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ABSTRACT

We give asymptotic estimates and some explicit computations for both the number of distinct lan-
guages and the number of distinct finite languages over a k-letter alphabet that are accepted by
deterministic finite automata (resp. nondeterministic finite automata) with n states.
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1. Introduction

The problem of enumeration of finite automata according to various criteria (with or without
distinguished initial state, initially connected?, strongly connected, non-isomorphic, etc.) was
considered as early as 1959, when V. A. Vyssotsky apparently wrote a Bell Laboratories memo-
randum on this subject [33]. (We have not been able to obtain a copy.) Counting finite automata
was problem 19 in Harary’s 1960 list of unsolved problems in graph enumeration [3, pp. 75, 87].
(Also see Harary [4] and Harary and Palmer [6].) In 1962, Ginsburg proposed the problem of
enumerating non-isomorphic sequential machines [1, p. 18].

Since then many authors examined these questions, particularly in the former Soviet Union.
For example, see the papers of Livshits [22]; Korshunov [12, 13, 14, 15, 16, 17, 18]; Liskovets
[19, 20, 21]; and Popov and Skibenko [27]. These papers are all in Russian and an English
translation is not available for most of them.

For contributions of Western authors, see Harrison [7, 8]; Radke [28]; Harary and Palmer [5];
and Robinson [30].

! Research supported in part by a grant from NSERC.
2By initially connected we mean that for each state q there exists a directed path from the distinguished start
state to q.
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However, it appears that none of these authors have examined the problems that interest us
in this paper: namely, counting the number of distinct languages (or distinct finite languages)
accepted by DFA’s (or NFA’s) with n states. Indeed, many of the papers above deal with
enumeration of automata rather than languages, and their automata often do not have a dis-
tinguished initial state or set of final states. For example, although the title of the paper of
Livshits [22] suggests he was enumerating unary finite automata, he actually counted the num-
ber of non-isomorphic “functional digraphs”, which is a very different quantity (and which had
been previously studied by Harary [2], Read [29], and others). Korshunov [13, 15, 17] counted
minimal automata, but it turns out he worked with Mealy machines that are not necessarily
initially connected; in fact, his machines lacked a distinguished initial state. Therefore, his
enumeration results are quite different from ours and apparently not trivially related.

Furthermore, it seems that the question of enumerating unary regular languages and languages
accepted by NFA’s has received little or no attention.

We define a DFA to be a 5-tuple, M = (Q, %, 0, g0, F') where @ is a finite nonempty set of
states, Y is a finite nonempty input alphabet, § : QQ X ¥ — @ is the transition function, ¢y € Q
is the distinguished initial state, and F' C ) is the set of final states. The domain of § is
extended to @ X ¥* in the obvious manner. An NFA is also a 5-tuple M = (Q, %, 6, qo, F'), but
the transition function § maps Q x ¥ — 29. In this paper we assume our NFA’s do not have
e-transitions.

Two states p,g € @ are said to be equivalent if for all # € ¥* we have §(p,z) € F <+—
d(q,x) € F. If a DFA M lacks equivalent states then it is minimal.

We say a DFA (resp. NFA) M accepting L is minimal if there is no DFA (resp. NFA) M’
with fewer states accepting L. By a well-known result, there is a unique minimal DFA, up to
isomorphism (renaming of the states). This is not true for NFA’s.

We define the following functions:

fr(n) = the number of pairwise non-isomorphic minimal DFA’s with n states
over a k-letter input alphabet;

grk(n) = the number of distinct languages accepted by DFA’s with n states
over a k-letter input alphabet; and

Gk (n) = the number of distinct languages accepted by NFA’s with n states
over a k-letter input alphabet.

Note that fi(n) counts the number of non-isomorphic, initially connected automata with n
states such that no two states are equivalent. Robinson [30] suggests computing fx(n) as an
open enumeration problem.

The goal of this paper is to develop good upper and lower bounds for fi(n), gx(n), and Gg(n).
We are particularly interested in constructive lower bounds, i.e., lower bounds which are provided
by explicit construction of DFA’s or NFA’s accepting different languages. We have the following
trivial observation:

Proposition 1 We have gi(n) = fi(1) + fr(2) + - -+ fr(n).

Proof. If L is accepted by a DFA with n states, then it is accepted by a unique (up to isomor-
phism) minimal DFA with < n states. If L is accepted by a minimal DFA with < n states, then
by adding unreachable states it can be accepted by a DFA with exactly n states. O

There are some applications for good estimates for gx(n) and Gi(n). For example, in Shallit
and Breitbart [32] and Pomerance, Robson, and Shallit [26], upper bounds on gi(n) and Gg(n)
were used to provide lower bounds on “automaticity”.
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2. Enumeration of DFA languages for £ =1

In this section we develop both exact and asymptotic formulas in the unary case. We estimate
both fi(n) and g1(n).
Nicaud [25] observed the following:

Theorem 2 An n-state unary DFA M = (Q,{a}, 9, qo, F) where Q ={qo,q1,-- -, ¢n-1} is min-
wmal iff the following three conditions hold:

(a) It is connected, i.e., there are no unreachable states. Thus, after renaming, its transition
diagram consists of a “loop” and a “tail”, i.e., (g, a) = gip1 for 0 < i < n—2 and
3(gn-1,0) = ¢; for some j, 0 < j<n-—1.

(b) The loop is “minimal”, that is, it cannot be replaced by an equivalent smaller loop.

(¢c) If 7 # 0, then qj_1 and q,_1 are of opposite “finality”, i.e., ¢;—1 € F and ¢,—1 ¢ F or
q5-1 Q/ F and Gn—1 € F.

Note that the loop ¢;, ¢j41, ..., ¢n—1 is minimal if and only if the word aja ;4 - - -an—1 defined
by
o — 1, if g € F;
"o, ifg ¢ F;
is primitive. (A nonempty word w is primitive if it cannot be written in the form w = z* for
some word x and integer k > 2.)

Let tx(n) denote the number of primitive words of length n over a k-letter alphabet. It is
well-known (e.g., [23, p. 9]) that

be(m) = 3 p(d)
d|n
where gt is the M6bius function, defined as follows:

p(n) =

0, if n is divisible by a square > 1;
(—=1)%, if n =pips---ps, where the p; are distinct primes.

Theorem 3 We have
filn)=ta(n)+ > a(n— 527"

1<j<n—1

Proof. The result follows from Nicaud’s theorem (Theorem 2). The 277! factor comes from the
fact that there are j states in the tail and if j > 1, then the type of one of the states (final or
non-final) is fixed by condition (c). O

By Proposition 1 we have the following expression for g;(n), the number of distinct languages
accepted by unary DFA’s with n states:

gi(n) = > fi(®).

1<t<n

We can now state the first result of the paper.

Theorem 4 We have g1(n) = >, ,,, ¥2(t)2"71.
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Proof. We have

an)y= > A=) (¢2<t>+ > ¢2<tj>2“)

1<t<n 1<t<n 1<5<t—1

1<t<n 1<i<t—1 1<t<n

= > (¢2(t)+ > ¢2(i)2ti1) = ) a(t)2"

We now give a good asymptotic estimate for g;(n):

Theorem 5 We have
g1(n) = 2"(n — &+ O(n2~"/2))
where

_ pd)
a =) oy = 1.38271445540239628547.
d>2

Proof. By Theorem 4 we get

nm) = ) nH2'= ) (Zﬂ(d)Qt/d) gn—t

1<t<n 1<i<n \ d|t

=27 Y ) p(d2/ =2 at YN p(d)2t /]

1<t<n d|t 1<t<n d[t
d#1

so it suffices to estimate Y < <, 3o aje u(d)21/971. Let t = kd and reverse the order of summa-
=r= d#£1
tion. We find

Z Z:u(d)Qt/d_t: Z ,u(d) Z 2k—kd

1<t<n d|¢ 2<d<n 1<k<2
d#1
— Z ,u(d) O(2n/d—n)+z2k—kd
2<d<n k>1
n —n 1
= > uld) (0(2 /e )"‘ﬁ)
2<d<n
p(d —n
= [ X A ) oy
2<d<n
and the result follows. O

Corollary 6 We have
filn) =2"""(n+1—a+0(n27"/%)
where a is defined in Theorem b.

Note: Nicaud [25] proved the weaker result that fi(n) ~ 2" 1n.



Number of Languages Accepted by Automata 5

Proof. By Proposition 1 we have

fi(n) =g(n) —g(n—1)
=2"(n—a+0(m-27"2)) 2" Y (n—1 —a+0(n-27"%)
=2""'n4+1—a+0(n-27"?%).

3. Enumeration of DFA languages for k& > 2

In this section, we turn our attention to larger alphabet sizes. First, we give a constructive lower
bound for fi(n), the number of pairwise non-isomorphic minimal n-state DFA’s over a k-letter
alphabet.

Suppose we are given an automaton M = (Q, X, §, qo, F') and a subset of the input alphabet
A C 3. We can consider the restriction of M to A, written Ma, which is the automaton
(Q, A, A, qo, F') where 64 is the restriction of the function ¢ to the domain @ X A.

Theorem 7 We have fi(n) > fi(n)nk=1n ~ pon=lylk=tn,

Proof. Fix k > 2 and n > 1. Consider the set S, of DFA’s M over the k-letter alphabet
{0,1,...,k — 1} defined by

(a) Letting Mgy be one of the fi(n) different minimal unary DFA’s on n states; and

(b) Choosing any k — 1 functions h; : Q@ — @ for 1 < i < k and defining 6(q,¢) = h;(q) for
1<i<kand q€Q.

Then we claim that S, contains fl(n)n(k_l)” different DFA’s, each is minimal and no two
DFA’s accept the same language.

Each DFA M in S, is minimal because its restriction Mgy is minimal. To see that no two
DFA’s in Sk, accepts the same language, let M = (Q,%, 4, ¢o, F) and M’ = (Q,X, 0, ¢, F')
be two distinct DFA’s in Sy ,,. If the restrictions Mgy and M{o} represent different minimal
unary DFA’s, then by definition they accept different languages, so M and M’ accept different
languages, too.

Otherwise we may assume that the restrictions Moy and M{o} are identical; in particular
F = F'. Without loss of generality, assume Q = {qo, ..., qn—1}, where §(qp,0°) = g5 for 0 < s <
n —1. Then the restrictions My 5 1} and M{l,Z,...,k—l} are different, and these correspond to
sets of functions h,; and A} that must differ. Then there exists an index i, 1 < ¢ < k and state
q € Q such that h;(g) # hli(q). Without loss of generality assume ¢ = ¢, ¢; = h;(q), g = hi(q),
j < k. Then consider the string = 0'i. We then have §(qo, ) = ¢; and (g, z) = qx.

If there exists t > 0 such that either &(¢;,0") € F and 0'(qg,0%) ¢ F or 6(g;,0") ¢ F and
&' (qk,0') € F, then the string 20! = 040 distinguishes L(M) from L(M’). Otherwise &(q;,0!) €
F < 0'(q,0") € F for all t > 0. But the restrictions My, and M{o} are identical, so ¢; and
qr are equivalent states in the restriction Mygy. But then Mgy is not minimal, a contradiction.

O

We may improve the lower bound in Theorem 7 slightly, as follows: instead of demanding
that the restriction My, be minimal, we allow the restriction My, to any letter to be minimal.
Of course, this double-counts those automata whose restriction are minimal on two or more
letters. One way to remove this double counting is to remove all those automata which under
some permutation of the states {1,2,...,n — 1} results in an initially-connected automaton on
some lower-numbered letter. This gives the following theorem.
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Theorem 8 We have

fr(n) > fi(n) (kn(k_l)” _ @(n _ 1)gn(k—2)n> '

For fized k this gives fr(n) > (k — 0(1))n2n—1n(k—1)n.

We now turn to upper bounds for fx(n) and gr(n). We may obtain the trivial bound gi(n) <
2"nk" /(n — 1)! easily as follows. We can choose the final states in 2" ways. The transition
function maps 6 : Q X & — @, and there are n*" such functions. As observed by Robinson
[30] we may now divide by (n — 1)!, because after removing those automata with n states that
are not initially connected, the names of all but the initial state in the remaining automata are
irrelevant.

This upper bound can be improved somewhat by considering only initially connected finite
automata. Let Ci(n) be the number of pairwise non-isomorphic initially connected finite au-
tomata without any final states. Then the analysis above gives fx(n) < 2"Cg(n)/(n — 1)!. As
both Liskovets [19] and Robinson [30] have observed, a simple combinatorial argument gives

Cr(n) =n" = )~ (’f‘ B 1) C(j)n*n=9). (3.1)
1<5<n

Robinson stated that
Ci(n) kn_ n(l+o(1))

=n"
where
1l—cy
(1 — Ck) Ck
Te = " F%1
k
and ¢ is the unique positive root of the equation ¢ = 1 — e %%, (We have corrected a

misprint in the formula Robinson gave for v.) For k = 2, we have ¢ = .79681213002002 and
Yk = .83590576750085. For more precise results, see Korshunov [17, p. 50].

Our lower and upper bounds for fi(n) differ by a factor of approximately (yxe)”, which for
kE = 2is roughly 2.27". It seems likely to us that log fi(n) ~ (k—1)nlogn+ Bxn where 53 = 1.5.

4. Enumeration of NFA languages

In this section we consider the computation of Gg(n), the number of distinct languages accepted
by NFA’s with n states over a k-letter alphabet. Other than the single result mentioned below,
it appears that this question has not been examined previously.

First, the unary case. Pomerance, Robson, and Shallit [26] proved that there exists a constant
¢1 such that Gi(n) < (%)”7 which appears to be the best known upper bound.

Evidently Gy(n) > 2", since each subset L C {e,a,a?, ...,a" '} can be accepted by some
NFA with n states. This lower bound can be slightly improved as follows:

(2:205-0(1))\ /5

Theorem 9 We have G1(n) > o
Proof. Let p,, denote the m’th prime (with p; = 2). Let C be a constant to be determined later,
with €' > 2. Given n > 2, define b such that bp ¢y < n < b+ 1)PLC(b+1)J- Then from the well-
known approximation p,, < m(logm + loglogm) for m > 6, we have b > (/2/C - o(1)), /525

For each of the (LC;bJ) ways to choose b distinct primes ry < r9 < --- < rp from the set
{p1,p2,- .-, p|cp)}, construct a unary NFA with a tail of s := n — (ry +rg + -+ 1) states,
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with the last state branching nondeterministically into b distinct cycles, of lengths rq, r9, ..., 7,
respectively. See Figure 1.

" cydeof .

szer; -
cycle of
Size r2
— e - qzlo
cycle of
sizery
Figure 1: Constructing an NFA
More precisely, define
6(¢iya) = {giy1} for0<i<s—1;
8(qs—1,a) = {q1,0, 42,05 - - -» B0} (4.2)
5(Qi,j7a) — {Qi,(j—l—l) modr,’} for 1 S [ S b7 0 S ] < 15.
We have

o if t < s, then a' is accepted iff ¢; is final;

e if t > s, then a is accepted iff there exists ¢, 1 < ¢ < b such that ¢ — s = e (mod r;) and
g e is final.

Now choose the final states in the tail in all possible ways, and choose the final states in the
cycles in all possible ways, subject to the restriction that not all the states in any given cycle
are of the same type (i.e., not all final or all non-final).

We claim that no two of these NFA’s accept the same language. Suppose the contrary, i.e.,
there exist two NFA’s M = (Q, X, 4, qo, F) and M' = (Q', 2, ¢, ¢{,, F') such that L(M) = L(M’).
Suppose the states of M are given as in Eq. (4.2) (based on the set of primes R = {r1,r2,...,74})
and the states of M’ are similarly defined, based on the set of primes R = {r{,r}, ..., 7, }.

Case 1: R = R'. We may assume r; = . for 1 <i < a and Q = Q’. Since L(M) = L(M'), it
must be that M and M’ are identical except that F' # F’. If the final state that differs occurs
in the tail, then the appropriate prefix is accepted by one NFA and not the other. Hence the
difference occurs in some cycle, say the state which is congruent to e (mod r;). More precisely,
assume ¢; . € F but ¢ ¢ F'. By our hypothesis, for all j, 1 < j < b, there exists a state
Ujc; & F.

Then, by the Chinese remainder theorem, we can choose t > s such that ¢t — s = e (mod r;),
but t — s = ¢; (mod r;) for 1 < j < b, j # . Then a is accepted by M but not by M’.

Case 2: R # R'. Without loss of generality there is an r € R such that r ¢ R'. By our
hypothesis, if » = r;, there exists a state g;, which is final in M. Also, for all j with r; ER-R
there exists a state q}cj which is not final in M’. Finally, for all k& with rp # r, there exists a
state g4, which is not final in M.
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Then, by the Chinese remainder theorem, we can choose t > n such that t — s =1 (mod ry),
t —s' =¢; (mod r) for r; € R — R and t — s = dy, (mod ry) for r, € R — {r}. Then M accepts
a', but M’ does not.

How many different NFA’s are there in our construction? There are (L?J) ways to choose the
subset of b primes, and for each subset R = {ry,rq,..., 5} we can assign the final states in every
possible way, except that we remove two possibilities for each cycle (all final or all non-final).
This gives

25(2M —2)(22 —2) .. (270 —2) = 2"(1 — 21T (1 =27y L (1 = 2ty

ways to assign the final states. Now clearly
(1 _ 21—r1)(1 _ 21—7“2) .. (1 _ 21—7“b) Z H (1 _ 21—pi)
i>1

where p; is the ¢’th prime, and this infinite product converges to the absolute constant g =
.345640293832338. It follows that there are > 52”(%’”) different NFA’s. Now from Stirling’s
approximation we have

(LC mJ) ~ COm(C - 1)) /T (2R (C — Dym)

m

for fixed C' and as m — 00, so we get an asymptotic lower bound on the number of different

NFA’s of 2" 107y ﬁ, where v = /2/C(Clog, C — (C — 1) log,(C — 1)). Now, choosing
C' = 4.141 in order to maximize 7, we find we can take v = 2.295. This completes the proof. O

Now we turn to the case k > 2.

Proposition 10 For k > 2 we have p2(k=1)n? < Gr(n) < (2n - 1)2’“”2 + 1.

Proof. For the upper bound, note that any NFA can be specified by specifying, for each pair
(g, a) of state and symbol, which subset of @ equals §(¢,a). We may assign the final states as
follows: either the initial state is final or not, and then since the names of states are unimportant
we may assume the remaining final states are {1,2,...,k} for 0 < k < n — 1. Finally, if we
choose no final states, we obtain only the empty language (.

For the lower bound, we use the same technique as in Theorem 7. Define an NFA
M = (Q,%,0,q, F) over the k-letter alphabet ¥ = {0,1,...,k — 1} as follows. Let Q =
{90,915, qn—1} and define

5((117 0) = Q(i-l—l) mod n for 0 S 1< n;
8(gi,7) =h(i) for0<i<n, 1<a<k;

where hj : {1,2,...,n — 1} — 29 is any set-valued function. Finally, let F = {¢;} for any i,
0 < ¢ < n. There are (2”)(k_1)” such functions and n ways to choose the set of final states.
Using similar reasoning to that in Theorem 7, no two such NFA’s accept the same language. O

The upper bound may be marginally improved by considering only NFA’s that are initially
connected, as follows: let Di(n) be the number of NFA’s on n states, over a k-letter alphabet
such that every state is reachable from the start state. Then we have Gi(n) < (2n—1)Dg(n)+1.
Unfortunately we have

Theorem 11 We have Dy (n) ~ 2+,

Proof. In analogy with Eq. (3.1), we have

2 n—1 e kr(n—

1<j<n
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(Here j is the size of the connected component involving the start state. There are (T;j) ways
to choose the other j — 1 states, and then transitions from the remaining n — j states can be

chosen in all possible ways.) From this we obtain Dy (1) = 2* and

Dy(n) =2 = % (?:i)Dk(jﬂk”(”‘”-

1<j<n—1
If &> 2, then
-1 , ) 4 4 4
(j _ 1>Dk(])2kn(n_]) S 2“—12k]22kn2—kn] — 2k(n2—|—]2—n])-|—n_1‘

Now over the range 1 < j < n — 1, the expression n? 4 j? — nj is strictly decreasing for
1 < j < n/2 and strictly increasing for n/2 < j < n—1. It follow that n? 4 j% —nj <n? —n+1
for 1 < j<n-—1. Thus, if £ > 2 we have

(n )Dk(])2kn(n_]) S 2k(n2—n+1)+n_1 S 2kn2_n+k

j—1
Hence Dy (n) > 2k7° (1 — n27n+k),
If k=1, then
n—1 . 2 n—1 .
Dy (j)2n=1) < 9. 9n -l Dy (j)27n=)
<j_1> 1(7) < + > i1 1(7)

2<j<n—2
2 2
S 2n —n—+2 _I_ n- 2n—1 . 2n —2n+4

< 2”2_”"'2(1 + 2n).
It follows that Dy (n) > 27 (1 — (2n 4 1)27"F2), 5

Let Ex(n,r) denote the number of distinct languages L over a k-letter alphabet such that L
can be accepted by an NFA with n states, but the minimal DFA accepting L has precisely r
states. Currently it is not even known whether or not E3(n, j) > 0 for every j with n < j < 2%;
see [9, 10, 11]. The distribution of Ex(n,r) is an even harder question. We make a small amount
of progress in this paper by showing Ey(n,2") > 2772 for n > 2:

Theorem 12 Let n > 2 and k = |3| > 2. There are at least 2"~? distinct languages L C %
such that

(a) L can be accepted by an NFA with n states; and
(b) The minimal DFA accepting L has 2" states.

Proof. Without loss of generality we may assume ¥ = {a,b}. We construct 272 different
NFA’s, as follows: for each subset S C {1,2,...,n—1} we create an NFA Mg = (Q, %, ds, qo, F')
where Q = {0,1,...,n— 1}, g0 =0, F = {n — 1}, and Jg is defined as follows:

, {i+1}, if0<i<n-—1;
Os(i,a) = {@, ifi=n—1;
0,1},  ifi=0;
{0,i4+1}, if1<i<n—2andié€S;
{i+1}, ifl1<i<n—2andig5;
{0}, ifi=n-1;

ds(i,b) =

First, we show that every state-set in the corresponding DFA is reachable. We claim that
each string of the form " 1w, where |w| = n, takes us to a different state-set. For upon reading
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b1 we will be in {0,1,...,n — 1}; and whenever after this we read a, the state numbered 0 is
excluded and whenever we read b, the state numbered 0 is included. This gives us a bijection
between the 2" possible state sets and strings of the form "1 |w].

Next, we show that no two of these state-sets is equivalent. Pick two such sets, say T and
U, with T # U. Without loss of generality we may assume there exists ¢ € T such that i ¢ U.
Then &5(T, a"~17%) contains the final state n — 1, but ds(U, a" '~ does not.

Finally, we show that if S # S’ then Mg and Mg accept different languages. Without loss
of generality we may assume j € S and j € S’ for some j, 1 < j < n — 2. Then Mg accepts
aba™ 1 but Mg does not. O

5. Enumeration of finite languages

We now turn to consideration of finite languages. We define

f7.(n) = the number of non-isomorphic minimal DFA’s with n states
over a k-letter input alphabet that accept a finite language;

gr(n) = the number of distinct finite languages accepted by DFA’s with n states
over a k-letter input alphabet; and

G}.(n) = the number of distinct finite languages accepted by NFA’s with n states
over a k-letter input alphabet.

Once again, it is clear that g, (n) = fi(1)+ fL(2) + - -+ fi(n).

The following proposition is useful.

Proposition 13 Let M be a minimal n-state DFA with L(M) finite. Then M is isomorphic
(up to renaming of the states) to a DFA M’ = (Q, X, 4, qo, F) satistying Q = {¢0,¢1,--,qn-1}
and the following conditions:

Proof. If M is minimal, then it is initially connected. Now discard all states from which no final
state is reachable. (We must discard at least one such state, for if a final state is reachable from
every state, start at go and follow a path by making transitions on some fixed input symbol until
some state occurs for the second time. This gives a cycle from which a final state is reachable,
so L(M) is not finite, a contradiction.) The resulting graph G must be acyclic (for if there were
a cycle L(M) would not be finite). Hence we can impose an ordering on the remaining nodes
(excluding o), say q1, g2, - - -, n—2 such that §(g;, a) = ¢; implies 7 < j. Now add back go, with
edges to the appropriate ¢;. Since G is acyclic we cannot have §(go, @) = qo for any a € ¥, and
so the ordering is preserved.

Finally, add a new sink state labeled ¢,_; satisfying conditions (a) and (c) and additional
transitions as necessary to ¢,_; to make the DFA complete. This new DFA M’ clearly accepts
the same language as M. Since we removed at least one state and added back the sink state,
the number of states in M’ is no larger than the number of states in M. Hence M’ is minimal.
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It remains to verify conditions (b) and (d). By the ordering in condition (e), the transitions
from g,_3 can only go to a higher numbered state. This proves (b). If ¢,_2 ¢ F, then ¢,z and
¢n—1 would be equivalent states, and hence M’ not minimal. This proves (d). |

Theorem 14 We have
(a) FI(1) =1 and fi(n) = 22 for n > 2;

(b) gi(n) =2""1;
(c) For k > 2 we have f,(n) > 2""%((n — 1)1)k-1L,

Proof. We start by computing f](n). By Proposition 13 or by using Nicaud’s theorem (Theo-
rem 2) if M is a minimal unary DFA accepting a finite language, then the transition diagram of
M must have a loop of size 1, and that state must be non-final. If there are > 2 states, the state
immediately preceding this sink state must be final. It follows that f{(1) = 1 and f|(n) = 22
for n > 2. This proves (a). Part (b) is an immediate consequence.

We now turn to estimating f;(n) for & > 2. We can construct a DFA M with state set
Q = {99, --,qn—1} such that its restriction Mg, satisfies

6(¢:,0) = ¢ix1, 0<i<n—2
5((]n—17 0) = f4n-1-
Furthermore, we may choose the set of final states to be S U {g,—_2}, where S is any subset of

{qo, ..+, qn_3}. It is now easy to see that these 2"~2((n — 1)!)*~! automata are all minimal and
pairwise different. This proves (c). O

Now let us consider G'.

Theorem 15 We have
(a) Gi(n) =2";
(b) Forn > 2 we have 2(k=1n(n=1)/2 < G# () < gn=1+kn(n=1)/2,

Proof. It is easy to see that G (n) = 2". (If an initially-connected NFA M of n states accepts
a finite language, then the longest string accepted is of length < n. For if a longer string is
accepted, we would have a directed cycle in M’s transition diagram, and hence L(M) would be
infinite.) It follows that G (n) < 2". On the other hand, every subset of {€,a,a?, ...a" '} can
be accepted, since we may form a linear chain of n states and assign the final states in 2™ ways.
Each assignment gives a distinct language.
Now let us consider G} (n) for k& > 2. We may assume that the states are numbered 0,1,...,7n

1 in such a way that every transition goes from a lower-numbered state to a higher-numbered
state. If » > 1, we may also assume vertex n — 1 is final, for if not we could simply remove all
edges leading into it, and renumber the resulting state to appear earlier in the ordering. This
gives the upper bound G (n) < on—1+kn(n=1)/2 = On the other hand, by a technique similar
to that given in Proposition 10, we see that G (n) > 2k=Dn(n=1)/2_ (We let the states be
{90, .-, qn-1} and define 6(g;,0) = ¢;41 for 0 < i < n — 1. We choose the other transitions in
all possible ways, provided they go from a lower-numbered to a higher-numbered state. We fix
¢n-1 as final.) O

6. Tables
In this section we report on some explicit computations.

The following table gives the first 10 values of fi(n) and g;(n):
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n 21 3| 4 5 6 7 8 9 10
fi(n) 411230 78| 180 | 432 | 978 | 2220 | 4926
g1(n) 18 | 48 | 126 | 306 | 738 | 1716 | 3936 | 8862
The following table gives fy(n) and gz2(n) for 1 < n < 6.
n 1] 2 3 4 5 6
fi(n)n™ 2116 | 324 | 7680 | 243750 8398080
fa(n) 2| 24| 1028 | 56014 | 3705306 | 286717796
g2(n) 2|26 | 1054 | 57068 | 3762374 | 290480170
2"Cay(n)/(n — 1)V | 2 | 48 | 1728 | 83968 | 5141600 | 379618560
The following table gives f3(n) and gs3(n) for 1 < n < 4.
n 1 2 3 4
fi(n)n®" 2| 64| 8748 | 1966080
fa(n) 2| 112 | 41928 | 26617614
gs(n) 2 [ 114 | 42042 | 26659656
2"Cs(n)/(n — 1)! | 2 | 224 | 63720 | 34049024

We give some brief remarks about how the numbers in the tables above were computed. We
considered each of the n*" possible digraphs on vertices labeled {0, 1,...,n—1} where each node
has out-degree k. Naively there would be an additional factor of 2" for the possible choices of
F, the set of final states, but we can reduce this to n by exploiting symmetries. First, if we fix
0 as the initial state, then either 0 is final or not, and then we can consider any subset of the
form {1,2,...,k} as additional members of F, for 0 < k < n. This gives us 2n possible choices
for F. For 1each resulting automaton, we determine if it is minimal, and if so, we count it with
weight ((n_kl))!. Second, we can reduce the number of possible sets of final states from 2n to n by
exploiting the symmetry that a DFA for L is minimal iff the the corresponding DFA obtained
by changing final states to non-final and vice-versa is minimal.

The following table gives G(n) for 1 < n < b5:

n|1|2] 3] 4| 5
Gi(n) | 39|29 88269

The distribution of state sizes is given below. The entry in row n and column j gives the
number of distinct unary languages accepted by NFA’s with n states which are accepted by a
minimal DFA with j states.

n\j|1]2| 3| 4| 5| 6| 7| 8| 910|111 12|13 |14 |15 | 16| 17| 18
1121
21214 3
31214112 7 3| 1
4121412301611 8| 2| 1
51214112130 (781332729123 9| 6| 6| 2 3| 2| 1| 1] 1
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A complete listing of the distinct NFA languages for 1 < n <5 can be found at

http://www.math.uwaterloo.ca/“shallit/papers.html.

We give some brief remarks about how the numbers in the tables above were computed. We
consider all 27 different digraphs on n vertices. As above, we can restrict our attention to sets
of final states that either contain state 0 not, and additionally contains the set {1,2,..
some k with 0 < k < n. For each machine, we convert it to a DFA and then minimize the DFA
using Theorem 2. Using hashing, we then build a table of distinct minimal DFA’s and as each

new machine is considered, we check to see if we have already enumerated it.

The following table gives Dg(n) for 1 <k <4 and 1 <n < 4:

k\n| 1 2 3 4
1] 2 8 256 38912
2| 4 192 221184 4020240384
3| 8| 3584 128450560 279166431789056
4|16 | 61440 | 67947724800 | 18428089759432704000
The following table gives Ga(n) for 1 < n < 3:
n 1 2 3
Ga(n) | 5| 213 | 45113

The distribution of state sizes is given below. The entry in row n and column j gives the
number of distinct languages over {0, 1} accepted by NFA’s with n states which are accepted
by a minimal DFA with j states.

n\j|1 3 4 5 6 7 8
1|2

2 [2]24| 117] 70

3 [ 224/ 1028|5595 | 11211 | 14537 | 10580 | 2136

The following table gives fi(n) and g4(n) for 1 <n < 7.

n|1]2 4 5 6 7
fan) |1 60 | 900 | 18480 | 487560
gh(n) | 1|2 68 | 968 | 19448 | 507008

The following table gives G4 (n) for 1 < n < b:

The distribution of state sizes is given below. The entry in row n and column j gives the num-
ber of distinct finite languages over {0, 1} accepted by NFA’s with n states which are accepted
by a minimal DFA with j states.

n

3

4 5

Gh(n) | 2

80 | 1904 | 102848
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n\j|1]2]|3]| 4 5 6 7 8 9 10| 11
1 111

2 11116

3 1111660 12

4 111]6160]|900 672 264

5 111]6|60 900 | 18480 | 31720 | 30992 | 15920 | 4288 | 480

As Mandl [24] and Salomaa and Yu [31] have shown, the maximum number of states needed
by a DFA to accept a finite language accepted by an NFA with n states over {0,1} is 2(nt+2)/2_1
if nis even and 3 -2"=1/2 _ 1 if n is odd.
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