Characteristic Words as Fixed Points of Homomorphisms

Jeffrey Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@watdragon.waterloo.edu

Abstract.

With each real number $\theta, 0<\theta<1$, we can associate the so-called characteristic word $w=w(\theta)$, defined by

$$
w_{n}=\lfloor(n+1) \theta\rfloor-\lfloor n \theta\rfloor,
$$

for $n \geq 1$. We prove the following: if θ has a purely periodic continued fraction expansion, then $w(\theta)$ is a fixed point of a certain homomorphism $\varphi=\varphi_{\theta}$.

I. Introduction.

Let θ be a real number, $0<\theta<1$. Many authors have studied the so-called characteristic word $w=w(\theta)$, the infinite word of 0 's and 1's defined by

$$
\begin{equation*}
w_{n}=\lfloor(n+1) \theta\rfloor-\lfloor n \theta\rfloor \tag{1}
\end{equation*}
$$

for $n \geq 1$. See, for example, Bernoulli [1772], Markoff [1882], Venkov [1970, pp. 65-68], Stolarsky [1976], Fraenkel, Mushkin, and Tassa [1978], and Porta and Stolarsky [1990]. An extensive bibliography of papers on the subject can be assembled by consulting the references of the last three papers.

For example, if $\theta=\frac{1}{2}(\sqrt{5}-1)$, we find

$$
\begin{equation*}
w=w_{1} w_{2} w_{3} \cdots=1011010110 \cdots \tag{2}
\end{equation*}
$$

the so-called Fibonacci word.
It is well-known that the Fibonacci word is the unique fixed point of the homomorphism φ, where $\varphi(0)=1, \varphi(1)=10$. For this and other properties see, for example, Berstel [1986].

In this note we generalize this characterization (fixed point of a homomorphism) of the Fibonacci word to the case where θ has a purely periodic continued fraction expansion, i.e. when

$$
\theta=\left[0, a_{1}, a_{2}, \ldots, a_{r}, a_{1}, a_{2}, \ldots, a_{r}, a_{1}, a_{2}, \ldots, a_{r}, \ldots\right] .
$$

We refer to the number r as the period length of θ.

II. The Main Result.

First, we introduce some notation. Let θ be an irrational number, $0<\theta<1$. Write

$$
\theta=\left[0, a_{1}, a_{2}, a_{3}, \ldots\right] .
$$

We define

$$
\frac{p_{n}}{q_{n}}=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

Note that $q_{0}=1, q_{1}=a_{1}$, and for $n \geq 2$ we have

$$
\begin{equation*}
q_{n}=a_{n} \boldsymbol{q}_{n-1}+q_{n-2} \tag{3}
\end{equation*}
$$

Let $w=w(\theta)$ be the characteristic word of θ as defined in (1) above.
We now define a sequence of strings $\left(X_{i}\right)_{i \geq 0}$. We set $X_{0}=0$, a string of length 1 , and

$$
X_{i}=w_{1} w_{2} w_{3} \cdots w_{q_{i}}
$$

for $i \geq 1$. Thus for $i \geq 1, X_{i}$ consists of the first q_{i} symbols in the infinite word w. It is easy to see that $X_{1}=0^{a_{1}-1} 1$.

The following result essentially appears in the paper of Fraenkel, Mushkin and Tassa [1978]. Since it is crucial to our proof, and since it does not seem to have been explicitly stated before, we give it the status of a lemma:

Lemma 1.

For $i \geq 2$ we have

$$
X_{i}=X_{i-1}^{a_{i}} X_{i-2}
$$

Proof.

Let us borrow a notation from the programming language APL. If $x=x_{1} x_{2} \cdots x_{s}$ is a finite string, and n is a non-negative integer, we define

$$
n \rho x=x^{q} x_{1} x_{2} \cdots x_{r}
$$

where $n=q s+r, 0 \leq r<s$. (In other words, the elements of x are used cyclically to fill in a string of length n.)

Fraenkel, Mushkin, and Tassa [1978] proved that

$$
X_{i}=q_{i} \rho X_{i-1}
$$

for $i \geq 2$, if $a_{1}>1$, and for $i \geq 3$ if $a_{1}=1$.
From this, the lemma follows immediately, since by (3) we have $q_{i}=a_{i} q_{i-1}+q_{i-2}$ for $i \geq 2$, and X_{i-2} is a prefix of X_{i-1} (for $i \geq 2$ if $a_{1}>1$ and for $i \geq 3$ if $a_{1}=1$).

We can now state the main result:

Theorem 2.

Let θ have a purely periodic continued fraction expansion; i.e.

$$
\theta=\left[0, a_{1}, a_{2}, \ldots, a_{r}, a_{1}, a_{2}, \ldots, a_{r}, a_{1}, a_{2}, \ldots, a_{r}, \ldots\right]
$$

Define the homomorphism φ by $\varphi(0)=X_{r}, \varphi(1)=X_{r} X_{r-1}$. Then

$$
\varphi^{n}\left(X_{i}\right)=X_{r n+i}
$$

for all integers $i, n \geq 0$.

Proof.

By induction on $r n+i$.
If $r n+i=0$, then $n=0$ and $i=0$. Clearly $\varphi^{0}\left(X_{0}\right)=X_{0}$.
If $r n+i=1$, then either $n=0, i=1$, or $r=1, n=1$, and $i=0$. In the former case we have $\varphi^{0}\left(X_{1}\right)=X_{1}$. In the latter case we have $\varphi\left(X_{0}\right)=\varphi(0)=X_{1}$ by definition of φ.

Now assume the result is true for all n^{\prime}, i^{\prime} with $r n^{\prime}+i^{\prime}<s$, and $s \geq 2$. We prove it for $r n+i=s$.

Case I: $i \geq 2$. We find

$$
\begin{aligned}
\varphi^{n}\left(X_{i}\right) & =\varphi^{n}\left(X_{i-1}^{a_{i}} X_{i-2}\right) \quad \text { (by Lemma 1) } \\
& =\varphi^{n}\left(X_{i-1}^{a_{i}}\right) \varphi^{n}\left(X_{i-2}\right) \\
& =\varphi^{n}\left(X_{i-1}\right)^{a_{i}} \varphi^{n}\left(X_{i-2}\right) \\
& =X_{r n+i-1}^{a_{i}} X_{r n+i-2} \quad \text { (by induction) } \\
& =X_{r n+i} \quad(\text { by Lemma } 1)
\end{aligned}
$$

Case II: $i=1, n \geq 1$. We find

$$
\begin{aligned}
\varphi^{n}\left(X_{1}\right) & =\varphi^{n-1}\left(\varphi\left(X_{1}\right)\right) \\
& =\varphi^{n-1}\left(\varphi\left(0^{a_{1}-1} 1\right)\right) \\
& =\varphi^{n-1}\left(\varphi(0)^{a_{1}-1} \varphi(1)\right) \\
& =\varphi^{n-1}\left(X_{r}^{a_{1}-1} X_{r} X_{r-1}\right) \\
& =\varphi^{n-1}\left(X_{r}^{a_{1}} X_{r-1}\right) \\
& =\varphi^{n-1}\left(X_{r}\right)^{a_{1}} \varphi^{n-1}\left(X_{r-1}\right) \\
& =X_{r n}^{a_{1}} X_{r n-1} \quad \text { (by induction) } \\
& =X_{r n+1} \quad(\text { by Lemma } 1) .
\end{aligned}
$$

Case III: $i=0, n \geq 1, r \geq 2$. We find

$$
\begin{aligned}
\varphi^{n}\left(X_{0}\right) & =\varphi^{n-1}\left(\varphi\left(X_{0}\right)\right) \\
& =\varphi^{n-1}\left(X_{r}\right) \\
& =\varphi^{n-1}\left(X_{r-1}^{a_{r}} X_{r-2}\right) \quad(\text { by Lemma } 1) \\
& =\varphi^{n-1}\left(X_{r-1}\right)^{a_{r}} \varphi^{n-1}\left(X_{r-2}\right) \\
& =X_{r n-1}^{a_{r}} X_{r n-2} \quad(\text { by induction }) \\
& =X_{r n} \quad(\text { by Lemma } 1) .
\end{aligned}
$$

Case IV: $i=0, n \geq 2, r=1$. We find

$$
\begin{aligned}
\varphi^{n}\left(X_{0}\right) & =\varphi^{n-2}\left(\varphi^{2}\left(X_{0}\right)\right) \\
& =\varphi^{n-2}\left(\varphi\left(X_{1}\right)\right) \\
& =\varphi^{n-2}\left(\varphi\left(0^{a_{1}-1} 1\right)\right) \\
& =\varphi^{n-2}\left(X_{1}\right)^{a_{1}-1} \varphi^{n-2}\left(X_{1} X_{0}\right) \\
& =X_{n-1}^{a_{1}-1} X_{n-1} X_{n-2}(\text { by induction }) \\
& =X_{n} \quad(\text { by Lemma } 1) .
\end{aligned}
$$

This completes the proof.

Since in particular $X_{r n}=\varphi^{n}\left(X_{0}\right)$, we find

Corollary 3.

The infinite word w is a fixed point of the homomorphism φ defined above.

III. Some examples.

Example 1.

Let $\theta=[0, a, a, a, \ldots]=\frac{1}{2}\left(\sqrt{a^{2}+4}-a\right)$. Thus $r=1$; we find $p_{1} / q_{1}=1 / a$. Then we find $X_{0}=0$ and $X_{1}=0^{a-1} 1$. Thus $w(\theta)$ is a fixed point of the homomorphism φ, where $\varphi(0)=0^{a-1} 1, \varphi(1)=0^{a-1} 10$. For $a=1$ this gives the classical Fibonacci word, mentioned in Section I.

Note that φ satisfies the equation

$$
\varphi^{2}(0)=\varphi(0)^{a} 0
$$

and so is an "algebraic" homomorphism; see Shallit [1988].

Example 2.
Let $\theta=[0, a, b, a, b, \ldots]=(\sqrt{a b(a b+4)}-a b) / 2 a$. Thus $r=2$; we find $p_{1} / q_{1}=1 / a$ and $p_{2} / q_{2}=b /(a b+1)$. Thus $X_{0}=0, X_{1}=0^{a-1} 1$, and $X_{2}=\left(0^{a-1} 1\right)^{b} 0$. From this, we see that $w(\theta)$ is a fixed point of the homomorphism φ, where $\varphi(0)=\left(0^{a-1} 1\right)^{b} 0$, $\varphi(1)=\left(0^{a-1} 1\right)^{b} 0^{a} 1$.

References

Bernoulli [1772]
J. Bernoulli, Recueil pour les Astronomes, Volume I, Sur une nouvelle espece de calcul, Berlin, 1772, pp. 255-284.

Berstel [1986]
J. Berstel, Fibonacci words-a survey, in The Book of L, G. Rozenberg and A. Salomaa, eds., Springer-Verlag, 1986, pp. 13-27.

Fraenkel, Mushkin, and Tassa [1978]
A. S. Fraenkel, M. Mushkin, and U. Tassa, Determination of $[n \theta]$ by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.

Markoff [1882]
A. A. Markoff, Sur une question de Jean Bernoulli, Math. Ann. 19 (1882), 27-36.

Porta and Stolarsky [1990]
H. Porta and K. B. Stolarsky, Half-silvered mirrors and Wythoff's game, Canad. Math. Bull. 33 (1990), 119-125.

Shallit [1988]
J. Shallit, A generalization of automatic sequences, Theor. Comput. Sci. 61 (1988), 1-16.

Stolarsky [1976]
K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482.

Venkov [1970]
B. A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.

First version: December 30, 1990
Last revised: January 3, 1991

Postscript. (December 13 1991)

In what must be one of the more remarkable instances of simultaneous discovery of the same theorem, after this manuscript was completed, I learned from J.-P. Allouche of the work of T. C. Brown [1990] and J.-P. Borel and F. Laubie [1990]. These papers contain essentially the same result as I reported above in Theorem 2, and more. (However, I believe my proof of Theorem 2 to be simpler than Brown's.)

Furthemore, Allouche later discovered the paper of Ito and Yasutomi [1990], in which the same result appears. Then, in April 1991, at the "Thémate" Conference, I was given a preprint of Nishioka, Shiokawa, and Tamura [1991], in which the result appears once again!

In May 1991, in conversations with A. D. Pollington, I learned that some of these results can be found, in a somewhat concealed fashion, in a little-known paper of Cohn [1974]. Pollington himself has a paper [1991] on this topic!

I also discovered that Lemma 1 essentially already appeared in an little-known paper of H. J. S. Smith [1876].

Finally, Theorem 2 can be used to greatly simplify the proof of one direction of a beautiful theorem of F. Mignosi [1989].

Additional References

Borel and Laubie [1991]
J.-P. Borel and F. Laubie, Construction de mots de Christofell [sic], to appear, C. R. Acad. Sci. Paris, 1991.

Brown [1991]
T. Brown, A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41.

Cohn [1974]
H. Cohn, Some direct limits of primitive homotopy words and of Markoff geodesics, in Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies 79, Princeton University Press, 1974, pp. 81-98.

Ito and Yasutomi [1990]
S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences $[n x+y]-[(n-1) x+y]$, Japan J. Math. 16 (1990), 287-306.

Mignosi [1989]
F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989), 221-242.

Nishioka, Shiokawa, and Tamura [1991]
K. Nishioka, I. Shiokawa, and J. Tamura, Arithmetical properties of a certain power series, manuscript, April (?) 1991.

Pollington [1991]
A. D. Pollington, Substitution Invariant Cutting Sequences, manuscript, October 1991.

Smith [1876]
H. J. S. Smith, Note on continued fractions, Messenger of Math. 6 (1876), 1-14.

