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Abstract

Let � be a �nite alphabet, and let h : �

�

! �

�

be a morphism. Finite and

in�nite �xed points of morphisms | i.e., those words w such that h(w) = w | play

an important role in formal language theory. Head characterized the �nite �xed points

of h, and later, Head and Lando characterized the one-sided in�nite �xed points of

h. Our paper has two main results. First, we complete the characterization of �xed

points of morphisms by describing all two-sided in�nite �xed points of h, for both the

\pointed" and \unpointed" cases. Second, we completely characterize the solutions to

the equation h(xy) = yx in �nite words.

1 Introduction and de�nitions

Let � be a �nite alphabet, and let h : �

�

! �

�

be a morphism on the free monoid, i.e., a

map satisfying h(xy) = h(x)h(y) for all x; y 2 �

�

. If a word w (�nite or in�nite) satis�es the

equation h(w) = w, then we call w a �xed point of h. Both �nite and in�nite �xed points of

morphisms have long been studied in formal languages. For example, in one of the earliest

works on formal languages, Axel Thue [21, 3] proved that the one-sided in�nite word

t = 0110100110010110 � � �

is overlap-free, that is, contains no subword of the form axaxa, where a 2 f0; 1g, and

x 2 (0 + 1)

�

. De�ne a morphism � by �(0) = 01 and �(1) = 10. The word t, now

�
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called the Thue-Morse in�nite word, is the unique one-sided in�nite �xed point of � which

starts with 0. In fact, nearly every explicit construction of an in�nite word avoiding certain

patterns involves the �xed point of a morphism; for example, see [8, 15, 24, 20]. One-sided

in�nite �xed points of uniform morphisms also play a crucial role in the theory of automatic

sequences; see, for example, [1].

Because of their importance in formal languages, it is of great interest to characterize

all the �xed points, both �nite and in�nite, of a morphism h. This problem was �rst

studied by Head [9], who characterized the �nite �xed points of h. Later, Head and Lando

[10] characterized the one-sided in�nite �xed points of h. (For di�erent proofs of these

characterizations, see Hamm and Shallit [7].) In this paper we complete the description

of all �xed points of morphisms by characterizing the two-sided in�nite �xed points of h.

Related work was done by Lando [14]. Two-sided in�nite words (sometimes called bi-in�nite

words or bi-in�nite sequences) play an important role in symbolic dynamics [16], and have

also been studied in automata theory [18, 19], cellular automata [12], and the theory of codes

[22, 5].

We �rst introduce some notation, some of which is standard and can be found in [11].

For single letters, that is, elements of �, we use the lower case letters a; b; c; d. For �nite

words, we use the lower case letters t; u; v; w; x; y; z. For in�nite words, we use bold-face

letters t;u;v;w;x;y; z. We let � denote the empty word. If w 2 �

�

, then by jwj we mean

the length of, or number of symbols in w. If S is a set, then by Card S we mean the number

of elements of S. We say x 2 �

�

is a subword of y 2 �

�

if there exist words w; z 2 �

�

such

that y = wxz.

If h is a morphism, then we let h

j

denote the j-fold composition of h with itself. If there

exists an integer j � 1 such that h

j

(a) = �, then the letter a is said to be mortal; otherwise

a is immortal. The set of mortal letters associated with a morphism h is denoted by M

h

.

The mortality exponent of a morphism h is de�ned to be the least integer t � 0 such that

h

t

(a) = � for all a 2M

h

. We write the mortality exponent as exp(h) = t. It is easy to prove

that exp(h) � Card M

h

.

We let �

!

denote the set of all one-sided right-in�nite words over the alphabet �. Most

of the de�nitions above extend to �

!

in the obvious way. For example, if w = c

1

c

2

c

3

� � � ,

then h(w) = h(c

1

)h(c

2

)h(c

3

) � � � . If L � �

�

is a language, then we de�ne

L

!

:= fw

1

w

2

w

3

� � � : w

i

2 L� f�g for all i � 1g:

Perhaps slightly less obviously, we can also de�ne a limiting word

!

h

!

(a) := lim

n!1

h

n

(a)

for a letter a, provided h(a) = wax and w 2 M

�

h

. In this case, there exists t � 0 such that

h

t

(w) = �. Then we de�ne

!

h

!

(a) := h

t�1

(w) � � � h(w)w axh(x)h

2

(x) � � � ;

which is in�nite if and only if x 62 M

�

h

. Note that the factorization of h(a) as wax, with

w 2M

�

h

and x 62M

�

h

, if it exists, is unique.
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In a similar way, we let

!

� denote the set of all left-in�nite words, which are of the form

w = � � � c

�2

c

�1

c

0

. We write h(w) = � � �h(c

�2

)h(c

�1

)h(c

0

): We de�ne

!

L to be the set of

left-in�nite words formed by concatenating in�nitely many words from L, that is,

!

L := f� � �w

�2

w

�1

w

0

: w

i

2 L� f�g for all i � 0g:

If h(a) = wax, and w 62M

�

h

, x 2M

�

h

, then we de�ne the left-in�nite word

 

h

!

(a) := � � � h

2

(w)h(w)w axh(x) � � � h

t�1

(x);

where h

t

(x) = �. Again, if the factorization of h(a) as wax exists, with w 62 M

�

h

, x 2 M

�

h

,

then it is unique.

We can convert left-in�nite to right-in�nite words (and vice versa) using the reverse

operation, which is denoted w

R

. For example, if w = c

0

c

1

c

2

� � � , then w

R

= � � � c

2

c

1

c

0

.

We now turn to the notation for two-sided in�nite words. These have been much less

studied in the literature than one-sided words, and the notation has not been standardized.

Some authors consider 2 two-sided in�nite words to be identical if they agree after applying

a �nite shift to one of the words. Other authors do not. (This distinction is sometimes

called \unpointed" vs. \pointed" [2, 17].) In this paper, we consider both the pointed and

unpointed versions of the equation h(w) = w. As it turns out, the \pointed" version of

this equation is quite easy to solve, based on known results, while the \unpointed" case is

signi�cantly more di�cult. The latter is our �rst main result, which appears as Theorem 5.

We let �

Z

denote the set of all two-sided in�nite words over the alphabet �, which are

of the form � � � c

�2

c

�1

c

0

:c

1

c

2

� � � . In displaying an in�nite word as a concatenation of words,

we use a decimal point to the left of the character c

1

, to indicate how the word is indexed.

Of course, the decimal point is not part of the word itself. We de�ne the shift �(w) to be

the two-sided in�nite word obtained by shifting w to the left one position, so that

�(� � � c

�2

c

�1

c

0

:c

1

c

2

c

3

� � � ) = � � � c

�1

c

0

c

1

:c

2

c

3

c

4

� � � :

Similarly, for k 2Zwe de�ne

�

k

(� � � c

�2

c

�1

c

0

:c

1

c

2

c

3

� � � ) = � � � c

k�1

c

k

:c

k+1

c

k+2

� � � :

If w;x are 2 two-sided in�nite words, and there exists an integer k such that x = �

k

(w), then

we call w and x conjugates, and we write w � x. It is easy to see that � is an equivalence

relation. We extend this notation to languages as follows: if L is a set of two-sided in�nite

words, then by w � L we mean there exists x 2 L such that w � x.

Ifw is a nonempty �nite word, then byw

Z

we mean the two-sided in�nite word � � �www:www � � � .

Using concatenation, we can join a left-in�nite word w = � � � c

�2

c

�1

c

0

with a right-in�nite

word x = d

0

d

1

d

2

� � � to form a new two-sided in�nite word, as follows:

w:x := � � � c

�2

c

�1

c

0

:d

0

d

1

d

2

� � � :

3



If L � �

�

is a set of words, then we de�ne

L

Z

:= f� � �w

�2

w

�1

w

0

:w

1

w

2

� � � : w

i

2 L � f�g for all i 2Zg:

If w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � � , and h is a morphism, then we de�ne

h(w) := � � � h(c

�2

)h(c

�1

)h(c

0

):h(c

1

)h(c

2

) � � � (1)

Finally, if i = jwaj, h(a) = wax, and w; x 62M

�

h

, then we de�ne

 !

h

!;i

(a) := � � �h

2

(w)h(w)w :a xh(x)h

2

(x) � � � ;

a two-sided in�nite word. Note that in this case the factorization of h(a) as wax is not

necessarily unique, and we use the superscript i to indicate which a is being chosen.

We can produce one-sided in�nite words from two-sided in�nite words by ignoring the

portion to the right or left of the decimal point. Suppose w = � � � c

�2

c

�1

c

0

:c

1

c

2

c

3

� � � . We

de�ne

L(w) = � � � c

�2

c

�1

c

0

;

a left-in�nite word, and

R(w) = c

1

c

2

c

3

� � � ;

a right-in�nite word.

2 Finite and one-sided in�nite �xed points

In this section we recall the results of Head [9] and Head and Lando [10]. We assume

h : �

�

! �

�

is a morphism that is extended to the domains �

!

and

!

� in the manner

discussed above.

De�ne

A

h

= fa 2 � : 9 x; y 2 �

�

such that h(a) = xay and xy 2M

�

h

g

and

F

h

= fh

t

(a) : a 2 A

h

and t = exp(h)g:

Note that there is at most one way to write h(a) in the form xay with xy 2M

�

h

.

Theorem 1 A �nite word w 2 �

�

has the property that w = h(w) if and only if w 2 F

�

h

.

Theorem 2 The right-in�nite word w is a �xed point of h if and only if at least one of the

following two conditions holds:

(a) w 2 F

!

h

; or
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(b) w 2 F

�

h

!

h

!

(a) for some a 2 �, and there exist x 2 M

�

h

and y 62 M

�

h

such that

h(a) = xay.

There is also an evident analogue of Theorem 2 for left-in�nite words:

Theorem 3 The left-in�nite word w is a �xed point of h if and only if at least one of the

following two conditions holds:

(a) w 2

!

F

h

; or

(b) w 2

 

h

!

(a)F

�

h

for some a 2 �, and there exist x 62 M

�

h

and y 2M

�

h

such that h(a) = xay.

3 Two-sided in�nite �xed points: the \pointed" case

We assume h : �

�

! �

�

is a morphism that is extended to the domain �

Z

in the manner

discussed above. In this section, we consider the equation h(w) = w for two-sided in�nite

words.

Proposition 4 The equation h(w) = w has a solution if and only if at least one of the

following conditions holds:

(a) w 2 F

Z

h

; or

(b) w 2

 

h

!

(a)F

�

h

:F

!

h

for some a 2 �, and there exist x 62 M

�

h

, y 2 M

�

h

such that h(a) =

xay; or

(c) w 2

!

F

h

:F

�

h

!

h

!

(a) for some a 2 �, and there exist x 2 M

�

h

, y 62 M

�

h

such that

h(a) = xay; or

(d) w 2

 

h

!

(a)F

�

h

:F

�

h

!

h

!

(b) for some a; b 2 � and there exist x; z 62 M

�

h

, y;w 2M

�

h

, such

that h(a) = xay and h(b) = wbz.

Proof. Let w = � � � c

�2

c

�1

c

0

:c

1

c

2

c

3

� � � . By de�nition, we have

h(w) = � � �h(c

�2

)h(c

�1

)h(c

0

):h(c

1

)h(c

2

)h(c

3

) � � � ;

so if h(w) = w, then we have h(c

1

c

2

c

3

� � � ) = c

1

c

2

c

3

� � � and h(� � � c

�2

c

�1

c

0

) = � � � c

�2

c

�1

c

0

.

We may now apply Theorem 2 (resp., Theorem 3) to R(w) (resp., L(w)). There are 2

cases to consider for each side, giving 2 � 2 = 4 total cases.
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Example. Let � be the Thue-Morse morphism, which maps 0 ! 01, and 1 ! 10. De�ne

g = �

2

. Then g(0) = 0110, g(1) = 1001. Let t = 01101001 � � � , the one-sided Thue-Morse

in�nite word. Then there are exactly 4 two-sided in�nite �xed points of g, as follows:

t

R

:t = � � � 10010110:01101001 � � �

t

R

:t = � � � 01101001:01101001 � � �

t

R

:t = � � � 01101001:10010110 � � �

t

R

:t = � � � 10010110:10010110 � � � :

All of these fall under case (d) of Proposition 4. Incidentally, all four of these words are

overlap-free.

4 Two-sided in�nite �xed points: the \unpointed" case

We assume h : �

�

! �

�

is a morphism that is extended to the domain �

Z

in the manner

discussed above. In this section, we characterize the two-sided in�nite �xed points of a

morphism in the \unpointed" case. That is, our goal is to characterize the solutions to

h(w) � w. The following theorem is the �rst of our two main results.

Theorem 5 Let h be a morphism. Then the two-sided in�nite word w satis�es the relation

h(w) � w if and only if at least one of the following conditions holds:

(a) w � F

Z

h

; or

(b) w �

 

h

!

(a) : F

!

h

for some a 2 �, and there exist x 62 M

�

h

and y 2 M

�

h

such that

h(a) = xay; or

(c) w �

!

F

h

:

!

h

!

(a) for some a 2 �, and there exist x 2 M

�

h

and y 62 M

�

h

such that

h(a) = xay; or

(d) w �

 

h

!

(a) : F

�

h

!

h

!

(b) for some a; b 2 � and there exist x; z 62 M

�

h

, y;w 2 M

�

h

, such

that h(a) = xay and h(b) = wbz; or

(e) w �

 !

h

!;i

(a) for some a 2 �, and there exist x; y 62 M

�

h

such that h(a) = xay with

jxaj = i; or

(f) w = (xy)

Z

for some x; y 2 �

+

such that h(xy) = yx.

Before we begin the proof of Theorem 5, we state and prove three useful lemmas.
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Lemma 6 Suppose w, x are 2 two-sided in�nite words with w � x. Then h(w) � h(x).

Proof. Since w � x, there exists j such that x = �

j

(w). Then h(x) = �

k

(h(w)), where

k =

(

jh(c

1

c

2

� � � c

j

)j; if j � 0;

�jh(c

j+1

c

j+2

� � � c

�1

c

0

)j; if j < 0:

(2)

Our second lemma concerns periodicity of in�nite words. We say a two-sided in�nite

word

w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � �

is periodic if there exists a nonempty word x such that w = x

Z

, i.e., if there exists an integer

p � 1 such that w = �

p

(w). The integer p is called a period of w.

Lemma 7 Suppose w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � � is a two-sided in�nite word such that there

exists a one-sided right-in�nite word x and in�nitely many negative indices 0 > i

1

> i

2

> � � �

such that

x = c

i

j

c

i

j

+1

c

i

j

+2

� � �

for j � 1. Then w is periodic.

Proof. By assumption

x = c

i

j

c

i

j

+1

c

i

j

+2

� � � = c

i

j+1

c

i

j+1

+1

c

i

j+1

+2

� � �

for j � 1. Hence c

i

j

+k

= c

i

j+1

+k

for all k � 0, and so the right-in�nite word x is periodic

of period i

j

� i

j+1

. Since this is true for all j � 1, it follows that x is periodic of period

g = gcd

j�1

(i

j

� i

j+1

), i.e., c

i

j

+k

= c

i

j

+g+k

for all j � 1; k � 0. Since i

j

! �1, it follows that

c

k

= c

k+g

for all k, and so w is periodic of period g.

Our third lemma concerns the growth functions of iterated morphisms.

Lemma 8 Let h : �

�

! �

�

be a morphism. Then

(a) there exist integers i; j with 0 � i < j and jh

i

(w)j � jh

j

(w)j for all w 2 �

�

; and

(b) there exists an integer M depending only on k = Card � such that for all h : �

�

! �

�

,

we have j �M .

We note that part (a) was asserted without proof by Cobham [4]. However, the proof

easily follows from a result of Dickson [6] that N

k

contains no in�nite antichains under the

usual partial ordering; see also K�onig [13]. For completeness, we give the following proof,

suggested by S. Astels (personal communication).
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Proof. (a) Suppose � = fa

1

; a

2

; : : : ; a

r

g. First, choose i

1;1

to be the least index

such that jh

i

1;1

(a

1

)j = min

i�0

jh

i

(a

1

)j. Next, successively choose i

1;2

; i

1;3

; i

1;4

; : : : such that

jh

i

1;n+1

(a

1

)j = min

i>i

1;n

jh

i

(a

1

)j for n � 1. Clearly jh

i

1;n

(a

1

)j � jh

i

1;n+1

(a

1

)j for all n � 1. Let

S

1

= fi

1;1

; i

1;2

; i

1;3

; : : :g.

Now, choose i

2;1

to be the least index i 2 S

1

such jh

i

2;1

(a

2

)j = min

i2S

1

jh

i

(a

2

)j. Next,

successively choose i

2;2

; i

2;3

; i

2;4

; : : : 2 S

1

such that jh

i

2;n+1

(a

2

)j = min

i2S

1

;i>i

2;n

jh

i

(a

2

)j for n �

1. Clearly jh

i

2;n

(a

j

)j � jh

i

2;n+1

(a

j

)j for j = 1; 2 and all n � 1. Let S

2

= fi

2;1

; i

2;2

; i

2;3

; : : :g.

Note that S

2

� S

1

.

Continuing in this fashion, we produce an in�nite sequence of indices i

r;1

; i

r;2

; i

r;3

; : : : such

that jh

i

r;n

(a

j

)j � jh

i

r;n+1

(a

j

)j for j = 1; 2; : : : ; r and all n � 1. We can then choose i = i

r;1

and j = i

r;2

.

(b) We omit the proof, although we observe that we can take M = 2

k

. See [23].

Now we can prove Theorem 5.

Proof. ((=): Suppose case (a) holds, and w � F

Z

h

. Then there exists x 2 F

Z

h

with

w � x. Since x 2 F

Z

h

, we can write x = � � �x

�2

x

�1

x

0

:x

1

x

2

� � � , where x

i

2 F

h

for all i 2 Z.

Since x

i

2 F

h

, we have h(x

i

) = x

i

for all i 2 Z. It follows that h(x) = x. Now, applying

Lemma 6, we conclude that h(w) � h(x) = x � w.

Next, suppose case (b) holds, and w �

 

h

!

(a):F

!

h

. Then w � x for some x of the form

x =

 

h

!

(a):x

1

x

2

x

3

� � � ;

where x

i

2 F

h

for all i � 1, and h(a) = xay with x 62 M

�

h

and y 2 M

�

h

. Then we have

h(x) = x, and by Lemma 6, we conclude that h(w) � h(x) = x � w.

Cases (c), (d), and (e) are similar to case (b).

Finally, if case (f) holds, then

h(w) = h(� � � xyxy:xyxy � � � ) = � � � yxyx:yxyx � � � ;

and so h(w) = �

k

(w) for k = jxj.

(=)): Suppose w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � � , and there exists k such that h(w) = �

k

(w).

Let

s(i) :=

(

jh(c

1

c

2

� � � c

i

)j+ k; if i � 0;

k � jh(c

i+1

c

i+2

� � � c

0

)j; if i < 0:

(3)

Then it is not hard to see that

h(c

i

) = c

s(i�1)+1

� � � c

s(i)

(4)
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for i 2 Z; see Figure 1. Note that s(0) = k.

c (1)s(0)+1sc . . .
(0)scc s (-1)+1

. . . . . .. . .

c 1 c 2c 0c-1
. . . . . .

h

w =

w =h(   ) 

Figure 1: Interpretation of the function s

We de�ne the set C as follows: C = fi 2 Z : s(i) = ig: Our argument is divided into

two major cases, depending on whether or not C is empty.

Case 1: C 6= ;. In this case, there exists j such that s(j) = j. Now consider the pointed

word x = � � � c

j�2

c

j�1

c

j

:c

j+1

c

j+2

� � � . We have x � w and by Eq. (4) we have h(x) = x.

Then, by Proposition 4, one of cases (a){(d) must hold.

Case 2: C = ;. There are several subcases to consider.

Case 2a: There exist integers i; j with i < j such that

s(i) > i but s(j) < j: (5)

Among all pairs (i; j) satisfying (5), choose one with j � i minimal. Suppose there exists

an integer k with i < k < j. If s(k) < k, then (i; k) is a pair satisfying (5) with smaller

di�erence, while if k < j, then (k; j) is a pair satisfying (5) with smaller di�erence. Hence

s(k) = k. But this is impossible by our assumption. It follows that j = i+1. Then s(i) > i,

but s(i+ 1) < i+ 1, a contradiction, since s(i) � s(i+ 1). Hence this case cannot occur.

Case 2b: There exists an integer r such that s(i) < i for all i < r, and s(i) > i for

all i � r. Then h(c

r

) = c

s(r�1)+1

� � � c

s(r)

, which by the inequalities contains c

r�1

c

r

c

r+1

as a

subword. Therefore, letting a = c

r

, it follows that

w � ux : a y v;

where u = � � � c

s(r�1)�1

c

s(r�1)

is a left-in�nite word, x = c

s(r�1)+1

� � � c

r�1

and y = c

r+1

� � � c

s(r)

are �nite words, and v = c

s(r)+1

c

s(r)+2

� � � is a right-in�nite word. Furthermore, we have

h(ux) = u, h(a) = xay, and h(yv) = v.

Now the equation h(yv) = v implies that h(y) is a pre�x of v, and by an easy induction

we have h(y)h

2

(y)h

3

(y) � � � is a pre�x of v. Suppose this pre�x is �nite. Then y 2M

�

h

, and

so h(y)h

2

(y)h

3

(y) � � � = h(y)h

2

(y) � � �h

t

(y), where t = exp(h). De�ne z = h(y)h

2

(y) � � � h

t

(y).

Then s(r+ jyj+ jzj) = r+ jyj+ jzj, a contradiction, since we have assumed C = ;. It follows

that z := h(y)h

2

(y)h

3

(y) � � � is right-in�nite and hence y 62M

�

h

.
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By exactly the same reasoning, we �nd that � � � h

3

(x)h

2

(x)h(x) is a left-in�nite su�x of

u. We conclude that w �

 !

h

!;i

(a), and hence case (e) holds.

Case 2c: s(i) > i for all i 2Z. Let w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � � .

Now consider the following factorization of certain conjugates of w, as follows: for i � 0,

we have w � x

i

y

i

: z

i

, where x

i

= � � � c

i�2

c

i�1

(a left-in�nite word), y

i

= c

i

� � � c

s(i�1)

(a �nite

word), and z

i

= c

s(i�1)+1

c

s(i�1)+2

� � � (a right-in�nite word). Note that i � 1 < s(i � 1) by

assumption, so i � s(i� 1); hence y

i

is nonempty. Evidently we have

h(x

i

) = x

i

y

i

; and (6)

h(y

i

z

i

) = z

i

:

Now the equation h(y

i

z

i

) = z

i

implies that h(y

i

) is a pre�x of z

i

. Now an easy induction,

as in Case 2b, shows that v := h(y

i

)h

2

(y

i

)h

3

(y

i

) � � � is a pre�x of z

i

. If v were �nite, then

we would have y

i

2M

�

h

, and so s(j) = j for j = s(i� 1) + jvj, a contradiction, since C = ;.

Hence v is right-in�nite, and so y

i

62 M

�

h

. There are now two further subcases to consider:

(i) sup

i�0

(s(i)� i) < +1, and (ii) sup

i�0

(s(i)� i) = +1.

Case 2ci: Suppose sup

i�0

(s(i) � i) = d < +1. It then follows that jy

i

j � d. Hence

there is a �nite word u such that y

i

= u for in�nitely many indices i � 0. From the above

argument we see that the right-in�nite word h(u)h

2

(u)h

3

(u) � � � is a su�x of w, beginning

at position s(i� 1) + 1, for in�nitely many indices i � 0. We now use Lemma 7 to conclude

that w is periodic.

Thus we can write w = � � � c

�2

c

�1

c

0

:c

1

c

2

� � � , and w = � � � vvv:vvv � � � , where v =

c

1

c

2

� � � c

p

for some integer p � 1. Without loss of generality, we may assume p is mini-

mal.

We claim jh(v)j = p. For if not we must have jh(v)j = q, for q 6= p, and then since

h(w) � w, we would have w is periodic with periods p and q, hence periodic of period

gcd(p; q). But since p was minimal we must have p j q. Hence q � 2p. Now let s(p) = l; since

s(i) > i for all i we must have l > 0. Then

h(c

1

c

2

� � � c

p

) = c

s(�1)+1

� � � c

s(p)

= c

l�q+1

� � � c

l

:

It now follows that

s(ip) = l � q + iq (7)

for all integers i. Now p < q, so p � q � 1, and hence p < q � 1 + q=l. Hence, multiplying

by �l, we get �lp > l � ql � q. Now take i = �l in Eq. (7), and we have

s(�lp) = l � q � lq < �lp;

a contradiction, since s(i) > i for all i. It follows that jh(v)j = p.
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There exists k such that h(c

1

c

2

� � � c

p

) = c

k+1

c

k+2

� � � c

k+p

. Using the division theorem,

write k = jp+ r, where 0 � r < p. De�ne

y = c

k+1

� � � c

(j+1)p

= c

r+1

� � � c

p

;

x = c

(j+1)p+1

� � � c

k+p

= c

1

� � � c

r

:

We have h(xy) = yx, and v = xy. Then w = v

Z

= (xy)

Z

.

By above we know jvj � 1, so xy 6= �. Suppose y = �. Then h(x) = x, and so x 2 F

�

h

. It

follows that w 2 F

Z

h

. A similar argument applies if x = �. However, if w 2 F

Z

h

, then C 6= ;,

a contradiction. Thus x; y 6= �, and case (f) holds.

Case 2cii: sup

i�0

(s(i) � i) = +1. Recall that s(i) > i for all i 2 Z and w =

� � � c

�2

c

�1

c

0

:c

1

c

2

� � � . De�ne

x := � � � c

�2

c

�1

c

0

;

y := c

1

c

2

� � � c

s(0)

;

z := c

s(0)+1

c

s(0)+2

� � � :

Then w = x:yz and h(x) = xy, h(yz) = z.

De�ne B

j

(k) = s

j

(k)� s

j�1

(k), where s

j

denotes the j-fold composition of the function

s with itself. First we prove the following technical lemma.

Lemma 9 For all integers r � 1 there exists an integer n � 0 such that B

j

(n) > r for

1 � j � t.

Proof. By induction on t. For t = 1 the result follows since

sup

i�0

B

1

(i) = sup

i�0

(s(i)� i) = +1:

Now assume the result is true for t; we prove it for t+1. De�ne m := max

a2�

jh(a)j. By

induction there exists an integer n

1

such that B

j

(n

1

) > mr +m

t+1

for 1 � j � t. Then, by

the de�nition of m there exist an integer n

2

< n

1

with n

1

� n

2

< m, and an integer n

3

such

that s(n

3

) = n

2

.

Now h(c

n

3

+1

� � � c

n

2

) = c

s(n

3

)+1

� � � c

s(n

2

)

, so s(n

2

)�s(n

3

) � m(n

2

�n

3

). Similarly, we have

s

j

(n

2

)� s

j

(n

3

) � m

j

(n

2

� n

3

) (8)

for all j � 0. By the same reasoning, we have

s

j

(n

1

)� s

j

(n

2

) � m

j

(n

1

� n

2

) � m

j

(m� 1) (9)
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for all j � 0. Thus we �nd

B

1

(n

3

) = s(n

3

)� n

3

= n

2

� n

3

�

s(n

2

)� s(n

3

)

m

(by Eq. (8))

=

s(n

2

)� n

2

m

=

(s(n

1

)� n

1

)� ((s(n

1

)� s(n

2

))� (n

1

� n

2

))

m

=

B

1

(n

1

)� ((s(n

1

)� s(n

2

))� (n

1

� n

2

))

m

>

mr +m

t+1

�m(m� 1)

m

(by induction and Eq. (9))

> r:

Similarly, for 2 � j � t+ 1, we have

B

j

(n

3

) = s

j

(n

3

)� s

j�1

(n

3

)

= s

j�1

(n

2

)� s

j�2

(n

2

)

= (s

j�1

(n

1

)� s

j�2

(n

1

))� ((s

j�1

(n

1

)� s

j�1

(n

2

))� (s

j�2

(n

1

)� s

j�2

(n

2

)))

= B

j�1

(n

1

)� ((s

j�1

(n

1

)� s

j�1

(n

2

))� (s

j�2

(n

1

)� s

j�2

(n

2

)))

> mr +m

t+1

�m

j�1

(m� 1) (by Eq. (9))

� r:

It thus follows that we can take n = n

3

. This completes the proof of Lemma 9.

Now let M be the integer speci�ed in Lemma 8, and de�ne r := sup

1�i�M

B

i

(0). By

Lemma 9 there exists an integer n � 0 such that B

j

(n) > r for 1 � j � M . De�ne

w := c

n+1

� � � c

0

. We have

jh

j

(w)j = s

j

(0)� s

j

(n); and

jh

j�1

(w)j = s

j�1

(0)� s

j�1

(n):

It follows that

jh

j

(w)j = (s

j

(0)� s

j�1

(0)) � (s

j

(n)� s

j�1

(n)) + jh

j�1

(w)j

= B

j

(0)�B

j

(n) + jh

j�1

(w)j

< B

j

(0)� r + jh

j�1

(w)j

� jh

j�1

(w)j

12



for 1 � j � M . But this contradicts Lemma 8. This contradiction shows that this case

cannot occur.

Case 2d: s(i) < i for all i 2 Z. This case is the mirror image of Case 2c

1

, and the proof

is identical. The proof of Theorem 5 is complete.

5 Some examples

In this section we consider some examples of Theorem 5.

Example 1. Consider the morphism f de�ned by a! bb, b! �, c! aad, d! c. Let

w = � � � aadbbbbcaadbbbbc:aadbbbbcaadbbbbc � � � :

Then

f(w) = � � � bbbbcaadbbbbcaad:bbbbcaadbbbbcaad � � � :

This falls under case (f) of Theorem 5.

Example 2. Consider the morphism ' de�ned by 0! 201, 1! 012, and 2! 120. Then if

w =

 !

'

!;2

(0) = � � � c

�2

c

�1

:c

0

c

1

c

2

� � � = � � � 1202:01012 � � � ;

we have '(w) � w. This falls under case (e) of Theorem 5. Incidentally, c

i

equals the sum

of the digits, modulo 3, in the balanced ternary representation of i.

6 The equation h(xy) = yx in �nite words

It is not di�cult to see that it is decidable whether any of conditions (a){(e) of Theorem 5

hold for a given morphism h. However, this is somewhat less obvious for condition (f) of

Theorem 5, which demands that the equation h(xy) = yx possess a nontrivial

2

solution. We

conclude this paper by discussing the solvability of this equation and, in our second main

result, we give a characterization of the solution set.

To do so it is useful to extend the notation �, previously used for two-sided in�nite

words, to �nite words. We say w � z for w; z 2 �

�

if w is a cyclic shift of z, i.e., if there exist

x; y 2 �

�

such that w = xy and z = yx. It is now easy to verify that � is an equivalence

relation. Furthermore, if w � z, and h is a morphism, then h(w) � h(z). Thus condition

(f) can be restated as h(z) � z. The following theorem shows that the solvability of the

equation h(xy) = yx is decidable.

1

Note that s(i) > i for all i implies that s(i � 1) > i � 1. Therefore s(i � 1) + 1 > i, and hence Case 2d

really is the mirror image of Case 2c.

2

By nontrivial we mean xy 6= �.
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Theorem 10 Let h be a morphism h : �

�

! �

�

. Then h(z) � z possesses a solution z 6= �

if and only if F

h

d is nonempty for some 1 � d � Card �.

Proof. (=: Suppose F

h

d is nonempty for some d, say x 2 F

h

d. Then by de�nition of F

h

d,

h

d

(x) = x. Let y = h(x) � � �h

d�1

(x) and z = xy. Then h(xy) = yx and so h(z) � z.

=): Suppose h(z) � z. Then jh

n

(z)j = jzj for all n � 0, and so there exist 0 � i < j

such that h

i

(z) = h

j

(z). In other words, h

i

(z) is a �nite �xed point of h

j�i

. Hence F

h

j�i

is nonempty. This implies A

h

d is nonempty for some d with 1 � d � Card �. Thus F

h

d is

nonempty.

Remarks.

1. Note that Theorem 10 does not characterize all the �nite solutions of h(z) � z; it

simply gives a necessary and su�cient condition for solutions to exist.

2. As we have seen in Theorem 1, the set of �nite solutions to h(z) = z is �nitely

generated, in that the solution set can be written as S

�

for some �nite set T . However,

the set of solutions to h(z) � z need not even be context-free. For consider the morphism

de�ned by h(a) = b, h(b) = c, h(c) = a, and let

T := fz 2 fa; b; cg

�

: h(z) � zg:

If T were context-free, then so would be T \ a

�

b

�

c

�

. But

T \ a

�

b

�

c

�

= fa

i

b

i

c

i

: i � 0g

which is not context-free.

We �nish with a discussion of the set T of words z for which h(z) � z. From the proof

of Theorem 10, there exist i < j such that h

i

(z) is a �xed point of h

j�i

. Since h

i

(z) � z,

we may restrict our attention to the set S = T \ (

S

i�1

F

�

h

i

). Our set T then is the set of all

cyclic permutations of words in S.

To describe S we introduce an auxiliary morphism

~

h :

~

� !

~

�, where

~

� � �. A letter

a 2

~

� if and only if the following three conditions hold:

(1) a is an immortal letter of h;

(2) h

i

(a) contains exactly one immortal letter for all i � 1; and

(3) h

i

(a) contains a for some i � 1.

We de�ne the morphism

~

h by

~

h(a) = a

0

where a

0

is the unique immortal letter in h(a).

The relation of

~

h to S is as follows. If z 2 S, then z 2 F

�

h

i

for some i. Hence there exists

an integer p such that z = z

1

� � � z

p

where z

j

= x

j

a

j

y

j

2 F

h

i
, and a

j

is an immortal letter

for 1 � j � p. It follows easily that a

j

2

~

�. Hence h cyclically shifts z i�

~

h cyclically shifts

~z = a

1

� � � a

p

. (The words x

j

and y

j

are uniquely speci�ed by i and a

j

.)
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Theorem 11 We have

Card

[

i�1

F

h

i
<1:

Proof. Suppose a 2

~

�. De�ne a

j

, x

j

and y

j

by a

0

= a and h(a

j

) = x

j

a

j+1

y

j

for j � 0,

where a

j+1

2

~

�. It is clear that there is a t � Card

~

� such that if j � k (mod t) then

a

j

= a

k

, x

j

= x

k

and y

j

= y

k

. De�ne e

i

= exp(h

i

). By the de�nition of F

h

i
, all words in F

h

i

are of the form

h

e

i

�1

(x

j

0

)h

e

i

�2

(x

j

1

) � � �h(x

j

e

i

�2

)x

j

e

i

�1

a

e

i

y

j

e

i

�1

h(y

j

e

i

�2

) � � �h

e

i

�2

(y

j

1

)h

e

i

�1

(y

j

0

)

for some a = a

0

2

~

�. Since there are only �nitely many a

j

, x

j

and y

j

and e

i

� Card

~

� for

all i � 1, the result follows.

Therefore, we now concentrate on the set

~

T of words ~z that are cyclically shifted by

~

h.

Suppose

~

� = fa

1

; : : : ; a

s

g. Since

~

h acts as a permutation P on

~

�, there exists a unique

factorization of P into disjoint cycles. Suppose c = (d

0

; : : : ; d

t�1

) is a cycle appearing in the

factorization of P , and let jcj denote the length t of the cycle c. De�ne the language L(c) as

follows:

L(c) = (d

0

d

1

d

2

� � � d

t�1

)

�

+ (d

1

d

2

� � � d

t�1

d

0

)

�

+ � � �+ (d

t�1

d

0

d

1

� � � d

t�2

)

�

:

For example, if c = (0; 1; 2) then L(c) = (012)

�

+ (120)

�

+ (201)

�

. Note that the de�nition

of L(c) is independent of the particular representation chosen for the cycle.

Now de�ne the �nite collection R

0

of regular languages as follows:

R

0

= fL(c

v

) : c is a cycle of P and 1 � v � jcj and gcd(v; jcj) = 1g:

We now de�ne a �nite collection R of regular languages. Each language in R is the

union of some languages of R

0

. The union is de�ned as follows. Each language L(c

v

) in R

0

is associated with a pair (t; v) where t = jcj and v is an integer relatively prime to t. Then

the languages L(c

v

1

1

); : : : ; L(c

v

m

m

) in R

0

are each a subset of the same language of R if and

only if the system of congruences

v

1

x � 1 (mod t

1

)

v

2

x � 1 (mod t

2

)

.

.

. (10)

v

m

x � 1 (mod t

m

)

possesses an integer solution x, where t

j

= jc

j

j for 1 � j � m. Note that a language in R

0

may be a subset of several languages of R.

We say a word w is the perfect shu�e of words w

1

; : : : ; w

j

if jw

1

j = � � � = jw

j

j and the �rst

j symbols of w are the �rst symbols of w

1

; : : : ; w

j

in that order, the second j symbols of w are

the second symbols of w

1

; : : : ; w

j

in that order, and so on. We write w =X(w

1

; w

2

; : : : ; w

j

).

The following theorem characterizes the set

~

T , and is our second main result.
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Theorem 12 Let ~z 2

~

�

�

, and let

~

h permute

~

�. Then

~

h(~z) � ~z if and only if ~z is the perfect

shu�e of some �nite number of words contained in some single language of R.

Proof. Let

~

h permute

~

�, with induced permutation P . Let ~z = b

0

b

1

� � � b

n�1

.

((=): Suppose ~z is the perfect shu�e of some �nite number of words contained in a single

language of R. For simplicity of notation we consider the case where ~z is the perfect shu�e

of two such words; the general case is similar and is left to the reader.

Thus assume ~z = X(w; ŵ). Further, assume w 2 L(c

v

) for some cycle c and integer v

relatively prime to t = jcj, and ŵ 2 L(ĉ

v̂

) for some cycle ĉ and integer v̂ relatively prime to

^

t = jĉj.

Then w = (d

0

d

v

d

2v

� � � d

vt�1

)

r

for some cycle (d

0

; d

1

; : : : ; d

t�1

) of P with

~

h(d

s

) = d

s+1

for

0 � s < t. (Here the indices are assumed to be taken modulo t.)

Then ŵ = (

^

d

0

^

d

v̂

^

d

2v̂

� � �

^

d

v̂

^

t�1

)

r̂

for some cycle (

^

d

0

;

^

d

1

; : : : ;

^

d

^

t�1

) of P with

~

h(

^

d

s

) =

^

d

s+1

for

0 � s <

^

t. (Here the indices are assumed to be taken modulo

^

t.)

By hypothesis there exists an integer x such that vx � 1 (mod t), and v̂x � 1 (mod

^

t).

A simple calculation shows that we may assume 0 � x < tr =

^

tr̂. Then ~z = d

0

^

d

0

� � � and

~

h(~z) = d

1

^

d

1

� � � = d

vx

^

d

v̂x

� � � = b

2x

b

2x+1

� � � (indices of a taken mod n), and so

~

h(~z) � ~z.

(=)): Suppose

~

h(~z) � ~z. Then there exists an integer y such that

~

h(b

0

b

1

� � � b

n�1

) =

b

y

b

y+1

� � � b

y�1

, where the indices are taken modulo n. De�ne g = gcd(y; n) and m = n=g.

Then, considering its action on b

0

b

1

� � � b

n�1

, the morphism

~

h induces a permutation of the

indices 0; 1; : : : ; n�1 sending j ! j+y (mod n) which, by elementary group theory, factors

into g disjoint cycles, each of length m.

Now, for 0 � i < g, de�ne the words

w

i

:= b

i

b

g+i

b

2g+i

� � � b

(m�1)g+i

:

It is clear that ~z =X(w

0

; w

1

; : : : ; w

g�1

). Then

~

h(w

i

) =

~

h(b

i

b

g+i

b

2g+i

� � � b

(m�1)g+i

)

= b

i+y

b

g+i+y

b

2g+i+y

� � � b

(m�1)g+i+y

= b

i+(

y

g

)g

b

i+(

y

g

+1)g

b

i+(

y

g

+2)g

� � � b

i+(

y

g

+m�1)g

;

and so it follows that

~

h cyclically shifts each w

i

by y=g.

Now gcd(m; y=g) = 1, so for each k there is a unique solution t (mod m) of the congruence

t

y

g

� k (mod m):

Multiplying through by g, we �nd

ty � kg (mod n)
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has a solution t, so

ty + i � kg + i (mod n)

has a solution t. But

~

h

t

(b

i

) = b

ty+i

, so each symbol b

kg+i

of w

i

is in the orbit of

~

h on z

i

. It

follows that each symbol of w

i

is contained in the same cycle c

i

of P . Suppose c

i

has length

t

i

. Then

~

h

t

i

(b

i

) = b

i

, and furthermore t

i

is the least positive integer with this property.

However, we also have

~

h

m

(b

i

) = b

i+ym

= b

i+

y

g

n

= b

i

, and so t

i

jm.

Since gcd(y=g;m) = 1, there is a solution v to the congruence v �

y

g

� 1 (mod m). Then

vy � g (mod n). Using the division theorem, write v = q

i

t

i

+ v

i

, where 0 � v

i

< t

i

, for

0 � i < g. Since gcd(v;m) = 1, and t

i

jm, we must have gcd(v; t

i

) = 1. Thus gcd(v

i

; t

i

) = 1.

Now

~

h

v

i

(b

kg+i

) =

~

h

v�q

i

t

i

(b

kg+i

) =

~

h

v

(b

kg+i

) = b

kg+i+vy

= b

kg+i+g

= b

(k+1)g+i

:

Then for 0 � i < g we have

w

i

= (b

i

~

h

v

i

(b

i

)

~

h

2v

i

(b

i

) � � �

~

h

(t

i

�1)v

i

(b

i

))

m=t

i

2 L(c

v

i

i

):

From

~

h(b

0

b

1

b

2

� � � ) = b

y

b

y+1

b

y+2

� � � , it follows that

~

h

y

g

v

i

(b

i

) = b

y+i

=

~

h(b

i

);

and so

y

g

v

i

� 1 (mod t

i

). Thus the system of equations (10) possesses a solution x = y=g.

This completes the proof.
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