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Abstract.

With each real number �, 0 < � < 1, we can associate the so-called characteristic

word w = w(�), de�ned by

w

n

= b(n + 1)�c � bn�c;

for n � 1. We prove the following: if � has a purely periodic continued fraction expansion,

then w(�) is a �xed point of a certain homomorphism ' = '

�

.

I. Introduction.

Let � be a real number, 0 < � < 1. Many authors have studied the so-called charac-

teristic word w = w(�), the in�nite word of 0's and 1's de�ned by

w

n

= b(n+ 1)�c � bn�c (1)

for n � 1. See, for example, Bernoulli [1772], Marko� [1882], Venkov [1970, pp. 65-68],

Stolarsky [1976], Fraenkel, Mushkin, and Tassa [1978], and Porta and Stolarsky [1990].

An extensive bibliography of papers on the subject can be assembled by consulting the

references of the last three papers.

For example, if � =

1

2

(

p

5� 1), we �nd

w = w

1

w

2

w

3

� � � = 1011010110 � � � ; (2)

the so-called Fibonacci word.

It is well-known that the Fibonacci word is the unique �xed point of the homomor-

phism ', where '(0) = 1, '(1) = 10. For this and other properties see, for example,

Berstel [1986].

1



In this note we generalize this characterization (�xed point of a homomorphism) of

the Fibonacci word to the case where � has a purely periodic continued fraction expansion,

i.e. when

� = [0; a

1

; a

2

; : : : ; a

r

; a

1

; a

2

; : : : ; a

r

; a

1

; a

2

; : : : ; a

r

; : : :]:

We refer to the number r as the period length of �.

II. The Main Result.

First, we introduce some notation. Let � be an irrational number, 0 < � < 1. Write

� = [0; a

1

; a

2

; a

3

; : : :]:

We de�ne

p

n

q

n

= [0; a

1

; a

2

; : : : ; a

n

]:

Note that q

0

= 1, q

1

= a

1

, and for n � 2 we have

q

n

= a

n

q

n�1

+ q

n�2

: (3)

Let w = w(�) be the characteristic word of � as de�ned in (1) above.

We now de�ne a sequence of strings (X

i

)

i�0

. We set X

0

= 0, a string of length 1, and

X

i

= w

1

w

2

w

3

� � �w

q

i

for i � 1. Thus for i � 1, X

i

consists of the �rst q

i

symbols in the in�nite word w. It is

easy to see that X

1

= 0

a

1

�1

1.

The following result essentially appears in the paper of Fraenkel, Mushkin and Tassa

[1978]. Since it is crucial to our proof, and since it does not seem to have been explicitly

stated before, we give it the status of a lemma:

Lemma 1.

For i � 2 we have

X

i

= X

a

i

i�1

X

i�2

:

Proof.

Let us borrow a notation from the programming language APL. If x = x

1

x

2

� � �x

s

is

a �nite string, and n is a non-negative integer, we de�ne

n�x = x

q

x

1

x

2

� � �x

r

;
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where n = qs + r, 0 � r < s. (In other words, the elements of x are used cyclically to �ll

in a string of length n.)

Fraenkel, Mushkin, and Tassa [1978] proved that

X

i

= q

i

�X

i�1

for i � 2, if a

1

> 1, and for i � 3 if a

1

= 1.

From this, the lemma follows immediately, since by (3) we have q

i

= a

i

q

i�1

+ q

i�2

for

i � 2, and X

i�2

is a pre�x of X

i�1

(for i � 2 if a

1

> 1 and for i � 3 if a

1

= 1).

We can now state the main result:

Theorem 2.

Let � have a purely periodic continued fraction expansion; i.e.

� = [0; a

1

; a

2

; : : : ; a

r

; a

1

; a

2

; : : : ; a

r

; a

1

; a

2

; : : : ; a

r

; : : :]:

De�ne the homomorphism ' by '(0) = X

r

, '(1) = X

r

X

r�1

. Then

'

n

(X

i

) = X

rn+i

for all integers i; n � 0.

Proof.

By induction on rn + i.

If rn + i = 0, then n = 0 and i = 0. Clearly '

0

(X

0

) = X

0

.

If rn + i = 1, then either n = 0, i = 1, or r = 1, n = 1, and i = 0. In the former case

we have '

0

(X

1

) = X

1

. In the latter case we have '(X

0

) = '(0) = X

1

by de�nition of '.

Now assume the result is true for all n

0

; i

0

with rn

0

+ i

0

< s, and s � 2. We prove it

for rn + i = s.

Case I: i � 2. We �nd

'

n

(X

i

) = '

n

(X

a

i

i�1

X

i�2

) (by Lemma 1)

= '

n

(X

a

i

i�1

)'

n

(X

i�2

)

= '

n

(X

i�1

)

a

i

'

n

(X

i�2

)

= X

a

i

rn+i�1

X

rn+i�2

(by induction)

= X

rn+i

(by Lemma 1):
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Case II: i = 1, n � 1. We �nd

'

n

(X

1

) = '

n�1

('(X

1

))

= '

n�1

('(0

a

1

�1

1))

= '

n�1

('(0)

a

1

�1

'(1))

= '

n�1

(X

a

1

�1

r

X

r

X

r�1

)

= '

n�1

(X

a

1

r

X

r�1

)

= '

n�1

(X

r

)

a

1

'

n�1

(X

r�1

)

= X

a

1

rn

X

rn�1

(by induction)

= X

rn+1

(by Lemma 1):

Case III: i = 0, n � 1, r � 2. We �nd

'

n

(X

0

) = '

n�1

('(X

0

))

= '

n�1

(X

r

)

= '

n�1

(X

a

r

r�1

X

r�2

) (by Lemma 1)

= '

n�1

(X

r�1

)

a

r

'

n�1

(X

r�2

)

= X

a

r

rn�1

X

rn�2

(by induction)

= X

rn

(by Lemma 1):

Case IV: i = 0, n � 2, r = 1. We �nd

'

n

(X

0

) = '

n�2

('

2

(X

0

))

= '

n�2

('(X

1

))

= '

n�2

('(0

a

1

�1

1))

= '

n�2

(X

1

)

a

1

�1

'

n�2

(X

1

X

0

)

= X

a

1

�1

n�1

X

n�1

X

n�2

(by induction)

= X

n

(by Lemma 1):

This completes the proof.

Since in particular X

rn

= '

n

(X

0

), we �nd

Corollary 3.
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The in�nite word w is a �xed point of the homomorphism ' de�ned above.

III. Some examples.

Example 1.

Let � = [0; a; a; a; : : :] =

1

2

(

p

a

2

+ 4 � a). Thus r = 1; we �nd p

1

=q

1

= 1=a. Then

we �nd X

0

= 0 and X

1

= 0

a�1

1. Thus w(�) is a �xed point of the homomorphism ',

where '(0) = 0

a�1

1, '(1) = 0

a�1

10. For a = 1 this gives the classical Fibonacci word,

mentioned in Section I.

Note that ' satis�es the equation

'

2

(0) = '(0)

a

0;

and so is an \algebraic" homomorphism; see Shallit [1988].

Example 2.

Let � = [0; a; b; a; b; : : :] = (

p

ab(ab + 4) � ab)=2a. Thus r = 2; we �nd p

1

=q

1

= 1=a

and p

2

=q

2

= b=(ab + 1). Thus X

0

= 0, X

1

= 0

a�1

1, and X

2

= (0

a�1

1)

b

0. From this,

we see that w(�) is a �xed point of the homomorphism ', where '(0) = (0

a�1

1)

b

0,

'(1) = (0

a�1

1)

b

0

a

1.
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Postscript. (December 13 1991)

In what must be one of the more remarkable instances of simultaneous discovery of

the same theorem, after this manuscript was completed, I learned from J.-P. Allouche of

the work of T. C. Brown [1990] and J.-P. Borel and F. Laubie [1990]. These papers contain

essentially the same result as I reported above in Theorem 2, and more. (However, I believe

my proof of Theorem 2 to be simpler than Brown's.)

Furthemore, Allouche later discovered the paper of Ito and Yasutomi [1990], in which

the same result appears. Then, in April 1991, at the \Th�emate" Conference, I was given

a preprint of Nishioka, Shiokawa, and Tamura [1991], in which the result appears once

again!

In May 1991, in conversations with A. D. Pollington, I learned that some of these

results can be found, in a somewhat concealed fashion, in a little-known paper of Cohn

[1974]. Pollington himself has a paper [1991] on this topic!

I also discovered that Lemma 1 essentially already appeared in an little-known paper

of H. J. S. Smith [1876].

Finally, Theorem 2 can be used to greatly simplify the proof of one direction of a

beautiful theorem of F. Mignosi [1989].
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