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ABSTRACT

We give asymptoti estimates and some expliit omputations for both the number of distint lan-

guages and the number of distint �nite languages over a k-letter alphabet that are aepted by

deterministi �nite automata (resp. nondeterministi �nite automata) with n states.
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1. Introdution

The problem of enumeration of �nite automata aording to various riteria (with or without

distinguished initial state, initially onneted

2

, strongly onneted, non-isomorphi, et.) was

onsidered as early as 1959, when V. A. Vyssotsky apparently wrote a Bell Laboratories memo-

randum on this subjet [33℄. (We have not been able to obtain a opy.) Counting �nite automata

was problem 19 in Harary's 1960 list of unsolved problems in graph enumeration [3, pp. 75, 87℄.

(Also see Harary [4℄ and Harary and Palmer [6℄.) In 1962, Ginsburg proposed the problem of

enumerating non-isomorphi sequential mahines [1, p. 18℄.

Sine then many authors examined these questions, partiularly in the former Soviet Union.

For example, see the papers of Livshits [22℄; Korshunov [12, 13, 14, 15, 16, 17, 18℄; Liskovets

[19, 20, 21℄; and Popov and Skibenko [27℄. These papers are all in Russian and an English

translation is not available for most of them.

For ontributions of Western authors, see Harrison [7, 8℄; Radke [28℄; Harary and Palmer [5℄;

and Robinson [30℄.
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By initially onneted we mean that for eah state q there exists a direted path from the distinguished start

state to q.
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However, it appears that none of these authors have examined the problems that interest us

in this paper: namely, ounting the number of distint languages (or distint �nite languages)

aepted by DFA's (or NFA's) with n states. Indeed, many of the papers above deal with

enumeration of automata rather than languages, and their automata often do not have a dis-

tinguished initial state or set of �nal states. For example, although the title of the paper of

Livshits [22℄ suggests he was enumerating unary �nite automata, he atually ounted the num-

ber of non-isomorphi \funtional digraphs", whih is a very di�erent quantity (and whih had

been previously studied by Harary [2℄, Read [29℄, and others). Korshunov [13, 15, 17℄ ounted

minimal automata, but it turns out he worked with Mealy mahines that are not neessarily

initially onneted; in fat, his mahines laked a distinguished initial state. Therefore, his

enumeration results are quite di�erent from ours and apparently not trivially related.

Furthermore, it seems that the question of enumerating unary regular languages and languages

aepted by NFA's has reeived little or no attention.

We de�ne a DFA to be a 5-tuple, M = (Q;�; Æ; q

0

; F ) where Q is a �nite nonempty set of

states, � is a �nite nonempty input alphabet, Æ : Q� �! Q is the transition funtion, q

0

2 Q

is the distinguished initial state, and F � Q is the set of �nal states. The domain of Æ is

extended to Q� �

�

in the obvious manner. An NFA is also a 5-tuple M = (Q;�; Æ; q

0

; F ), but

the transition funtion Æ maps Q � � ! 2

Q

. In this paper we assume our NFA's do not have

�-transitions.

Two states p; q 2 Q are said to be equivalent if for all x 2 �

�

we have Æ(p; x) 2 F ()

Æ(q; x) 2 F . If a DFA M laks equivalent states then it is minimal.

We say a DFA (resp. NFA) M aepting L is minimal if there is no DFA (resp. NFA) M

0

with fewer states aepting L. By a well-known result, there is a unique minimal DFA, up to

isomorphism (renaming of the states). This is not true for NFA's.

We de�ne the following funtions:

f

k

(n) = the number of pairwise non-isomorphi minimal DFA's with n states

over a k-letter input alphabet;

g

k

(n) = the number of distint languages aepted by DFA's with n states

over a k-letter input alphabet; and

G

k

(n) = the number of distint languages aepted by NFA's with n states

over a k-letter input alphabet.

Note that f

k

(n) ounts the number of non-isomorphi, initially onneted automata with n

states suh that no two states are equivalent. Robinson [30℄ suggests omputing f

k

(n) as an

open enumeration problem.

The goal of this paper is to develop good upper and lower bounds for f

k

(n); g

k

(n); and G

k

(n).

We are partiularly interested in onstrutive lower bounds, i.e., lower bounds whih are provided

by expliit onstrution of DFA's or NFA's aepting di�erent languages. We have the following

trivial observation:

Proposition 1 We have g

k

(n) = f

k

(1) + f

k

(2) + � � �+ f

k

(n).

Proof. If L is aepted by a DFA with n states, then it is aepted by a unique (up to isomor-

phism) minimal DFA with � n states. If L is aepted by a minimal DFA with � n states, then

by adding unreahable states it an be aepted by a DFA with exatly n states. 2

There are some appliations for good estimates for g

k

(n) and G

k

(n). For example, in Shallit

and Breitbart [32℄ and Pomerane, Robson, and Shallit [26℄, upper bounds on g

k

(n) and G

k

(n)

were used to provide lower bounds on \automatiity".
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2. Enumeration of DFA languages for k = 1

In this setion we develop both exat and asymptoti formulas in the unary ase. We estimate

both f

1

(n) and g

1

(n).

Niaud [25℄ observed the following:

Theorem 2 An n-state unary DFA M = (Q; fag; Æ; q

0

; F ) where Q = fq

0

; q

1

; : : : ; q

n�1

g is min-

imal i� the following three onditions hold:

(a) It is onneted, i.e., there are no unreahable states. Thus, after renaming, its transition

diagram onsists of a \loop" and a \tail", i.e., Æ(q

i

; a) = q

i+1

for 0 � i � n � 2 and

Æ(q

n�1

; a) = q

j

for some j, 0 � j � n� 1.

(b) The loop is \minimal", that is, it annot be replaed by an equivalent smaller loop.

() If j 6= 0, then q

j�1

and q

n�1

are of opposite \�nality", i.e., q

j�1

2 F and q

n�1

62 F or

q

j�1

62 F and q

n�1

2 F .

Note that the loop q

j

; q

j+1

; : : : ; q

n�1

is minimal if and only if the word a

j

a

j+1

� � �a

n�1

de�ned

by

a

i

=

(

1; if q

i

2 F ;

0; if q

i

62 F ;

is primitive. (A nonempty word w is primitive if it annot be written in the form w = x

k

for

some word x and integer k � 2.)

Let  

k

(n) denote the number of primitive words of length n over a k-letter alphabet. It is

well-known (e.g., [23, p. 9℄) that

 

k

(n) =

X

d jn

�(d)k

n=d

where � is the M�obius funtion, de�ned as follows:

�(n) =

(

0; if n is divisible by a square > 1;

(�1)

s

; if n = p

1

p

2

� � �p

s

, where the p

i

are distint primes.

Theorem 3 We have

f

1

(n) =  

2

(n) +

X

1�j�n�1

 

2

(n� j)2

j�1

:

Proof. The result follows from Niaud's theorem (Theorem 2). The 2

j�1

fator omes from the

fat that there are j states in the tail and if j � 1, then the type of one of the states (�nal or

non-�nal) is �xed by ondition (). 2

By Proposition 1 we have the following expression for g

1

(n), the number of distint languages

aepted by unary DFA's with n states:

g

1

(n) =

X

1�t�n

f

1

(t):

We an now state the �rst result of the paper.

Theorem 4 We have g

1

(n) =

P

1�t�n

 

2

(t)2

n�t

.
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Proof. We have

g

1

(n) =

X

1�t�n

f

1

(t) =

X

1�t�n

0

�

 

2

(t) +

X

1�j�t�1

 

2

(t � j)2

j�1

1

A

=

X

1�t�n

0

�

 

2

(t) +

X

1�i�t�1

 

2

(i)2

t�i�1

1

A

=

X

1�t�n

 

2

(t)2

n�t

:

2

We now give a good asymptoti estimate for g

1

(n):

Theorem 5 We have

g

1

(n) = 2

n

(n� � +O(n2

�n=2

))

where

� =

X

d�2

�(d)

1� 2

d�1

:

= 1:38271445540239628547:

Proof. By Theorem 4 we get

g

1

(n) =

X

1�t�n

 

2

(t)2

n�t

=

X

1�t�n

0

�

X

d j t

�(d)2

t=d

1

A

2

n�t

= 2

n

X

1�t�n

X

d j t

�(d)2

t=d�t

= 2

n

0

B

�

n+

X

1�t�n

X

d j t

d6=1

�(d)2

t=d�t

1

C

A

;

so it suÆes to estimate

P

1�t�n

P

d j t

d6=1

�(d)2

t=d�t

. Let t = kd and reverse the order of summa-

tion. We �nd

X

1�t�n

X

d j t

d6=1

�(d)2

t=d�t

=

X

2�d�n

�(d)

X

1�k�

n

d

2

k�kd

=

X

2�d�n

�(d)

0

�

O(2

n=d�n

) +

X

k�1

2

k�kd

1

A

=

X

2�d�n

�(d)

�

O(2

n=d�n

) +

1

2

d�1

� 1

�

=

0

�

X

2�d�n

�(d)

2

d�1

� 1

1

A

+O(n2

�n=2

)

and the result follows. 2

Corollary 6 We have

f

1

(n) = 2

n�1

(n+ 1� � +O(n2

�n=2

))

where � is de�ned in Theorem 5.

Note: Niaud [25℄ proved the weaker result that f

1

(n) � 2

n�1

n.
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Proof. By Proposition 1 we have

f

1

(n) = g(n)� g(n� 1)

= 2

n

(n� �+ O(n � 2

�n=2

))� 2

n�1

(n� 1� � +O(n � 2

�n=2

))

= 2

n�1

(n+ 1� �+ O(n � 2

�n=2

)):

2

3. Enumeration of DFA languages for k � 2

In this setion, we turn our attention to larger alphabet sizes. First, we give a onstrutive lower

bound for f

k

(n), the number of pairwise non-isomorphi minimal n-state DFA's over a k-letter

alphabet.

Suppose we are given an automaton M = (Q;�; Æ; q

0

; F ) and a subset of the input alphabet

� � �. We an onsider the restrition of M to �, written M

�

, whih is the automaton

(Q;�; Æ

�

; q

0

; F ) where Æ

�

is the restrition of the funtion Æ to the domain Q��.

Theorem 7 We have f

k

(n) � f

1

(n)n

(k�1)n

� n2

n�1

n

(k�1)n

.

Proof. Fix k � 2 and n � 1. Consider the set S

k;n

of DFA's M over the k-letter alphabet

f0; 1; : : : ; k � 1g de�ned by

(a) Letting M

f0g

be one of the f

1

(n) di�erent minimal unary DFA's on n states; and

(b) Choosing any k � 1 funtions h

i

: Q ! Q for 1 � i < k and de�ning Æ(q; i) = h

i

(q) for

1 � i < k and q 2 Q.

Then we laim that S

k;n

ontains f

1

(n)n

(k�1)n

di�erent DFA's, eah is minimal and no two

DFA's aept the same language.

Eah DFA M in S

k;n

is minimal beause its restrition M

f0g

is minimal. To see that no two

DFA's in S

k;n

aepts the same language, let M = (Q;�; Æ; q

0

; F ) and M

0

= (Q;�; Æ

0

; q

0

; F

0

)

be two distint DFA's in S

k;n

. If the restritions M

f0g

and M

0

f0g

represent di�erent minimal

unary DFA's, then by de�nition they aept di�erent languages, so M and M

0

aept di�erent

languages, too.

Otherwise we may assume that the restritions M

f0g

and M

0

f0g

are idential; in partiular

F = F

0

. Without loss of generality, assume Q = fq

0

; : : : ; q

n�1

g, where Æ(q

0

; 0

s

) = q

s

for 0 � s <

n� 1. Then the restritions M

f1;2;:::;k�1g

andM

0

f1;2;:::;k�1g

are di�erent, and these orrespond to

sets of funtions h

i

and h

0

i

that must di�er. Then there exists an index i, 1 � i < k and state

q 2 Q suh that h

i

(q) 6= h

0

i

(q). Without loss of generality assume q = q

l

, q

j

= h

i

(q), q

k

= h

0

i

(q),

j < k. Then onsider the string x = 0

l

i. We then have Æ(q

0

; x) = q

j

and Æ

0

(q

0

; x) = q

k

.

If there exists t � 0 suh that either Æ(q

j

; 0

t

) 2 F and Æ

0

(q

k

; 0

t

) 62 F or Æ(q

j

; 0

t

) 62 F and

Æ

0

(q

k

; 0

t

) 2 F , then the string x0

t

= 0

l

i0

t

distinguishes L(M) from L(M

0

). Otherwise Æ(q

j

; 0

t

) 2

F () Æ

0

(q

k

; 0

t

) 2 F for all t � 0. But the restritions M

f0g

and M

0

f0g

are idential, so q

j

and

q

k

are equivalent states in the restrition M

f0g

. But then M

f0g

is not minimal, a ontradition.

2

We may improve the lower bound in Theorem 7 slightly, as follows: instead of demanding

that the restrition M

f0g

be minimal, we allow the restrition M

fig

to any letter to be minimal.

Of ourse, this double-ounts those automata whose restrition are minimal on two or more

letters. One way to remove this double ounting is to remove all those automata whih under

some permutation of the states f1; 2; : : : ; n� 1g results in an initially-onneted automaton on

some lower-numbered letter. This gives the following theorem.
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Theorem 8 We have

f

k

(n) � f

1

(n)

�

kn

(k�1)n

�

k(k � 1)

2

(n� 1)!n

(k�2)n

�

:

For �xed k this gives f

k

(n) � (k � o(1))n2

n�1

n

(k�1)n

.

We now turn to upper bounds for f

k

(n) and g

k

(n). We may obtain the trivial bound g

k

(n) �

2

n

n

kn

=(n � 1)! easily as follows. We an hoose the �nal states in 2

n

ways. The transition

funtion maps Æ : Q � � ! Q, and there are n

kn

suh funtions. As observed by Robinson

[30℄ we may now divide by (n� 1)!, beause after removing those automata with n states that

are not initially onneted, the names of all but the initial state in the remaining automata are

irrelevant.

This upper bound an be improved somewhat by onsidering only initially onneted �nite

automata. Let C

k

(n) be the number of pairwise non-isomorphi initially onneted �nite au-

tomata without any �nal states. Then the analysis above gives f

k

(n) � 2

n

C

k

(n)=(n � 1)!. As

both Liskovets [19℄ and Robinson [30℄ have observed, a simple ombinatorial argument gives

C

k

(n) = n

kn

�

X

1�j<n

�

n� 1

j � 1

�

C

k

(j)n

k(n�j)

: (3.1)

Robinson stated that

C

k

(n) = n

kn



n(1+o(1))

k

where



k

=

(1� 

k

)

1�

k



k



k�1

k

and 

k

is the unique positive root of the equation 

k

= 1 � e

�k

k

. (We have orreted a

misprint in the formula Robinson gave for 

k

.) For k = 2, we have 

k

:

= :79681213002002 and



k

:

= :83590576750085. For more preise results, see Korshunov [17, p. 50℄.

Our lower and upper bounds for f

k

(n) di�er by a fator of approximately (

k

e)

n

, whih for

k = 2 is roughly 2:27

n

. It seems likely to us that log f

k

(n) � (k�1)n logn+�

k

n where �

2

:

= 1:5.

4. Enumeration of NFA languages

In this setion we onsider the omputation of G

k

(n), the number of distint languages aepted

by NFA's with n states over a k-letter alphabet. Other than the single result mentioned below,

it appears that this question has not been examined previously.

First, the unary ase. Pomerane, Robson, and Shallit [26℄ proved that there exists a onstant



1

suh that G

1

(n) � (



1

n

logn

)

n

, whih appears to be the best known upper bound.

Evidently G

1

(n) � 2

n

, sine eah subset L � f�; a; a

2

; : : : ; a

n�1

g an be aepted by some

NFA with n states. This lower bound an be slightly improved as follows:

Theorem 9 We have G

1

(n) > 2

n+(2:295�o(1))

q

n

log n

.

Proof. Let p

m

denote them'th prime (with p

1

= 2). Let C be a onstant to be determined later,

with C � 2. Given n � 2, de�ne b suh that bp

bCb

� n < (b+ 1)p

bC(b+1)

. Then from the well-

known approximation p

m

< m(logm+ log logm) for m � 6, we have b > (

p

2=C � o(1))

q

n

logn

.

For eah of the

�

bCb

b

�

ways to hoose b distint primes r

1

< r

2

< � � � < r

b

from the set

fp

1

; p

2

; : : : ; p

bCb

g, onstrut a unary NFA with a tail of s := n � (r

1

+ r

2

+ � � �+ r

b

) states,
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with the last state branhing nondeterministially into b distint yles, of lengths r

1

; r

2

; : : : ; r

b

,

respetively. See Figure 1.

. . .
.
.
.

q q

q

q

q
0 1

qs -1

1,0

2,0

b,0

cycle of
size r1

cycle of
size r2

cycle of
size rb

Figure 1: Construting an NFA

More preisely, de�ne

Æ(q

i

; a) = fq

i+1

g for 0 � i < s � 1;

Æ(q

s�1

; a) = fq

1;0

; q

2;0

; : : : ; q

b;0

g; (4.2)

Æ(q

i;j

; a) = fq

i;(j+1) mod r

i

g for 1 � i � b, 0 � j < r

i

:

We have

� if t < s, then a

t

is aepted i� q

t

is �nal;

� if t � s, then a

t

is aepted i� there exists i, 1 � i � b suh that t � s � e (mod r

i

) and

q

i;e

is �nal.

Now hoose the �nal states in the tail in all possible ways, and hoose the �nal states in the

yles in all possible ways, subjet to the restrition that not all the states in any given yle

are of the same type (i.e., not all �nal or all non-�nal).

We laim that no two of these NFA's aept the same language. Suppose the ontrary, i.e.,

there exist two NFA'sM = (Q;�; Æ; q

0

; F ) andM

0

= (Q

0

;�; Æ

0

; q

0

0

; F

0

) suh that L(M) = L(M

0

).

Suppose the states ofM are given as in Eq. (4.2) (based on the set of primes R = fr

1

; r

2

; : : : ; r

a

g)

and the states of M

0

are similarly de�ned, based on the set of primes R

0

= fr

0

1

; r

0

2

; : : : ; r

0

a

g.

Case 1: R = R

0

. We may assume r

i

= r

0

i

for 1 � i � a and Q = Q

0

. Sine L(M) = L(M

0

), it

must be that M and M

0

are idential exept that F 6= F

0

. If the �nal state that di�ers ours

in the tail, then the appropriate pre�x is aepted by one NFA and not the other. Hene the

di�erene ours in some yle, say the state whih is ongruent to e (mod r

i

). More preisely,

assume q

i;e

2 F but q

i;e

62 F

0

. By our hypothesis, for all j, 1 � j � b, there exists a state

q

j;

j

62 F

0

.

Then, by the Chinese remainder theorem, we an hoose t � s suh that t � s � e (mod r

i

),

but t � s � 

j

(mod r

j

) for 1 � j � b, j 6= i. Then a

t

is aepted by M but not by M

0

.

Case 2: R 6= R

0

. Without loss of generality there is an r 2 R suh that r 62 R

0

. By our

hypothesis, if r = r

l

, there exists a state q

l;e

l

whih is �nal in M . Also, for all j with r

0

j

2 R

0

�R

there exists a state q

0

j;

j

whih is not �nal in M

0

. Finally, for all k with r

k

6= r, there exists a

state q

k;d

k

whih is not �nal in M .
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Then, by the Chinese remainder theorem, we an hoose t � n suh that t � s � l (mod r

l

),

t� s

0

� 

j

(mod r

0

j

) for r

0

j

2 R

0

�R and t� s � d

k

(mod r

k

) for r

k

2 R� frg. Then M aepts

a

t

, but M

0

does not.

How many di�erent NFA's are there in our onstrution? There are

�

bCb

b

�

ways to hoose the

subset of b primes, and for eah subset R = fr

1

; r

2

; : : : ; r

b

g we an assign the �nal states in every

possible way, exept that we remove two possibilities for eah yle (all �nal or all non-�nal).

This gives

2

s

(2

r

1

� 2)(2

r

2

� 2) � � �(2

r

b

� 2) = 2

n

(1� 2

1�r

1

)(1� 2

1�r

2

) � � �(1� 2

1�r

b

)

ways to assign the �nal states. Now learly

(1� 2

1�r

1

)(1� 2

1�r

2

) � � �(1� 2

1�r

b

) �

Y

i�1

�

1� 2

1�p

i

�

where p

i

is the i'th prime, and this in�nite produt onverges to the absolute onstant �

:

=

:345640293832338. It follows that there are � �2

n

�

bCb

b

�

di�erent NFA's. Now from Stirling's

approximation we have

�

bCm

m

�

� C

Cm

(C � 1)

m(1�C)

p

C=(2�(C � 1)m)

for �xed C and as m ! 1, so we get an asymptoti lower bound on the number of di�erent

NFA's of 2

n+(�o(1))

q

n

log n

, where  =

p

2=C(C log

2

C � (C � 1) log

2

(C � 1)). Now, hoosing

C

:

= 4:141 in order to maximize , we �nd we an take 

:

= 2:295. This ompletes the proof. 2

Now we turn to the ase k � 2.

Proposition 10 For k � 2 we have n2

(k�1)n

2

� G

k

(n) � (2n� 1)2

kn

2

+ 1.

Proof. For the upper bound, note that any NFA an be spei�ed by speifying, for eah pair

(q; a) of state and symbol, whih subset of Q equals Æ(q; a). We may assign the �nal states as

follows: either the initial state is �nal or not, and then sine the names of states are unimportant

we may assume the remaining �nal states are f1; 2; : : : ; kg for 0 � k � n � 1. Finally, if we

hoose no �nal states, we obtain only the empty language ;.

For the lower bound, we use the same tehnique as in Theorem 7. De�ne an NFA

M = (Q;�; Æ; q

0

; F ) over the k-letter alphabet � = f0; 1; : : : ; k � 1g as follows. Let Q =

fq

0

; q

1

; : : : ; q

n�1

g and de�ne

Æ(q

i

; 0) = q

(i+1) mod n

for 0 � i < n;

Æ(q

i

; j) = h

j

(i) for 0 � i < n; 1 � a < k;

where h

j

: f1; 2; : : : ; n � 1g ! 2

Q

is any set-valued funtion. Finally, let F = fq

i

g for any i,

0 � i � n. There are (2

n

)

(k�1)n

suh funtions and n ways to hoose the set of �nal states.

Using similar reasoning to that in Theorem 7, no two suh NFA's aept the same language. 2

The upper bound may be marginally improved by onsidering only NFA's that are initially

onneted, as follows: let D

k

(n) be the number of NFA's on n states, over a k-letter alphabet

suh that every state is reahable from the start state. Then we have G

k

(n) � (2n�1)D

k

(n)+1.

Unfortunately we have

Theorem 11 We have D

k

(n) � 2

kn

2

.

Proof. In analogy with Eq. (3.1), we have

2

kn

2

=

X

1�j�n

�

n� 1

j � 1

�

D

k

(j)2

kn(n�j)

:
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(Here j is the size of the onneted omponent involving the start state. There are

�

n�1

j�1

�

ways

to hoose the other j � 1 states, and then transitions from the remaining n � j states an be

hosen in all possible ways.) From this we obtain D

k

(1) = 2

k

and

D

k

(n) = 2

kn

2

�

X

1�j�n�1

�

n� 1

j � 1

�

D

k

(j)2

kn(n�j)

:

If k � 2, then

�

n � 1

j � 1

�

D

k

(j)2

kn(n�j)

� 2

n�1

2

kj

2

2

kn

2

�knj

= 2

k(n

2

+j

2

�nj)+n�1

:

Now over the range 1 � j � n � 1, the expression n

2

+ j

2

� nj is stritly dereasing for

1 � j � n=2 and stritly inreasing for n=2 � j � n� 1. It follow that n

2

+ j

2

�nj � n

2

�n+1

for 1 � j � n� 1. Thus, if k � 2 we have

�

n � 1

j � 1

�

D

k

(j)2

kn(n�j)

� 2

k(n

2

�n+1)+n�1

� 2

kn

2

�n+k

:

Hene D

k

(n) � 2

kn

2

(1� n2

�n+k

).

If k = 1, then

�

n � 1

j � 1

�

D

1

(j)2

n(n�j)

� 2 � 2

n

2

�n+1

+

X

2�j�n�2

�

n � 1

j � 1

�

D

1

(j)2

n(n�j)

� 2

n

2

�n+2

+ n � 2

n�1

� 2

n

2

�2n+4

� 2

n

2

�n+2

(1 + 2n):

It follows that D

1

(n) � 2

n

2

(1� (2n+ 1)2

�n+2

). 2

Let E

k

(n; r) denote the number of distint languages L over a k-letter alphabet suh that L

an be aepted by an NFA with n states, but the minimal DFA aepting L has preisely r

states. Currently it is not even known whether or not E

2

(n; j) > 0 for every j with n � j � 2

n

;

see [9, 10, 11℄. The distribution of E

k

(n; r) is an even harder question. We make a small amount

of progress in this paper by showing E

k

(n; 2

n

) � 2

n�2

for n � 2:

Theorem 12 Let n � 2 and k = j�j � 2. There are at least 2

n�2

distint languages L � �

�

suh that

(a) L an be aepted by an NFA with n states; and

(b) The minimal DFA aepting L has 2

n

states.

Proof. Without loss of generality we may assume � = fa; bg. We onstrut 2

n�2

di�erent

NFA's, as follows: for eah subset S � f1; 2; : : : ; n�1g we reate an NFAM

S

= (Q;�; Æ

S

; q

0

; F )

where Q = f0; 1; : : : ; n� 1g, q

0

= 0, F = fn� 1g, and Æ

S

is de�ned as follows:

Æ

S

(i; a) =

(

fi+ 1g; if 0 � i < n� 1;

;; if i = n � 1;

Æ

S

(i; b) =

8

>

>

>

>

<

>

>

>

>

:

f0; 1g; if i = 0;

f0; i+ 1g; if 1 � i � n � 2 and i 2 S;

fi+ 1g; if 1 � i � n � 2 and i 62 S;

f0g; if i = n� 1;

First, we show that every state-set in the orresponding DFA is reahable. We laim that

eah string of the form b

n�1

w, where jwj = n, takes us to a di�erent state-set. For upon reading
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b

n�1

we will be in f0; 1; : : : ; n� 1g; and whenever after this we read a, the state numbered 0 is

exluded and whenever we read b, the state numbered 0 is inluded. This gives us a bijetion

between the 2

n

possible state sets and strings of the form b

n�1

jwj.

Next, we show that no two of these state-sets is equivalent. Pik two suh sets, say T and

U , with T 6= U . Without loss of generality we may assume there exists i 2 T suh that i 62 U .

Then Æ

S

(T; a

n�1�i

) ontains the �nal state n� 1, but Æ

S

(U; a

n�1�i

) does not.

Finally, we show that if S 6= S

0

, then M

S

and M

S

0

aept di�erent languages. Without loss

of generality we may assume j 2 S and j 62 S

0

for some j, 1 � j � n � 2. Then M

S

aepts

a

j

ba

n�1

but M

S

0

does not. 2

5. Enumeration of �nite languages

We now turn to onsideration of �nite languages. We de�ne

f

0

k

(n) = the number of non-isomorphi minimal DFA's with n states

over a k-letter input alphabet that aept a �nite language;

g

0

k

(n) = the number of distint �nite languages aepted by DFA's with n states

over a k-letter input alphabet; and

G

0

k

(n) = the number of distint �nite languages aepted by NFA's with n states

over a k-letter input alphabet.

One again, it is lear that g

0

k

(n) = f

0

k

(1) + f

0

k

(2) + � � �+ f

0

k

(n).

The following proposition is useful.

Proposition 13 Let M be a minimal n-state DFA with L(M) �nite. Then M is isomorphi

(up to renaming of the states) to a DFA M

0

= (Q;�; Æ; q

0

; F ) satisfying Q = fq

0

; q

1

; : : : ; q

n�1

g

and the following onditions:

(a) Æ(q

n�1

; a) = q

n�1

for all a 2 �;

(b) If n � 2, then Æ(q

n�2

; a) = q

n�1

for all a 2 �;

() q

n�1

62 F ;

(d) If n � 2, then q

n�2

2 F ;

(e) If Æ(q

i

; a) = q

j

for i < n� 1 then i < j.

Proof. IfM is minimal, then it is initially onneted. Now disard all states from whih no �nal

state is reahable. (We must disard at least one suh state, for if a �nal state is reahable from

every state, start at q

0

and follow a path by making transitions on some �xed input symbol until

some state ours for the seond time. This gives a yle from whih a �nal state is reahable,

so L(M) is not �nite, a ontradition.) The resulting graph G must be ayli (for if there were

a yle L(M) would not be �nite). Hene we an impose an ordering on the remaining nodes

(exluding q

0

), say q

1

; q

2

; : : : ; q

n�2

suh that Æ(q

i

; a) = q

j

implies i < j. Now add bak q

0

, with

edges to the appropriate q

i

. Sine G is ayli we annot have Æ(q

0

; a) = q

0

for any a 2 �, and

so the ordering is preserved.

Finally, add a new sink state labeled q

n�1

satisfying onditions (a) and () and additional

transitions as neessary to q

n�1

to make the DFA omplete. This new DFA M

0

learly aepts

the same language as M . Sine we removed at least one state and added bak the sink state,

the number of states in M

0

is no larger than the number of states in M . Hene M

0

is minimal.
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It remains to verify onditions (b) and (d). By the ordering in ondition (e), the transitions

from q

n�2

an only go to a higher numbered state. This proves (b). If q

n�2

62 F , then q

n�2

and

q

n�1

would be equivalent states, and hene M

0

not minimal. This proves (d). 2

Theorem 14 We have

(a) f

0

1

(1) = 1 and f

0

1

(n) = 2

n�2

for n � 2;

(b) g

0

1

(n) = 2

n�1

;

() For k � 2 we have f

0

k

(n) � 2

n�2

((n� 1)!)

k�1

.

Proof. We start by omputing f

0

1

(n). By Proposition 13 or by using Niaud's theorem (Theo-

rem 2) if M is a minimal unary DFA aepting a �nite language, then the transition diagram of

M must have a loop of size 1, and that state must be non-�nal. If there are � 2 states, the state

immediately preeding this sink state must be �nal. It follows that f

0

1

(1) = 1 and f

0

1

(n) = 2

n�2

for n � 2. This proves (a). Part (b) is an immediate onsequene.

We now turn to estimating f

0

k

(n) for k � 2. We an onstrut a DFA M with state set

Q = fq

0

; q

1

; : : : ; q

n�1

g suh that its restrition M

f0g

satis�es

Æ(q

i

; 0) = q

i+1

; 0 � i � n � 2;

Æ(q

n�1

; 0) = q

n�1

:

Furthermore, we may hoose the set of �nal states to be S [ fq

n�2

g, where S is any subset of

fq

0

; : : : ; q

n�3

g. It is now easy to see that these 2

n�2

((n� 1)!)

k�1

automata are all minimal and

pairwise di�erent. This proves (). 2

Now let us onsider G

0

.

Theorem 15 We have

(a) G

0

1

(n) = 2

n

;

(b) For n � 2 we have 2

(k�1)n(n�1)=2

� G

0

k

(n) � 2

n�1+kn(n�1)=2

.

Proof. It is easy to see that G

0

1

(n) = 2

n

. (If an initially-onneted NFA M of n states aepts

a �nite language, then the longest string aepted is of length < n. For if a longer string is

aepted, we would have a direted yle in M 's transition diagram, and hene L(M) would be

in�nite.) It follows that G

0

1

(n) � 2

n

. On the other hand, every subset of f�; a; a

2

; : : :a

n�1

g an

be aepted, sine we may form a linear hain of n states and assign the �nal states in 2

n

ways.

Eah assignment gives a distint language.

Now let us onsider G

0

k

(n) for k � 2. We may assume that the states are numbered 0; 1; : : : ; n�

1 in suh a way that every transition goes from a lower-numbered state to a higher-numbered

state. If n > 1, we may also assume vertex n � 1 is �nal, for if not we ould simply remove all

edges leading into it, and renumber the resulting state to appear earlier in the ordering. This

gives the upper bound G

0

k

(n) � 2

n�1+kn(n�1)=2

. On the other hand, by a tehnique similar

to that given in Proposition 10, we see that G

0

k

(n) � 2

(k�1)n(n�1)=2

. (We let the states be

fq

0

; : : : ; q

n�1

g and de�ne Æ(q

i

; 0) = q

i+1

for 0 � i < n � 1. We hoose the other transitions in

all possible ways, provided they go from a lower-numbered to a higher-numbered state. We �x

q

n�1

as �nal.) 2

6. Tables

In this setion we report on some expliit omputations.

The following table gives the �rst 10 values of f

1

(n) and g

1

(n):
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n 1 2 3 4 5 6 7 8 9 10

f

1

(n) 2 4 12 30 78 180 432 978 2220 4926

g

1

(n) 2 6 18 48 126 306 738 1716 3936 8862

The following table gives f

2

(n) and g

2

(n) for 1 � n � 6.

n 1 2 3 4 5 6

f

1

(n)n

n

2 16 324 7680 243750 8398080

f

2

(n) 2 24 1028 56014 3705306 286717796

g

2

(n) 2 26 1054 57068 3762374 290480170

2

n

C

2

(n)=(n� 1)! 2 48 1728 83968 5141600 379618560

The following table gives f

3

(n) and g

3

(n) for 1 � n � 4.

n 1 2 3 4

f

1

(n)n

2n

2 64 8748 1966080

f

3

(n) 2 112 41928 26617614

g

3

(n) 2 114 42042 26659656

2

n

C

3

(n)=(n� 1)! 2 224 63720 34049024

We give some brief remarks about how the numbers in the tables above were omputed. We

onsidered eah of the n

kn

possible digraphs on verties labeled f0; 1; : : : ; n�1g where eah node

has out-degree k. Naively there would be an additional fator of 2

n

for the possible hoies of

F , the set of �nal states, but we an redue this to n by exploiting symmetries. First, if we �x

0 as the initial state, then either 0 is �nal or not, and then we an onsider any subset of the

form f1; 2; : : : ; kg as additional members of F , for 0 � k � n. This gives us 2n possible hoies

for F . For eah resulting automaton, we determine if it is minimal, and if so, we ount it with

weight

(

n�1

k

)

(n�1)!

. Seond, we an redue the number of possible sets of �nal states from 2n to n by

exploiting the symmetry that a DFA for L is minimal i� the the orresponding DFA obtained

by hanging �nal states to non-�nal and vie-versa is minimal.

The following table gives G

1

(n) for 1 � n � 5:

n 1 2 3 4 5

G

1

(n) 3 9 29 88 269

The distribution of state sizes is given below. The entry in row n and olumn j gives the

number of distint unary languages aepted by NFA's with n states whih are aepted by a

minimal DFA with j states.

n n j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 1

2 2 4 3

3 2 4 12 7 3 1

4 2 4 12 30 16 11 8 2 1 1 1

5 2 4 12 30 78 33 27 29 23 9 6 6 2 3 2 1 1 1
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A omplete listing of the distint NFA languages for 1 � n � 5 an be found at

http://www.math.uwaterloo.a/~shallit/papers.html.

We give some brief remarks about how the numbers in the tables above were omputed. We

onsider all 2

n

2

di�erent digraphs on n verties. As above, we an restrit our attention to sets

of �nal states that either ontain state 0 not, and additionally ontains the set f1; 2; : : : ; kg for

some k with 0 � k � n. For eah mahine, we onvert it to a DFA and then minimize the DFA

using Theorem 2. Using hashing, we then build a table of distint minimal DFA's and as eah

new mahine is onsidered, we hek to see if we have already enumerated it.

The following table gives D

k

(n) for 1 � k � 4 and 1 � n � 4:

k n n 1 2 3 4

1 2 8 256 38912

2 4 192 221184 4020240384

3 8 3584 128450560 279166431789056

4 16 61440 67947724800 18428089759432704000

The following table gives G

2

(n) for 1 � n � 3:

n 1 2 3

G

2

(n) 5 213 45113

The distribution of state sizes is given below. The entry in row n and olumn j gives the

number of distint languages over f0; 1g aepted by NFA's with n states whih are aepted

by a minimal DFA with j states.

n n j 1 2 3 4 5 6 7 8

1 2 3

2 2 24 117 70

3 2 24 1028 5595 11211 14537 10580 2136

The following table gives f

0

2

(n) and g

0

2

(n) for 1 � n � 7.

n 1 2 3 4 5 6 7

f

0

2

(n) 1 1 6 60 900 18480 487560

g

0

2

(n) 1 2 8 68 968 19448 507008

The following table gives G

0

2

(n) for 1 � n � 5:

n 1 2 3 4 5

G

0

2

(n) 2 8 80 1904 102848

The distribution of state sizes is given below. The entry in row n and olumn j gives the num-

ber of distint �nite languages over f0; 1g aepted by NFA's with n states whih are aepted

by a minimal DFA with j states.
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n n j 1 2 3 4 5 6 7 8 9 10 11

1 1 1

2 1 1 6

3 1 1 6 60 12

4 1 1 6 60 900 672 264

5 1 1 6 60 900 18480 31720 30992 15920 4288 480

As Mandl [24℄ and Salomaa and Yu [31℄ have shown, the maximum number of states needed

by a DFA to aept a �nite language aepted by an NFA with n states over f0; 1g is 2

(n+2)=2

�1

if n is even and 3 � 2

(n�1)=2

� 1 if n is odd.
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