(0) = 01 and w(1) = 10. The word t, now
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called the Thue-Morse infinite word, is the unique one-sided infinite fixed point of p which
starts with 0. In fact, nearly every explicit construction of an infinite word avoiding certain
patterns involves the fixed point of a morphism; for example, see [8, 15, 24, 20]. One-sided
infinite fixed points of uniform morphisms also play a crucial role in the theory of automatic
sequences; see, for example, [1].

Because of their importance in formal languages, it is of great interest to characterize
all the fixed points, both finite and infinite, of a morphism h. This problem was first
studied by Head [9], who characterized the finite fixed points of h. Later, Head and Lando
[10] characterized the one-sided infinite fixed points of h. (For different proofs of these
characterizations, see Hamm and Shallit [7].) In this paper we complete the description
of all fixed points of morphisms by characterizing the two-sided infinite fixed points of h.
Related work was done by Lando [14]. Two-sided infinite words (sometimes called bi-infinite
words or bi-infinite sequences) play an important role in symbolic dynamics [16], and have
also been studied in automata theory [18, 19], cellular automata [12], and the theory of codes
[22, 5].

We first introduce some notation, some of which is standard and can be found in [11].
For single letters, that is, elements of ¥, we use the lower case letters a,b,c,d. For finite
words, we use the lower case letters ¢, w,v,w,x,y,z. For infinite words, we use bold-face
letters t,u, v, w,x,y,z. We let € denote the empty word. If w € ¥*, then by |w| we mean
the length of, or number of symbols in w. If S is a set, then by Card S we mean the number
of elements of S. We say = € ¥* is a subword of y € ¥* if there exist words w, z € X* such
that y = wzz.

If h is a morphism, then we let A7 denote the j-fold composition of h with itself. If there
exists an integer j > 1 such that h?(a) = ¢, then the letter a is said to be mortal; otherwise
a 1s immortal. The set of mortal letters associated with a morphism h is denoted by M;,.
The mortality exponent of a morphism h is defined to be the least integer ¢ > 0 such that
ht(a) = e for all a € M;,. We write the mortality exponent as exp(h) = t. It is easy to prove
that exp(h) < Card Mj,.

We let X denote the set of all one-sided right-infinite words over the alphabet . Most
of the definitions above extend to ¥“ in the obvious way. For example, if w = cjcaes-- -,

then h(w) = h(c1)h(c2)h(cs)---. If L C ¥* is a language, then we define

LY == {wjwswsz--- : w; € L — {e} for all i > 1}.

%
Perhaps slightly less obviously, we can also define a limiting word h* (a) := lim,,—,. h"(a)
for a letter a, provided h(a) = waz and w € M;. In this case, there exists ¢ > 0 such that
ht*(w) = e. Then we define

I;"(a) - ht—l(w) h(w)’waxh(:l?) h2(217) )

which is infinite if and only if # ¢ M;. Note that the factorization of h(a) as waz, with
w € M; and = ¢ Mj;, if it exists, is unique.



In a similar way, we let “X denote the set of all left-infinite words, which are of the form
W = ---c_sc_1¢9. We write h(w) = ---h(c_2)h(c_1)h(co). We define “L to be the set of

left-infinite words formed by concatenating infinitely many words from L, that is,
“L:={-w_sw_qwy : w; € L—{e} for all i <0}.

If h(a) = waz, and w € M}, x € M}, then we define the left-infinite word

h(a) i= - B2 (w) h(w) waz h(z) - B (),

where h'(z) = e. Again, if the factorization of h(a) as waz exists, with w & M}, = € M,
then it is unique.

We can convert left-infinite to right-infinite words (and vice versa) using the reverse
operation, which is denoted wf. For example, if w = cocicg -+ -, then wF =
We now turn to the notation for two-sided infinite words. These have been much less

studied in the literature than one-sided words, and the notation has not been standardized.

s C9C1Cp.

Some authors consider 2 two-sided infinite words to be identical if they agree after applying
a finite shift to one of the words. Other authors do not. (This distinction is sometimes
called “unpointed” vs. “pointed” [2, 17].) In this paper, we consider both the pointed and
unpointed versions of the equation h(w) = w. As it turns out, the “pointed” version of
this equation is quite easy to solve, based on known results, while the “unpointed” case is
significantly more difficult. The latter is our first main result, which appears as Theorem 5.

We let % denote the set of all two-sided infinite words over the alphabet X, which are
of the form ---c_sc_1¢g.c1¢9 - -+ . In displaying an infinite word as a concatenation of words,
we use a decimal point to the left of the character ¢;, to indicate how the word is indexed.
Of course, the decimal point is not part of the word itself. We define the shift o(w) to be
the two-sided infinite word obtained by shifting w to the left one position, so that

O(+++CogC1C0.C1CaC5++) = +++C_1C0C1.CaC3Cq "+ + .
Similarly, for k € Z we define
k _
0% ( - €90 1C0.C1C2C5  ++ ) =+ C—1CloChp1Cht2 " " * -

If w,x are 2 two-sided infinite words, and there exists an integer k such that x = o*(w), then
we call w and x conjugates, and we write w ~ x. It is easy to see that ~ is an equivalence
relation. We extend this notation to languages as follows: if L is a set of two-sided infinite
words, then by w ~ L we mean there exists x € L such that w ~ x.

If w is a nonempty finite word, then by w” we mean the two-sided infinite word - - - www.www - - - .

Using concatenation, we can join a left-infinite word w = ---c_sc_j¢9 with a right-infinite
word x = dpdids - -+ to form a new two-sided infinite word, as follows:
W.X (= -~ C_2C_]_Co.d0d]_d2 e



If L C ¥* is a set of words, then we define

L7 = {  w_sw_wowywy -+ : w; € L — {e} for all 5 € Z}.
Ifw=---c_sc_icg.cica---, and h is a morphism, then we define
h(w) := -+ h(c_2)h(c_1)h(co).h(c1)h(cs) - - - (1)

Finally, if ¢ = |wal, h(a) = waz, and w,x ¢ M}, then we define
—

R (a) := -+ - b (w) h(w) w .ax h(z) h*(z) - - -,

a two-sided infinite word. Note that in this case the factorization of h(a) as waz is not
necessarily unique, and we use the superscript ¢ to indicate which a is being chosen.

We can produce one-sided infinite words from two-sided infinite words by ignoring the
portion to the right or left of the decimal point. Suppose w = ---c_sc_j¢p.c1c0¢3---. We

define

L(W) = -+ C_2C_1Cp,

a left-infinite word, and
R(W) = C1Ca2C3 " -,

a right-infinite word.

2 Finite and one-sided infinite fixed points

In this section we recall the results of Head [9] and Head and Lando [10]. We assume
h : ¥* — ¥* is a morphism that is extended to the domains ¥“ and “% in the manner
discussed above.

Define
Ap={a € : Ju,y € ¥ such that h(a) = zay and zy € M;}

and

F, ={h'(a) : a € Ay and t = exp(h)}.
Note that there is at most one way to write h(a) in the form zay with zy € M;.

Theorem 1 A finite word w € ¥* has the property that w = h(w) if and only if w € F}.

Theorem 2 The right-infinite word w is a fized point of h if and only if at least one of the
following two conditions holds:

(a) w € F?; or



%
(b) w € F7 h* (a) for some a € X, and there exist # € M; and y ¢ M} such that
h(a) = zay.

There is also an evident analogue of Theorem 2 for left-infinite words:

Theorem 3 The left-infinite word w is a fized point of h if and only if at least one of the
following two conditions holds:

(a) w € “Fy; or

F
(b) w € h*(a)F} for somea € X, and there exist & ¢ M} andy € M such that h(a) = zay.

3 Two-sided infinite fixed points: the “pointed” case

We assume h : ¥* — ¥* is a morphism that is extended to the domain £ in the manner
discussed above. In this section, we consider the equation h(w) = w for two-sided infinite
words.

Proposition 4 The equation h(w) = w has a solution if and only if at least one of the
following conditions holds:

(a) w € FZ; or

F
(b) w € h*(a)F;.FY for some a € %, and there exist & & M}, y € M} such that h(a) =
Tay; or

%
(c) w € “Fyp.Fy h* (a) for some a € X, and there exist ¥ € M;, y ¢ M such that
h(a) = zay; or

— —
(d) w € h¥(a) F;:.Fy h*(b) for some a,b € ¥ and there exist x,z & M}, y,w € M, such
that h(a) = zay and h(b) = wbz.

Proof. Let w =---c_sc_jcg.cicac3---. By definition, we have
h(w) = - h(c_2)h(c_1)h(co).h(c1)h(c2)h(cs) - - -
so if h(w) = w, then we have h(cicacz -+ ) = creacs -+ and h(---c_s2c_1¢0) = -+ - c_2c_1¢p.

We may now apply Theorem 2 (resp., Theorem 3) to R(w) (resp., L(w)). There are 2
cases to consider for each side, giving 2 - 2 = 4 total cases. ®
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Example. Let p be the Thue-Morse morphism, which maps 0 — 01, and 1 — 10. Define
g = p*. Then ¢g(0) = 0110, g(1) = 1001. Let t = 01101001 -- -, the one-sided Thue-Morse
infinite word. Then there are exactly 4 two-sided infinite fixed points of g, as follows:

t?t = ...10010110.01101001- -
Tt .+01101001.01101001 - - -
% = ...01101001.10010110---
t?t = -..10010110.10010110--- .

All of these fall under case (d) of Proposition 4. Incidentally, all four of these words are
overlap-free.

4 Two-sided infinite fixed points: the “unpointed” case

We assume h : ¥* — ¥* is a morphism that is extended to the domain £ in the manner
discussed above. In this section, we characterize the two-sided infinite fixed points of a
morphism in the “unpointed” case. That 1s, our goal is to characterize the solutions to
h(w) ~ w. The following theorem is the first of our two main results.

Theorem 5 Let h be a morphism. Then the two-sided infinite word w satisfies the relation
h(w) ~ w if and only if at least one of the following conditions holds:

(a) w~ FE; or
F
(b) w ~ h¥(a).F? for some a € X, and there exist @ & M; and y € M; such that
h(a) = zay; or
%

(¢c) w ~ “Fy. h*(a) for some a € %, and there exist & € M} and y ¢ M} such that
h(a) = zay; or

— —
(d) w ~ h*(a).F; h*(b) for some a,b € ¥ and there exist x,z ¢ M;, y,w € M, such
that h(a) = zay and h(b) = wbz; or

—
(¢) W ~ h*% (a) for some a € %, and there exist x,y & M} such that h(a) = zay with
|zal =i; or

(f) w = (;py)Z for some x,y € Tt such that h(zy) = y=.

Before we begin the proof of Theorem 5, we state and prove three useful lemmas.



Lemma 6 Suppose w, x are 2 two-sided infinite words with w ~ x. Then h(w) ~ h(x).

Proof. Since w ~ x, there exists j such that x = ¢7(w). Then h(x) = o"(h(w)), where

h e if 7> 0:
k: {| (6102 c])|7 1 J _07 (2)

—|h(cj1cjt2 -+ co1co)], if j <O

Our second lemma concerns periodicity of infinite words. We say a two-sided infinite
word
W — ¢« C_9C_1Cp.C1Co * * *

is periodic if there exists a nonempty word z such that w = z”

p > 1 such that w = 0?(w). The integer p is called a period of w.

, 1.e., if there exists an integer

Lemma 7 Suppose W = ---c_sc_1¢g.c1C2+++ s a two-sided infinite word such that there
exists a one-sided right-infinite word x and infinitely many negative indices 0 > 47 > 19 > - - -
such that

X = cijcij-l—lcij-l—2 e

for 3 > 1. Then w is periodic.
Proof. By assumption
X = cijcij-l—lcij-l—2 et = cij+1cij+1-|—lcij+1-|—2 e

for j > 1. Hence ¢;; 41 = ¢;;, 4+ for all k > 0, and so the right-infinite word x is periodic
of period ¢; — 2;41. Since this is true for all 7 > 1, it follows that x is periodic of period
g = gedjs (7 —4j41), L€, cijqk = Cijrgin forall j > 1,k > 0. Since i; — —oo0, it follows that
Ck = Citg for all k, and so w is periodic of period g. ®

Our third lemma concerns the growth functions of iterated morphisms.
Lemma 8 Let h: ¥* — ¥* be a morphism. Then
(a) there exist integers i,j with 0 < i < j and |h'(w)| < |W(w)| for all w € ¥*; and
(b) there exists an integer M depending only on k = Card X such that for all h : ¥* — %,

we have 5 < M.

We note that part (a) was asserted without proof by Cobham [4]. However, the proof
easily follows from a result of Dickson [6] that N* contains no infinite antichains under the
usual partial ordering; see also Konig [13]. For completeness, we give the following proof,
suggested by S. Astels (personal communication).
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Proof. (a) Suppose ¥ = {aj,as,...,a,}. First, choose i;; to be the least index
such that |h'1(a;)| = min;>o |h*(a1)]. Next, successively choose iy 2,%13,714,... such that
|hint1 (aq)] = mings;, , [h*(a1)] for n > 1. Clearly |h"»(ay)| < [h**7+1(ay)| for all n > 1. Let
Sy = {ivasizirg, ... }. | |

Now, choose is7 to be the least index ¢ € Sy such |h*'(as)| = mines, |h*(asz)|. Next,
successively choose 75 2,92 3,%2.4, ... € S such that |h2+1(ay)| = milies, i, |k (as)| for n >
1. Cleatly |h2n(a;)| < |h*27+1(a;)| for j = 1,2 and all n > 1. Let Sy = {iz21,i29,723,... }.
Note that S5 C 5.

Continuing in this fashion, we produce an infinite sequence of indices i, 1, %, 2, %, 3, ... such
that |h'n(a;)| < |hirn+1(a;)| for 5 = 1,2,... .7 and all n» > 1. We can then choose i = i,
and j = ¢, ».

(b) We omit the proof, although we observe that we can take M = 2%. See [23]. =

Now we can prove Theorem 5.

Proof. (<=): Suppose case (a) holds, and w ~ FZ. Then there exists x € F? with
W ~ X. Since X € F};Z, we can write X = ---@_o®_1&g.01 s+, Where x; € Fj, for all ¢ € Z.
Since z; € F, we have h(z;) = z; for all ¢ € Z. It follows that h(x) = x. Now, applying
Lemma 6, we conclude that h(w) ~ h(x) = x ~ w.

F
Next, suppose case (b) holds, and w ~ h“(a).F. Then w ~ x for some x of the form

F
x = h¥(a).z1z223- -,

where x; € Fy, for all ¢ > 1, and h(a) = zay with ¢ M, and y € M;. Then we have
h(x) = x, and by Lemma 6, we conclude that h(w) ~ h(x) =x ~ w.
Cases (c), (d), and (e) are similar to case (b).

Finally, if case (f) holds, then

h(w) = h(- .. xyxy‘xyxy- .. ) T e e yxyx‘yxyx DY 5

and so h(w) = o*(w) for k = |z|.

(=>): Suppose W = ---c_sc_jcp.cicz-- -, and there exists k such that h(w) = o®(w).
Let
. |h(ciee - ¢)| + K, if 1> 0;
s(i) == o (3)
kE—|h(cit1ciya---co)], ifi<O.

Then it is not hard to see that



for @ € Z; see Figure 1. Note that s(0) = k.

W= o |C1 | Co| €| Gy
o . .

¢

h(wW) = -+ | Csepr “+* Csq | Csioer” " Csq

Figure 1: Interpretation of the function s

We define the set C as follows: C = {i € Z : s(¢) = i}. Our argument is divided into
two major cases, depending on whether or not C' is empty.

Case 1: C # . In this case, there exists j such that s(j) = j. Now consider the pointed
word X = ---¢j_a¢j_1¢5.¢j41Cj12 - -. We have x ~ w and by Eq. (4) we have h(x) = x.
Then, by Proposition 4, one of cases (a)-(d) must hold.

Case 2: C = (. There are several subcases to consider.
Case 2a: There exist integers ¢, 7 with ¢ < j such that
s(7) > ¢ but s(j) < J. (5)

Among all pairs (7, j) satisfying (5), choose one with j — ¢ minimal. Suppose there exists
an integer k with ¢ < k < j. If s(k) < k, then (7,k) is a pair satisfying (5) with smaller
difference, while if k& < j, then (k,j) is a pair satisfying (5) with smaller difference. Hence
s(k) = k. But this is impossible by our assumption. It follows that j = ¢+ 1. Then s(¢) > 4,
but s(i + 1) < i+ 1, a contradiction, since s(7) < s(¢ + 1). Hence this case cannot occur.

Case 2b: There exists an integer r such that s(¢) < ¢ for all ¢ < r, and s(¢) > ¢ for
all ¢ > r. Then h(c,) = Co(r—1)41 * * * Cs(r), Which by the inequalities contains ¢,_jc,c,41 as a
subword. Therefore, letting a = ¢,, it follows that

W~uz.ayv,

where u = - - ¢,(,_1)_1C4(,—1) 18 a left-infinite word, = cyp_1)41 - o1 and y = ¢ y1 -+ ey
are finite words, and v = cy(r)11Cs(r)42 -+ 1s a right-infinite word. Furthermore, we have
h(uz) = u, h(a) = zay, and h(yv) =v.

Now the equation h(yv) = v implies that h(y) is a prefix of v, and by an easy induction
we have h(y)h*(y)h®(y)--- is a prefix of v. Suppose this prefix is finite. Then y € M, and
so h(y)h*(y)h*(y) - -~ = h(y)h*(y) - - - h'(y), where t = exp(h). Define z = h(y)h*(y) - - - h*(y).
Then s(r+ |y| + |2]) = 7+ |y| + | 2], a contradiction, since we have assumed C = 0. It follows
that z := h(y)h*(y)h*(y) - - - is right-infinite and hence y ¢ M.
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By exactly the same reasoning, we find that - -- h3(z) h*(z) h(z) is a left-infinite suffix of

—
u. We conclude that w ~ h*¥(a), and hence case (e) holds.

Case 2c: s(i) > i for all i € Z. Let w = ---c_sc_1¢9.¢102 - - -

Now consider the following factorization of certain conjugates of w, as follows: for ¢ < 0,
we have W ~ X;y; . z;, where x; = -+ ¢;_3¢;_1 (a left-infinite word), y; = ¢; -+ - cy(i—1) (a finite
word), and z; = ¢s(i—1)+1Cs(i—1)+2 -+ (a right-infinite word). Note that ¢ —1 < s(s — 1) by
assumption, so ¢ < s(¢ — 1); hence y; is nonempty. Evidently we have

h(x;) = x;y;; and (6)
h(il/i Zi) = Z;.

Now the equation h(y;z;) = z; implies that h(y;) is a prefix of z;. Now an easy induction,
as in Case 2b, shows that v := h(y;)h*(y;)h*(y;) - -+ is a prefix of z;. If v were finite, then
we would have y; € M}, and so s(j) = j for j = s(¢ — 1) 4 |v], a contradiction, since C = 0.
Hence v is right-infinite, and so y; & M;. There are now two further subcases to consider:
(1) supiso(s(i) — 1) < 400, and (ii) supiso(s(i) — 1) = +o0.

Case 2ci: Suppose sup;.o(s(i) — 1) = d < 4o0. It then follows that |y;| < d. Hence
there is a finite word u such that y; = w for infinitely many indices ¢ < 0. From the above
argument we see that the right-infinite word h(uw)h?(u)h®(u)--- is a suffix of w, beginning
at position s(i — 1) + 1, for infinitely many indices ¢ < 0. We now use Lemma 7 to conclude
that w is periodic.

Thus we can write w = ---c_sc_jcg.ci¢2+++, and w = ---vvv.vvv---, where v =
c1¢e -+ ¢, for some integer p > 1. Without loss of generality, we may assume p is mini-
mal.

We claim |h(v)| = p. For if not we must have |h(v)| = ¢, for ¢ # p, and then since
h(w) ~ w, we would have w is periodic with periods p and ¢, hence periodic of period
ged(p, q). But since p was minimal we must have p | ¢q. Hence ¢ > 2p. Now let s(p) = [; since
s(7) > i for all ¢ we must have [ > 0. Then

h(Clc2 e Cp) = CS(—l)-I—l e Cs(p) = Cl_g+1*°°Cl.
It now follows that
s(ip) =1 — q+iq (7)

for all integers i. Now p < ¢, so p < ¢— 1, and hence p < ¢ — 1 + ¢/l. Hence, multiplying
by —I, we get —Ip > 1 — gl — q. Now take i = —[ in Eq. (7), and we have

s(=lp)=1—q—1g < —Ip,

a contradiction, since s(¢) > ¢ for all 7. It follows that |h(v)| = p.

10



There exists k such that h(cica---¢p) = Cpy1Crta - Chp. Using the division theorem,
write k = jp + 7, where 0 <7 < p. Define

y:Ck-|—1“'C(j-|—1)p:Cr+1"'0p;

x:c(j-l—l)p—l—l"'ck-l-p:cl"'cr-

We have h(zy) = yz, and v = zy. Then w = v% = (zy)~.

By above we know |v| > 1, so #y # €. Suppose y = €. Then h(z) = z, and so = € F;. It
follows that w € F7. A similar argument applies if z = e. However, if w € FZ, then C # 0,
a contradiction. Thus z,y # €, and case (f) holds.

Case 2cii: sup,<(s(i) — i) = +oo. Recall that s(i) > i for all i € Z and w =
< eCc_9C_1Cp.C1Co -+ . Define

X = " C_2C_1Cp,
‘= GGt Cy(0);

Z

Cs(0)+1Cs(0) 42" " -

Then w = x.yz and h(x) = xy, h(yz) = 2.
Define B;(k) = s7(k) — s~!(k), where s? denotes the j-fold composition of the function
s with itself. First we prove the following technical lemma.

Lemma 9 For all integers v > 1 there exists an integer n < 0 such that Bj(n) > r for
1<j<t

Proof. By induction on ¢t. For ¢ = 1 the result follows since

sup By () = sup(s(z) — i) = 4o0.
i<0 i<0

Now assume the result is true for ¢; we prove it for ¢ + 1. Define m := max,ex |h(a)|. By
induction there exists an integer n; such that Bj(ny) > mr + m!*! for 1 < j <t. Then, by
the definition of m there exist an integer ny < n; with n; — ny < m, and an integer ns such
that s(ns) = no.

Now A(Cpy41 " Cny) = Cs(ng)+1** * Cs(na), 80 8(n2) — 8(n3) < m(ny—mng). Similarly, we have

§7(ns) — 87(ng) < m?(ny —ny) (8)
for all 7 > 0. By the same reasoning, we have

sj(nl) — sj(n2) < mj(nl —ny) < mj(m - 1) (9)

11



for all 7 > 0. Thus we find

Bi(ns) = s(ns) —ns

> —Szw)is(n?’) (by Eq. (8))

_ slne) =

_ (slna) = 1) — ((s(m) = () — (3 — 72))

_ Ba(m) — ((s(m1) — s(13)) — (2 — )

> m”mmn; nion 1) (by induction and Eq. (9))
-

Similarly, for 2 < 5 <t + 1, we have

Bj(ns) = s'(ng) —s'""(ns)
= () =7 ) | | | |
= (87 () = 877 (na)) = ((87H(ma) — 8" (na)) — (7 (m1) — 8% (n2)))
= Bji(ma) — (877 (m) = 87 (n2)) — (872 (m1) — 77 (n2)))

mr +m™ —m’ ™ (m —1) (by Eq. (9))

r.

(VAR

It thus follows that we can take n = ns. This completes the proof of Lemma 9. =

Now let M be the integer specified in Lemma 8, and define r := sup; <y B;(0). By
Lemma 9 there exists an integer n < 0 such that B;(n) > r for 1 < j < M. Define
W = Cpy1 - co. We have

W) = $(0) - (n); and
@) = ) — s ).

It follows that

B (w)| = (s7(0) = s'71(0)) = (s(n) — "7} (n)) + [ (w))]
= B;(0) - ( ) + |17 (w)]
B;(0) = r + [W/ 7} (w)]

IN A

1 (w)|
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for 1 < 37 < M. But this contradicts Lemma 8. This contradiction shows that this case
cannot occur.

Case 2d: s(i) < 4 for all 4 € Z. This case is the mirror image of Case 2c', and the proof
1s 1dentical. The proof of Theorem 5 is complete. ™

5 Some examples

In this section we consider some examples of Theorem 5.

Example 1. Consider the morphism f defined by a — bb, b — ¢, ¢ — aad, d — c. Let
w = -.-aadbbbbcaadbbbbc.aadbbbbcaadbbbbc:- - .

Then
f(w) = -- - bbbbcaadbbbbcaad.bbbbcaadbbbbcaad - - - .

This falls under case (f) of Theorem 5.

Example 2. Consider the morphism ¢ defined by 0 — 201, 1 — 012, and 2 — 120. Then if

—

W =p“2(0) = -+~ c_gc_1.c0c1¢0 -+ = +++1202.01012- -+ ,

we have o(w) ~ w. This falls under case (e) of Theorem 5. Incidentally, ¢; equals the sum
of the digits, modulo 3, in the balanced ternary representation of i.

6 The equation h(zy) = yz in finite words

It is not difficult to see that it is decidable whether any of conditions (a)—(e) of Theorem 5
hold for a given morphism h. However, this is somewhat less obvious for condition (f) of
Theorem 5, which demands that the equation h(zy) = yx possess a nontrivial ? solution. We
conclude this paper by discussing the solvability of this equation and, in our second main
result, we give a characterization of the solution set.

To do so it is useful to extend the notation ~, previously used for two-sided infinite
words, to finite words. We say w ~ z for w, z € ¥* if w is a cyclic shift of z, 1.e., if there exist
z,y € X" such that w = zy and z = yz. It 1s now easy to verify that ~ is an equivalence
relation. Furthermore, if w ~ z, and h is a morphism, then h(w) ~ h(z). Thus condition
(f) can be restated as h(z) ~ z. The following theorem shows that the solvability of the
equation h(zy) = yx is decidable.

!Note that s(i) > 4 for all ¢ implies that s(¢ — 1) > ¢ — 1. Therefore s(i — 1) + 1 > i, and hence Case 2d
really 7s the mirror image of Case 2c.
2By nontrivial we mean zy # e.
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Theorem 10 Let h be a morphism h : ¥* — %*. Then h(z) ~ z possesses a solution z # €
if and only if Fya is nonempty for some 1 < d < Card X.

Proof. <«—: Suppose Fjq is nonempty for some d, say x € Fja. Then by definition of Fja,
h(z) = z. Let y = h(z)---h%(z) and z = zy. Then h(zy) = yz and so h(z) ~ z

—: Suppose h(z) ~ z. Then |h"(z)| = |z| for all n > 0, and so there exist 0 < i < j
such that h'(z) = h?(z). In other words, h'(z) is a finite fixed point of h'~*. Hence Fj;—i
1s nonempty. This implies Ayq¢ 1s nonempty for some d with 1 < d < Card ¥. Thus Fja 1s
nonempty. H

Remarks.

1. Note that Theorem 10 does not characterize all the finite solutions of h(z) ~ z; it
simply gives a necessary and sufficient condition for solutions to exist.

2. As we have seen in Theorem 1, the set of finite solutions to h(z) = z is finitely
generated, in that the solution set can be written as S* for some finite set 7. However,
the set of solutions to h(z) ~ z need not even be context-free. For consider the morphism

defined by h(a) =b, h(b) = ¢, h(c) = a, and let
T :={z€{ab,c}" : h(z)~ z}.
If T were context-free, then so would be T'N a*b*c*. But
T Nab*c” = {a'b'c’ : i >0}
which is not context-free.

We finish with a discussion of the set T' of words z for which h(z) ~ z. From the proof
of Theorem 10, there exist + < j such that h'(z) is a fixed point of h7~*. Since hi(z) ~ z,
we may restrict our attention to the set S =T N (J,5, Fri). Our set T then is the set of all
cyclic permutations of words in §.

To describe S we introduce an auxiliary morphism h:% - %, where £ C X. A letter
a € ¥ if and only if the following three conditions hold:

(1) ais an immortal letter of h;
(2) hi(a) contains exactly one immortal letter for all i > 1; and
(3) hi(a) contains a for some 7 > 1.

We define the morphism % by l;,(a) = a’ where o’ is the unique immortal letter in h(a).

The relation of i to S is as follows. If z € S, then z € Fy; for some . Hence there exists
an integer p such that z = z; .-z, where z; = z;a;y; € Fpi, and a; i1s an immortal letter
for 1 <j < p It follows easily that a; € ¥. Hence h cyclically shifts z iff & cyclically shifts
Z=ay---a, (The words z; and y; are uniquely specified by ¢ and a;.)

14



Theorem 11 We have
Card U Fri < o0.

1>1

Proof.  Suppose a € Y. Define a;, ; and y; by ag = a and h(a;) = = a]_|_1y] for 5 > 0,
where aj11 € Y. It is clear that there is a t < Card 3 such that if j = k (mod t) then
a; = ay, ©; = ), and y; = yy. Define ¢; = exp(h). By the definition of Fji, all words in Fy;
are of the form

hEi_l(xjo)hEi_2(le) T h(xjei—Q)xjei—l a’eiyjei—lh(yjei—Q) T hEi_2(yj1)h8i_1(yjo)

for some a = ag € X. Since there are only finitely many a;, z; and y; and e; < Card % for
all © > 1, the result follows. ™

Therefore, we now concentrate on the set T' of words 7 that are cyclically shifted by h.

Suppose ¥ = {ay,...,a.}. Since h acts as a permutation P on 3, there exists a unique
factorization of P into dlSJOlIlt cycles. Suppose ¢ = (do,... ,di—1) is a cycle appearing in the
factorization of P, and let |c| denote the length ¢ of the cycle ¢. Define the language L(c) as
follows:

L(c) = (dodyds - - - dp—1)" + (dida - - - dio1dp)* + « - - + (dp—1dody - - - dy—2)™.
For example, if ¢ = (0,1,2) then L(¢) = (012)* + (120)* + (201)*. Note that the definition

of L(c) is independent of the particular representation chosen for the cycle.
Now define the finite collection R’ of regular languages as follows:

R ' ={L(c") : cisacycleof Pand 1 <v < |¢| and ged(v,|c]) = 1}.

We now define a finite collection R of regular languages. Each language in R is the
union of some languages of R’. The union is defined as follows. Each language L(¢") in R’
is associated with a pair (¢,v) where t = |¢| and v is an integer relatively prime to ¢. Then

the languages L(c('),...,L(cim) in R’ are each a subset of the same language of R if and
only if the system of congruences
viz = 1 (mod #;)
vex = 1 (mod #,)
(10)
vt = 1 (mod t,,)
possesses an integer solution @, where t; = |¢;| for 1 < j < m. Note that a language in R’
may be a subset of several languages of R.
We say a word w is the perfect shuffle of words wy, ... ,w; if |w;| = -+ - = |w;| and the first
J symbols of w are the first symbols of wy, ... ,w; in that order, the second j symbols of w are
the second symbols of wy, ... ,w; in that order, and so on. We write w = I(w,ws, ... ,w;).

The following theorem characterizes the set T', and is our second main result.
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Theorem 12 Let 7 € %, and let h permute 3. Then 77,(2) ~ z if and only if Z is the perfect
shuffle of some finite number of words contained in some single language of R.

Proof. Leth permute ENI, with induced permutation P. Let Z = bgby - - - b,,_1.

(<=): Suppose 2 is the perfect shuffle of some finite number of words contained in a single
language of R. For simplicity of notation we consider the case where z is the perfect shuffle
of two such words; the general case is similar and is left to the reader.

Thus assume Z = II(w,w). Further, assume w € L(c¢") for some cycle ¢ and integer v
relatively prime to ¢t = |¢|, and @ € L(¢?) for some cycle ¢ and integer © relatively prime to
i—

¢
Then w = (dodyday - - - dyi—1)" for some cycle (do,dy, ... di_y
0 < s < t. (Here the indices are assumed to be taken modulo ¢.
Then w = (ciociﬁci% e ciﬁ,;_l)f for some cycle (620, 621, . ,ci,;_l
0<s<t. (Here the indices are assumed to be taken modulo £.
By hypothesis there exists an integer 2 such that vz = 1 (mod t), and 9z = 1 (mod £).
A simple calculation shows that we may assume (0 < z < tr = ##. Then % = dody--- and

h(z) = didy - = dypdyy - = boybogi1 - -+ (indices of a taken mod n), and so 77,(2) ~ Z.

of P with h(d,) = d,, for

of P with 77,(6?3) = czs+1 for

— e S e

(=): Suppose 77,(2) ~ Z. Then there exists an integer y such that ];,(bobl---bn_l) =
bybyt1 - -+ b,_1, where the indices are taken modulo n. Define g = ged(y,n) and m = n/g.
Then, considering its action on bgb; - - - b,_1, the morphism h induces a permutation of the
indices 0,1,... ,n—1 sending 5 — j +y (mod n) which, by elementary group theory, factors
into g disjoint cycles, each of length m.

Now, for 0 <7 < g, define the words

w; 1= bibg—l—ib2g—|—i te b(m—l)g—l—i-

It is clear that Z = III(wq,wy,... ,w,—1). Then

77,(11),) = 77,(()1 bgti bogri- - b(m—l)g-l-i)

bi-l—y bg-l-i-l—y b2g+i+y T b(m—l)g+i+y

= bi+(%)g bi+(%+1)g bi+(%+2)g Tt bi+(%+m—1)gv

and so it follows that h cyclically shifts each w; by y/g.
Now ged(m,y/g) = 1, so for each k there is a unique solution ¢ (mod m) of the congruence

t= =k (mod m).

@ |

Multiplying through by ¢, we find

ty = kg (mod n)

16



has a solution ¢, so

ty + 1= kg + i (mod n)
has a solution ¢. But l;,t(bi) = byy1i, so each symbol byyy; of w; 1s in the orbit of h on z. It
follows that each symbol of w; is contained in the same cycle ¢; of P. Suppose ¢; has length
t;. Then l;,ti(bi) = b;, and furthermore ¢; is the least positive integer with this property.
However, we also have l;,m(bl) = biym = bi_|_%n = b;, and so t; |m.

Since ged(y/g,m) = 1, there is a solution v to the congruence v - % =1 (mod m). Then
vy = g (mod n). Using the division theorem, write v = ¢;t; + v;, where 0 < v; < t;, for
0 < < g. Since ged(v,m) = 1, and ¢; | m, we must have ged(v, ;) = 1. Thus ged(v;, t;) = 1.

Now

B (brgi) = R4 (brgpi) = B (brgri) = Brgritoy = brgrisg = b(ksn)gri-
Then for 0 < i < g we have
w; = (b B (bi) B2 (B;) + -+ BETUvi (b))% € L(c}).
From f(bobiby - -+ ) = bybyy1byps - - -, it follows that
hav (b) = byys = h(bi),

and so gvi = 1 (mod ¢;). Thus the system of equations (10) possesses a solution = = y/g.
This completes the proof. ™
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