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ABSTRACT

We give asymptoti
 estimates and some expli
it 
omputations for both the number of distin
t lan-

guages and the number of distin
t �nite languages over a k-letter alphabet that are a

epted by

deterministi
 �nite automata (resp. nondeterministi
 �nite automata) with n states.

Keywords: enumeration, �nite automata, minimal automaton, nondeterministi
 �nite automaton

1. Introdu
tion

The problem of enumeration of �nite automata a

ording to various 
riteria (with or without

distinguished initial state, initially 
onne
ted

2

, strongly 
onne
ted, non-isomorphi
, et
.) was


onsidered as early as 1959, when V. A. Vyssotsky apparently wrote a Bell Laboratories memo-

randum on this subje
t [33℄. (We have not been able to obtain a 
opy.) Counting �nite automata

was problem 19 in Harary's 1960 list of unsolved problems in graph enumeration [3, pp. 75, 87℄.

(Also see Harary [4℄ and Harary and Palmer [6℄.) In 1962, Ginsburg proposed the problem of

enumerating non-isomorphi
 sequential ma
hines [1, p. 18℄.

Sin
e then many authors examined these questions, parti
ularly in the former Soviet Union.

For example, see the papers of Livshits [22℄; Korshunov [12, 13, 14, 15, 16, 17, 18℄; Liskovets

[19, 20, 21℄; and Popov and Skibenko [27℄. These papers are all in Russian and an English

translation is not available for most of them.

For 
ontributions of Western authors, see Harrison [7, 8℄; Radke [28℄; Harary and Palmer [5℄;

and Robinson [30℄.

1
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2

By initially 
onne
ted we mean that for ea
h state q there exists a dire
ted path from the distinguished start

state to q.
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However, it appears that none of these authors have examined the problems that interest us

in this paper: namely, 
ounting the number of distin
t languages (or distin
t �nite languages)

a

epted by DFA's (or NFA's) with n states. Indeed, many of the papers above deal with

enumeration of automata rather than languages, and their automata often do not have a dis-

tinguished initial state or set of �nal states. For example, although the title of the paper of

Livshits [22℄ suggests he was enumerating unary �nite automata, he a
tually 
ounted the num-

ber of non-isomorphi
 \fun
tional digraphs", whi
h is a very di�erent quantity (and whi
h had

been previously studied by Harary [2℄, Read [29℄, and others). Korshunov [13, 15, 17℄ 
ounted

minimal automata, but it turns out he worked with Mealy ma
hines that are not ne
essarily

initially 
onne
ted; in fa
t, his ma
hines la
ked a distinguished initial state. Therefore, his

enumeration results are quite di�erent from ours and apparently not trivially related.

Furthermore, it seems that the question of enumerating unary regular languages and languages

a

epted by NFA's has re
eived little or no attention.

We de�ne a DFA to be a 5-tuple, M = (Q;�; Æ; q

0

; F ) where Q is a �nite nonempty set of

states, � is a �nite nonempty input alphabet, Æ : Q� �! Q is the transition fun
tion, q

0

2 Q

is the distinguished initial state, and F � Q is the set of �nal states. The domain of Æ is

extended to Q� �

�

in the obvious manner. An NFA is also a 5-tuple M = (Q;�; Æ; q

0

; F ), but

the transition fun
tion Æ maps Q � � ! 2

Q

. In this paper we assume our NFA's do not have

�-transitions.

Two states p; q 2 Q are said to be equivalent if for all x 2 �

�

we have Æ(p; x) 2 F ()

Æ(q; x) 2 F . If a DFA M la
ks equivalent states then it is minimal.

We say a DFA (resp. NFA) M a

epting L is minimal if there is no DFA (resp. NFA) M

0

with fewer states a

epting L. By a well-known result, there is a unique minimal DFA, up to

isomorphism (renaming of the states). This is not true for NFA's.

We de�ne the following fun
tions:

f

k

(n) = the number of pairwise non-isomorphi
 minimal DFA's with n states

over a k-letter input alphabet;

g

k

(n) = the number of distin
t languages a

epted by DFA's with n states

over a k-letter input alphabet; and

G

k

(n) = the number of distin
t languages a

epted by NFA's with n states

over a k-letter input alphabet.

Note that f

k

(n) 
ounts the number of non-isomorphi
, initially 
onne
ted automata with n

states su
h that no two states are equivalent. Robinson [30℄ suggests 
omputing f

k

(n) as an

open enumeration problem.

The goal of this paper is to develop good upper and lower bounds for f

k

(n); g

k

(n); and G

k

(n).

We are parti
ularly interested in 
onstru
tive lower bounds, i.e., lower bounds whi
h are provided

by expli
it 
onstru
tion of DFA's or NFA's a

epting di�erent languages. We have the following

trivial observation:

Proposition 1 We have g

k

(n) = f

k

(1) + f

k

(2) + � � �+ f

k

(n).

Proof. If L is a

epted by a DFA with n states, then it is a

epted by a unique (up to isomor-

phism) minimal DFA with � n states. If L is a

epted by a minimal DFA with � n states, then

by adding unrea
hable states it 
an be a

epted by a DFA with exa
tly n states. 2

There are some appli
ations for good estimates for g

k

(n) and G

k

(n). For example, in Shallit

and Breitbart [32℄ and Pomeran
e, Robson, and Shallit [26℄, upper bounds on g

k

(n) and G

k

(n)

were used to provide lower bounds on \automati
ity".
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2. Enumeration of DFA languages for k = 1

In this se
tion we develop both exa
t and asymptoti
 formulas in the unary 
ase. We estimate

both f

1

(n) and g

1

(n).

Ni
aud [25℄ observed the following:

Theorem 2 An n-state unary DFA M = (Q; fag; Æ; q

0

; F ) where Q = fq

0

; q

1

; : : : ; q

n�1

g is min-

imal i� the following three 
onditions hold:

(a) It is 
onne
ted, i.e., there are no unrea
hable states. Thus, after renaming, its transition

diagram 
onsists of a \loop" and a \tail", i.e., Æ(q

i

; a) = q

i+1

for 0 � i � n � 2 and

Æ(q

n�1

; a) = q

j

for some j, 0 � j � n� 1.

(b) The loop is \minimal", that is, it 
annot be repla
ed by an equivalent smaller loop.

(
) If j 6= 0, then q

j�1

and q

n�1

are of opposite \�nality", i.e., q

j�1

2 F and q

n�1

62 F or

q

j�1

62 F and q

n�1

2 F .

Note that the loop q

j

; q

j+1

; : : : ; q

n�1

is minimal if and only if the word a

j

a

j+1

� � �a

n�1

de�ned

by

a

i

=

(

1; if q

i

2 F ;

0; if q

i

62 F ;

is primitive. (A nonempty word w is primitive if it 
annot be written in the form w = x

k

for

some word x and integer k � 2.)

Let  

k

(n) denote the number of primitive words of length n over a k-letter alphabet. It is

well-known (e.g., [23, p. 9℄) that

 

k

(n) =

X

d jn

�(d)k

n=d

where � is the M�obius fun
tion, de�ned as follows:

�(n) =

(

0; if n is divisible by a square > 1;

(�1)

s

; if n = p

1

p

2

� � �p

s

, where the p

i

are distin
t primes.

Theorem 3 We have

f

1

(n) =  

2

(n) +

X

1�j�n�1

 

2

(n� j)2

j�1

:

Proof. The result follows from Ni
aud's theorem (Theorem 2). The 2

j�1

fa
tor 
omes from the

fa
t that there are j states in the tail and if j � 1, then the type of one of the states (�nal or

non-�nal) is �xed by 
ondition (
). 2

By Proposition 1 we have the following expression for g

1

(n), the number of distin
t languages

a

epted by unary DFA's with n states:

g

1

(n) =

X

1�t�n

f

1

(t):

We 
an now state the �rst result of the paper.

Theorem 4 We have g

1

(n) =

P

1�t�n

 

2

(t)2

n�t

.
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Proof. We have

g

1

(n) =

X

1�t�n

f

1

(t) =

X

1�t�n

0

�

 

2

(t) +

X

1�j�t�1

 

2

(t � j)2

j�1

1

A

=

X

1�t�n

0

�

 

2

(t) +

X

1�i�t�1

 

2

(i)2

t�i�1

1

A

=

X

1�t�n

 

2

(t)2

n�t

:

2

We now give a good asymptoti
 estimate for g

1

(n):

Theorem 5 We have

g

1

(n) = 2

n

(n� � +O(n2

�n=2

))

where

� =

X

d�2

�(d)

1� 2

d�1

:

= 1:38271445540239628547:

Proof. By Theorem 4 we get

g

1

(n) =

X

1�t�n

 

2

(t)2

n�t

=

X

1�t�n

0

�

X

d j t

�(d)2

t=d

1

A

2

n�t

= 2

n

X

1�t�n

X

d j t

�(d)2

t=d�t

= 2

n

0

B

�

n+

X

1�t�n

X

d j t

d6=1

�(d)2

t=d�t

1

C

A

;

so it suÆ
es to estimate

P

1�t�n

P

d j t

d6=1

�(d)2

t=d�t

. Let t = kd and reverse the order of summa-

tion. We �nd

X

1�t�n

X

d j t

d6=1

�(d)2

t=d�t

=

X

2�d�n

�(d)

X

1�k�

n

d

2

k�kd

=

X

2�d�n

�(d)

0

�

O(2

n=d�n

) +

X

k�1

2

k�kd

1

A

=

X

2�d�n

�(d)

�

O(2

n=d�n

) +

1

2

d�1

� 1

�

=

0

�

X

2�d�n

�(d)

2

d�1

� 1

1

A

+O(n2

�n=2

)

and the result follows. 2

Corollary 6 We have

f

1

(n) = 2

n�1

(n+ 1� � +O(n2

�n=2

))

where � is de�ned in Theorem 5.

Note: Ni
aud [25℄ proved the weaker result that f

1

(n) � 2

n�1

n.
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Proof. By Proposition 1 we have

f

1

(n) = g(n)� g(n� 1)

= 2

n

(n� �+ O(n � 2

�n=2

))� 2

n�1

(n� 1� � +O(n � 2

�n=2

))

= 2

n�1

(n+ 1� �+ O(n � 2

�n=2

)):

2

3. Enumeration of DFA languages for k � 2

In this se
tion, we turn our attention to larger alphabet sizes. First, we give a 
onstru
tive lower

bound for f

k

(n), the number of pairwise non-isomorphi
 minimal n-state DFA's over a k-letter

alphabet.

Suppose we are given an automaton M = (Q;�; Æ; q

0

; F ) and a subset of the input alphabet

� � �. We 
an 
onsider the restri
tion of M to �, written M

�

, whi
h is the automaton

(Q;�; Æ

�

; q

0

; F ) where Æ

�

is the restri
tion of the fun
tion Æ to the domain Q��.

Theorem 7 We have f

k

(n) � f

1

(n)n

(k�1)n

� n2

n�1

n

(k�1)n

.

Proof. Fix k � 2 and n � 1. Consider the set S

k;n

of DFA's M over the k-letter alphabet

f0; 1; : : : ; k � 1g de�ned by

(a) Letting M

f0g

be one of the f

1

(n) di�erent minimal unary DFA's on n states; and

(b) Choosing any k � 1 fun
tions h

i

: Q ! Q for 1 � i < k and de�ning Æ(q; i) = h

i

(q) for

1 � i < k and q 2 Q.

Then we 
laim that S

k;n


ontains f

1

(n)n

(k�1)n

di�erent DFA's, ea
h is minimal and no two

DFA's a

ept the same language.

Ea
h DFA M in S

k;n

is minimal be
ause its restri
tion M

f0g

is minimal. To see that no two

DFA's in S

k;n

a

epts the same language, let M = (Q;�; Æ; q

0

; F ) and M

0

= (Q;�; Æ

0

; q

0

; F

0

)

be two distin
t DFA's in S

k;n

. If the restri
tions M

f0g

and M

0

f0g

represent di�erent minimal

unary DFA's, then by de�nition they a

ept di�erent languages, so M and M

0

a

ept di�erent

languages, too.

Otherwise we may assume that the restri
tions M

f0g

and M

0

f0g

are identi
al; in parti
ular

F = F

0

. Without loss of generality, assume Q = fq

0

; : : : ; q

n�1

g, where Æ(q

0

; 0

s

) = q

s

for 0 � s <

n� 1. Then the restri
tions M

f1;2;:::;k�1g

andM

0

f1;2;:::;k�1g

are di�erent, and these 
orrespond to

sets of fun
tions h

i

and h

0

i

that must di�er. Then there exists an index i, 1 � i < k and state

q 2 Q su
h that h

i

(q) 6= h

0

i

(q). Without loss of generality assume q = q

l

, q

j

= h

i

(q), q

k

= h

0

i

(q),

j < k. Then 
onsider the string x = 0

l

i. We then have Æ(q

0

; x) = q

j

and Æ

0

(q

0

; x) = q

k

.

If there exists t � 0 su
h that either Æ(q

j

; 0

t

) 2 F and Æ

0

(q

k

; 0

t

) 62 F or Æ(q

j

; 0

t

) 62 F and

Æ

0

(q

k

; 0

t

) 2 F , then the string x0

t

= 0

l

i0

t

distinguishes L(M) from L(M

0

). Otherwise Æ(q

j

; 0

t

) 2

F () Æ

0

(q

k

; 0

t

) 2 F for all t � 0. But the restri
tions M

f0g

and M

0

f0g

are identi
al, so q

j

and

q

k

are equivalent states in the restri
tion M

f0g

. But then M

f0g

is not minimal, a 
ontradi
tion.

2

We may improve the lower bound in Theorem 7 slightly, as follows: instead of demanding

that the restri
tion M

f0g

be minimal, we allow the restri
tion M

fig

to any letter to be minimal.

Of 
ourse, this double-
ounts those automata whose restri
tion are minimal on two or more

letters. One way to remove this double 
ounting is to remove all those automata whi
h under

some permutation of the states f1; 2; : : : ; n� 1g results in an initially-
onne
ted automaton on

some lower-numbered letter. This gives the following theorem.
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Theorem 8 We have

f

k

(n) � f

1

(n)

�

kn

(k�1)n

�

k(k � 1)

2

(n� 1)!n

(k�2)n

�

:

For �xed k this gives f

k

(n) � (k � o(1))n2

n�1

n

(k�1)n

.

We now turn to upper bounds for f

k

(n) and g

k

(n). We may obtain the trivial bound g

k

(n) �

2

n

n

kn

=(n � 1)! easily as follows. We 
an 
hoose the �nal states in 2

n

ways. The transition

fun
tion maps Æ : Q � � ! Q, and there are n

kn

su
h fun
tions. As observed by Robinson

[30℄ we may now divide by (n� 1)!, be
ause after removing those automata with n states that

are not initially 
onne
ted, the names of all but the initial state in the remaining automata are

irrelevant.

This upper bound 
an be improved somewhat by 
onsidering only initially 
onne
ted �nite

automata. Let C

k

(n) be the number of pairwise non-isomorphi
 initially 
onne
ted �nite au-

tomata without any �nal states. Then the analysis above gives f

k

(n) � 2

n

C

k

(n)=(n � 1)!. As

both Liskovets [19℄ and Robinson [30℄ have observed, a simple 
ombinatorial argument gives

C

k

(n) = n

kn

�

X

1�j<n

�

n� 1

j � 1

�

C

k

(j)n

k(n�j)

: (3.1)

Robinson stated that

C

k

(n) = n

kn




n(1+o(1))

k

where




k

=

(1� 


k

)

1�


k




k




k�1

k

and 


k

is the unique positive root of the equation 


k

= 1 � e

�k


k

. (We have 
orre
ted a

misprint in the formula Robinson gave for 


k

.) For k = 2, we have 


k

:

= :79681213002002 and




k

:

= :83590576750085. For more pre
ise results, see Korshunov [17, p. 50℄.

Our lower and upper bounds for f

k

(n) di�er by a fa
tor of approximately (


k

e)

n

, whi
h for

k = 2 is roughly 2:27

n

. It seems likely to us that log f

k

(n) � (k�1)n logn+�

k

n where �

2

:

= 1:5.

4. Enumeration of NFA languages

In this se
tion we 
onsider the 
omputation of G

k

(n), the number of distin
t languages a

epted

by NFA's with n states over a k-letter alphabet. Other than the single result mentioned below,

it appears that this question has not been examined previously.

First, the unary 
ase. Pomeran
e, Robson, and Shallit [26℄ proved that there exists a 
onstant




1

su
h that G

1

(n) � (




1

n

logn

)

n

, whi
h appears to be the best known upper bound.

Evidently G

1

(n) � 2

n

, sin
e ea
h subset L � f�; a; a

2

; : : : ; a

n�1

g 
an be a

epted by some

NFA with n states. This lower bound 
an be slightly improved as follows:

Theorem 9 We have G

1

(n) > 2

n+(2:295�o(1))

q

n

log n

.

Proof. Let p

m

denote them'th prime (with p

1

= 2). Let C be a 
onstant to be determined later,

with C � 2. Given n � 2, de�ne b su
h that bp

bCb


� n < (b+ 1)p

bC(b+1)


. Then from the well-

known approximation p

m

< m(logm+ log logm) for m � 6, we have b > (

p

2=C � o(1))

q

n

logn

.

For ea
h of the

�

bCb


b

�

ways to 
hoose b distin
t primes r

1

< r

2

< � � � < r

b

from the set

fp

1

; p

2

; : : : ; p

bCb


g, 
onstru
t a unary NFA with a tail of s := n � (r

1

+ r

2

+ � � �+ r

b

) states,
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with the last state bran
hing nondeterministi
ally into b distin
t 
y
les, of lengths r

1

; r

2

; : : : ; r

b

,

respe
tively. See Figure 1.

. . .
.
.
.

q q

q

q

q
0 1

qs -1

1,0

2,0

b,0

cycle of
size r1

cycle of
size r2

cycle of
size rb

Figure 1: Constru
ting an NFA

More pre
isely, de�ne

Æ(q

i

; a) = fq

i+1

g for 0 � i < s � 1;

Æ(q

s�1

; a) = fq

1;0

; q

2;0

; : : : ; q

b;0

g; (4.2)

Æ(q

i;j

; a) = fq

i;(j+1) mod r

i

g for 1 � i � b, 0 � j < r

i

:

We have

� if t < s, then a

t

is a

epted i� q

t

is �nal;

� if t � s, then a

t

is a

epted i� there exists i, 1 � i � b su
h that t � s � e (mod r

i

) and

q

i;e

is �nal.

Now 
hoose the �nal states in the tail in all possible ways, and 
hoose the �nal states in the


y
les in all possible ways, subje
t to the restri
tion that not all the states in any given 
y
le

are of the same type (i.e., not all �nal or all non-�nal).

We 
laim that no two of these NFA's a

ept the same language. Suppose the 
ontrary, i.e.,

there exist two NFA'sM = (Q;�; Æ; q

0

; F ) andM

0

= (Q

0

;�; Æ

0

; q

0

0

; F

0

) su
h that L(M) = L(M

0

).

Suppose the states ofM are given as in Eq. (4.2) (based on the set of primes R = fr

1

; r

2

; : : : ; r

a

g)

and the states of M

0

are similarly de�ned, based on the set of primes R

0

= fr

0

1

; r

0

2

; : : : ; r

0

a

g.

Case 1: R = R

0

. We may assume r

i

= r

0

i

for 1 � i � a and Q = Q

0

. Sin
e L(M) = L(M

0

), it

must be that M and M

0

are identi
al ex
ept that F 6= F

0

. If the �nal state that di�ers o

urs

in the tail, then the appropriate pre�x is a

epted by one NFA and not the other. Hen
e the

di�eren
e o

urs in some 
y
le, say the state whi
h is 
ongruent to e (mod r

i

). More pre
isely,

assume q

i;e

2 F but q

i;e

62 F

0

. By our hypothesis, for all j, 1 � j � b, there exists a state

q

j;


j

62 F

0

.

Then, by the Chinese remainder theorem, we 
an 
hoose t � s su
h that t � s � e (mod r

i

),

but t � s � 


j

(mod r

j

) for 1 � j � b, j 6= i. Then a

t

is a

epted by M but not by M

0

.

Case 2: R 6= R

0

. Without loss of generality there is an r 2 R su
h that r 62 R

0

. By our

hypothesis, if r = r

l

, there exists a state q

l;e

l

whi
h is �nal in M . Also, for all j with r

0

j

2 R

0

�R

there exists a state q

0

j;


j

whi
h is not �nal in M

0

. Finally, for all k with r

k

6= r, there exists a

state q

k;d

k

whi
h is not �nal in M .
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Then, by the Chinese remainder theorem, we 
an 
hoose t � n su
h that t � s � l (mod r

l

),

t� s

0

� 


j

(mod r

0

j

) for r

0

j

2 R

0

�R and t� s � d

k

(mod r

k

) for r

k

2 R� frg. Then M a

epts

a

t

, but M

0

does not.

How many di�erent NFA's are there in our 
onstru
tion? There are

�

bCb


b

�

ways to 
hoose the

subset of b primes, and for ea
h subset R = fr

1

; r

2

; : : : ; r

b

g we 
an assign the �nal states in every

possible way, ex
ept that we remove two possibilities for ea
h 
y
le (all �nal or all non-�nal).

This gives

2

s

(2

r

1

� 2)(2

r

2

� 2) � � �(2

r

b

� 2) = 2

n

(1� 2

1�r

1

)(1� 2

1�r

2

) � � �(1� 2

1�r

b

)

ways to assign the �nal states. Now 
learly

(1� 2

1�r

1

)(1� 2

1�r

2

) � � �(1� 2

1�r

b

) �

Y

i�1

�

1� 2

1�p

i

�

where p

i

is the i'th prime, and this in�nite produ
t 
onverges to the absolute 
onstant �

:

=

:345640293832338. It follows that there are � �2

n

�

bCb


b

�

di�erent NFA's. Now from Stirling's

approximation we have

�

bCm


m

�

� C

Cm

(C � 1)

m(1�C)

p

C=(2�(C � 1)m)

for �xed C and as m ! 1, so we get an asymptoti
 lower bound on the number of di�erent

NFA's of 2

n+(
�o(1))

q

n

log n

, where 
 =

p

2=C(C log

2

C � (C � 1) log

2

(C � 1)). Now, 
hoosing

C

:

= 4:141 in order to maximize 
, we �nd we 
an take 


:

= 2:295. This 
ompletes the proof. 2

Now we turn to the 
ase k � 2.

Proposition 10 For k � 2 we have n2

(k�1)n

2

� G

k

(n) � (2n� 1)2

kn

2

+ 1.

Proof. For the upper bound, note that any NFA 
an be spe
i�ed by spe
ifying, for ea
h pair

(q; a) of state and symbol, whi
h subset of Q equals Æ(q; a). We may assign the �nal states as

follows: either the initial state is �nal or not, and then sin
e the names of states are unimportant

we may assume the remaining �nal states are f1; 2; : : : ; kg for 0 � k � n � 1. Finally, if we


hoose no �nal states, we obtain only the empty language ;.

For the lower bound, we use the same te
hnique as in Theorem 7. De�ne an NFA

M = (Q;�; Æ; q

0

; F ) over the k-letter alphabet � = f0; 1; : : : ; k � 1g as follows. Let Q =

fq

0

; q

1

; : : : ; q

n�1

g and de�ne

Æ(q

i

; 0) = q

(i+1) mod n

for 0 � i < n;

Æ(q

i

; j) = h

j

(i) for 0 � i < n; 1 � a < k;

where h

j

: f1; 2; : : : ; n � 1g ! 2

Q

is any set-valued fun
tion. Finally, let F = fq

i

g for any i,

0 � i � n. There are (2

n

)

(k�1)n

su
h fun
tions and n ways to 
hoose the set of �nal states.

Using similar reasoning to that in Theorem 7, no two su
h NFA's a

ept the same language. 2

The upper bound may be marginally improved by 
onsidering only NFA's that are initially


onne
ted, as follows: let D

k

(n) be the number of NFA's on n states, over a k-letter alphabet

su
h that every state is rea
hable from the start state. Then we have G

k

(n) � (2n�1)D

k

(n)+1.

Unfortunately we have

Theorem 11 We have D

k

(n) � 2

kn

2

.

Proof. In analogy with Eq. (3.1), we have

2

kn

2

=

X

1�j�n

�

n� 1

j � 1

�

D

k

(j)2

kn(n�j)

:
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(Here j is the size of the 
onne
ted 
omponent involving the start state. There are

�

n�1

j�1

�

ways

to 
hoose the other j � 1 states, and then transitions from the remaining n � j states 
an be


hosen in all possible ways.) From this we obtain D

k

(1) = 2

k

and

D

k

(n) = 2

kn

2

�

X

1�j�n�1

�

n� 1

j � 1

�

D

k

(j)2

kn(n�j)

:

If k � 2, then

�

n � 1

j � 1

�

D

k

(j)2

kn(n�j)

� 2

n�1

2

kj

2

2

kn

2

�knj

= 2

k(n

2

+j

2

�nj)+n�1

:

Now over the range 1 � j � n � 1, the expression n

2

+ j

2

� nj is stri
tly de
reasing for

1 � j � n=2 and stri
tly in
reasing for n=2 � j � n� 1. It follow that n

2

+ j

2

�nj � n

2

�n+1

for 1 � j � n� 1. Thus, if k � 2 we have

�

n � 1

j � 1

�

D

k

(j)2

kn(n�j)

� 2

k(n

2

�n+1)+n�1

� 2

kn

2

�n+k

:

Hen
e D

k

(n) � 2

kn

2

(1� n2

�n+k

).

If k = 1, then

�

n � 1

j � 1

�

D

1

(j)2

n(n�j)

� 2 � 2

n

2

�n+1

+

X

2�j�n�2

�

n � 1

j � 1

�

D

1

(j)2

n(n�j)

� 2

n

2

�n+2

+ n � 2

n�1

� 2

n

2

�2n+4

� 2

n

2

�n+2

(1 + 2n):

It follows that D

1

(n) � 2

n

2

(1� (2n+ 1)2

�n+2

). 2

Let E

k

(n; r) denote the number of distin
t languages L over a k-letter alphabet su
h that L


an be a

epted by an NFA with n states, but the minimal DFA a

epting L has pre
isely r

states. Currently it is not even known whether or not E

2

(n; j) > 0 for every j with n � j � 2

n

;

see [9, 10, 11℄. The distribution of E

k

(n; r) is an even harder question. We make a small amount

of progress in this paper by showing E

k

(n; 2

n

) � 2

n�2

for n � 2:

Theorem 12 Let n � 2 and k = j�j � 2. There are at least 2

n�2

distin
t languages L � �

�

su
h that

(a) L 
an be a

epted by an NFA with n states; and

(b) The minimal DFA a

epting L has 2

n

states.

Proof. Without loss of generality we may assume � = fa; bg. We 
onstru
t 2

n�2

di�erent

NFA's, as follows: for ea
h subset S � f1; 2; : : : ; n�1g we 
reate an NFAM

S

= (Q;�; Æ

S

; q

0

; F )

where Q = f0; 1; : : : ; n� 1g, q

0

= 0, F = fn� 1g, and Æ

S

is de�ned as follows:

Æ

S

(i; a) =

(

fi+ 1g; if 0 � i < n� 1;

;; if i = n � 1;

Æ

S

(i; b) =

8

>

>

>

>

<

>

>

>

>

:

f0; 1g; if i = 0;

f0; i+ 1g; if 1 � i � n � 2 and i 2 S;

fi+ 1g; if 1 � i � n � 2 and i 62 S;

f0g; if i = n� 1;

First, we show that every state-set in the 
orresponding DFA is rea
hable. We 
laim that

ea
h string of the form b

n�1

w, where jwj = n, takes us to a di�erent state-set. For upon reading
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b

n�1

we will be in f0; 1; : : : ; n� 1g; and whenever after this we read a, the state numbered 0 is

ex
luded and whenever we read b, the state numbered 0 is in
luded. This gives us a bije
tion

between the 2

n

possible state sets and strings of the form b

n�1

jwj.

Next, we show that no two of these state-sets is equivalent. Pi
k two su
h sets, say T and

U , with T 6= U . Without loss of generality we may assume there exists i 2 T su
h that i 62 U .

Then Æ

S

(T; a

n�1�i

) 
ontains the �nal state n� 1, but Æ

S

(U; a

n�1�i

) does not.

Finally, we show that if S 6= S

0

, then M

S

and M

S

0

a

ept di�erent languages. Without loss

of generality we may assume j 2 S and j 62 S

0

for some j, 1 � j � n � 2. Then M

S

a

epts

a

j

ba

n�1

but M

S

0

does not. 2

5. Enumeration of �nite languages

We now turn to 
onsideration of �nite languages. We de�ne

f

0

k

(n) = the number of non-isomorphi
 minimal DFA's with n states

over a k-letter input alphabet that a

ept a �nite language;

g

0

k

(n) = the number of distin
t �nite languages a

epted by DFA's with n states

over a k-letter input alphabet; and

G

0

k

(n) = the number of distin
t �nite languages a

epted by NFA's with n states

over a k-letter input alphabet.

On
e again, it is 
lear that g

0

k

(n) = f

0

k

(1) + f

0

k

(2) + � � �+ f

0

k

(n).

The following proposition is useful.

Proposition 13 Let M be a minimal n-state DFA with L(M) �nite. Then M is isomorphi


(up to renaming of the states) to a DFA M

0

= (Q;�; Æ; q

0

; F ) satisfying Q = fq

0

; q

1

; : : : ; q

n�1

g

and the following 
onditions:

(a) Æ(q

n�1

; a) = q

n�1

for all a 2 �;

(b) If n � 2, then Æ(q

n�2

; a) = q

n�1

for all a 2 �;

(
) q

n�1

62 F ;

(d) If n � 2, then q

n�2

2 F ;

(e) If Æ(q

i

; a) = q

j

for i < n� 1 then i < j.

Proof. IfM is minimal, then it is initially 
onne
ted. Now dis
ard all states from whi
h no �nal

state is rea
hable. (We must dis
ard at least one su
h state, for if a �nal state is rea
hable from

every state, start at q

0

and follow a path by making transitions on some �xed input symbol until

some state o

urs for the se
ond time. This gives a 
y
le from whi
h a �nal state is rea
hable,

so L(M) is not �nite, a 
ontradi
tion.) The resulting graph G must be a
y
li
 (for if there were

a 
y
le L(M) would not be �nite). Hen
e we 
an impose an ordering on the remaining nodes

(ex
luding q

0

), say q

1

; q

2

; : : : ; q

n�2

su
h that Æ(q

i

; a) = q

j

implies i < j. Now add ba
k q

0

, with

edges to the appropriate q

i

. Sin
e G is a
y
li
 we 
annot have Æ(q

0

; a) = q

0

for any a 2 �, and

so the ordering is preserved.

Finally, add a new sink state labeled q

n�1

satisfying 
onditions (a) and (
) and additional

transitions as ne
essary to q

n�1

to make the DFA 
omplete. This new DFA M

0


learly a

epts

the same language as M . Sin
e we removed at least one state and added ba
k the sink state,

the number of states in M

0

is no larger than the number of states in M . Hen
e M

0

is minimal.
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It remains to verify 
onditions (b) and (d). By the ordering in 
ondition (e), the transitions

from q

n�2


an only go to a higher numbered state. This proves (b). If q

n�2

62 F , then q

n�2

and

q

n�1

would be equivalent states, and hen
e M

0

not minimal. This proves (d). 2

Theorem 14 We have

(a) f

0

1

(1) = 1 and f

0

1

(n) = 2

n�2

for n � 2;

(b) g

0

1

(n) = 2

n�1

;

(
) For k � 2 we have f

0

k

(n) � 2

n�2

((n� 1)!)

k�1

.

Proof. We start by 
omputing f

0

1

(n). By Proposition 13 or by using Ni
aud's theorem (Theo-

rem 2) if M is a minimal unary DFA a

epting a �nite language, then the transition diagram of

M must have a loop of size 1, and that state must be non-�nal. If there are � 2 states, the state

immediately pre
eding this sink state must be �nal. It follows that f

0

1

(1) = 1 and f

0

1

(n) = 2

n�2

for n � 2. This proves (a). Part (b) is an immediate 
onsequen
e.

We now turn to estimating f

0

k

(n) for k � 2. We 
an 
onstru
t a DFA M with state set

Q = fq

0

; q

1

; : : : ; q

n�1

g su
h that its restri
tion M

f0g

satis�es

Æ(q

i

; 0) = q

i+1

; 0 � i � n � 2;

Æ(q

n�1

; 0) = q

n�1

:

Furthermore, we may 
hoose the set of �nal states to be S [ fq

n�2

g, where S is any subset of

fq

0

; : : : ; q

n�3

g. It is now easy to see that these 2

n�2

((n� 1)!)

k�1

automata are all minimal and

pairwise di�erent. This proves (
). 2

Now let us 
onsider G

0

.

Theorem 15 We have

(a) G

0

1

(n) = 2

n

;

(b) For n � 2 we have 2

(k�1)n(n�1)=2

� G

0

k

(n) � 2

n�1+kn(n�1)=2

.

Proof. It is easy to see that G

0

1

(n) = 2

n

. (If an initially-
onne
ted NFA M of n states a

epts

a �nite language, then the longest string a

epted is of length < n. For if a longer string is

a

epted, we would have a dire
ted 
y
le in M 's transition diagram, and hen
e L(M) would be

in�nite.) It follows that G

0

1

(n) � 2

n

. On the other hand, every subset of f�; a; a

2

; : : :a

n�1

g 
an

be a

epted, sin
e we may form a linear 
hain of n states and assign the �nal states in 2

n

ways.

Ea
h assignment gives a distin
t language.

Now let us 
onsider G

0

k

(n) for k � 2. We may assume that the states are numbered 0; 1; : : : ; n�

1 in su
h a way that every transition goes from a lower-numbered state to a higher-numbered

state. If n > 1, we may also assume vertex n � 1 is �nal, for if not we 
ould simply remove all

edges leading into it, and renumber the resulting state to appear earlier in the ordering. This

gives the upper bound G

0

k

(n) � 2

n�1+kn(n�1)=2

. On the other hand, by a te
hnique similar

to that given in Proposition 10, we see that G

0

k

(n) � 2

(k�1)n(n�1)=2

. (We let the states be

fq

0

; : : : ; q

n�1

g and de�ne Æ(q

i

; 0) = q

i+1

for 0 � i < n � 1. We 
hoose the other transitions in

all possible ways, provided they go from a lower-numbered to a higher-numbered state. We �x

q

n�1

as �nal.) 2

6. Tables

In this se
tion we report on some expli
it 
omputations.

The following table gives the �rst 10 values of f

1

(n) and g

1

(n):
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n 1 2 3 4 5 6 7 8 9 10

f

1

(n) 2 4 12 30 78 180 432 978 2220 4926

g

1

(n) 2 6 18 48 126 306 738 1716 3936 8862

The following table gives f

2

(n) and g

2

(n) for 1 � n � 6.

n 1 2 3 4 5 6

f

1

(n)n

n

2 16 324 7680 243750 8398080

f

2

(n) 2 24 1028 56014 3705306 286717796

g

2

(n) 2 26 1054 57068 3762374 290480170

2

n

C

2

(n)=(n� 1)! 2 48 1728 83968 5141600 379618560

The following table gives f

3

(n) and g

3

(n) for 1 � n � 4.

n 1 2 3 4

f

1

(n)n

2n

2 64 8748 1966080

f

3

(n) 2 112 41928 26617614

g

3

(n) 2 114 42042 26659656

2

n

C

3

(n)=(n� 1)! 2 224 63720 34049024

We give some brief remarks about how the numbers in the tables above were 
omputed. We


onsidered ea
h of the n

kn

possible digraphs on verti
es labeled f0; 1; : : : ; n�1g where ea
h node

has out-degree k. Naively there would be an additional fa
tor of 2

n

for the possible 
hoi
es of

F , the set of �nal states, but we 
an redu
e this to n by exploiting symmetries. First, if we �x

0 as the initial state, then either 0 is �nal or not, and then we 
an 
onsider any subset of the

form f1; 2; : : : ; kg as additional members of F , for 0 � k � n. This gives us 2n possible 
hoi
es

for F . For ea
h resulting automaton, we determine if it is minimal, and if so, we 
ount it with

weight

(

n�1

k

)

(n�1)!

. Se
ond, we 
an redu
e the number of possible sets of �nal states from 2n to n by

exploiting the symmetry that a DFA for L is minimal i� the the 
orresponding DFA obtained

by 
hanging �nal states to non-�nal and vi
e-versa is minimal.

The following table gives G

1

(n) for 1 � n � 5:

n 1 2 3 4 5

G

1

(n) 3 9 29 88 269

The distribution of state sizes is given below. The entry in row n and 
olumn j gives the

number of distin
t unary languages a

epted by NFA's with n states whi
h are a

epted by a

minimal DFA with j states.

n n j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 1

2 2 4 3

3 2 4 12 7 3 1

4 2 4 12 30 16 11 8 2 1 1 1

5 2 4 12 30 78 33 27 29 23 9 6 6 2 3 2 1 1 1
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A 
omplete listing of the distin
t NFA languages for 1 � n � 5 
an be found at

http://www.math.uwaterloo.
a/~shallit/papers.html.

We give some brief remarks about how the numbers in the tables above were 
omputed. We


onsider all 2

n

2

di�erent digraphs on n verti
es. As above, we 
an restri
t our attention to sets

of �nal states that either 
ontain state 0 not, and additionally 
ontains the set f1; 2; : : : ; kg for

some k with 0 � k � n. For ea
h ma
hine, we 
onvert it to a DFA and then minimize the DFA

using Theorem 2. Using hashing, we then build a table of distin
t minimal DFA's and as ea
h

new ma
hine is 
onsidered, we 
he
k to see if we have already enumerated it.

The following table gives D

k

(n) for 1 � k � 4 and 1 � n � 4:

k n n 1 2 3 4

1 2 8 256 38912

2 4 192 221184 4020240384

3 8 3584 128450560 279166431789056

4 16 61440 67947724800 18428089759432704000

The following table gives G

2

(n) for 1 � n � 3:

n 1 2 3

G

2

(n) 5 213 45113

The distribution of state sizes is given below. The entry in row n and 
olumn j gives the

number of distin
t languages over f0; 1g a

epted by NFA's with n states whi
h are a

epted

by a minimal DFA with j states.

n n j 1 2 3 4 5 6 7 8

1 2 3

2 2 24 117 70

3 2 24 1028 5595 11211 14537 10580 2136

The following table gives f

0

2

(n) and g

0

2

(n) for 1 � n � 7.

n 1 2 3 4 5 6 7

f

0

2

(n) 1 1 6 60 900 18480 487560

g

0

2

(n) 1 2 8 68 968 19448 507008

The following table gives G

0

2

(n) for 1 � n � 5:

n 1 2 3 4 5

G

0

2

(n) 2 8 80 1904 102848

The distribution of state sizes is given below. The entry in row n and 
olumn j gives the num-

ber of distin
t �nite languages over f0; 1g a

epted by NFA's with n states whi
h are a

epted

by a minimal DFA with j states.
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n n j 1 2 3 4 5 6 7 8 9 10 11

1 1 1

2 1 1 6

3 1 1 6 60 12

4 1 1 6 60 900 672 264

5 1 1 6 60 900 18480 31720 30992 15920 4288 480

As Mandl [24℄ and Salomaa and Yu [31℄ have shown, the maximum number of states needed

by a DFA to a

ept a �nite language a

epted by an NFA with n states over f0; 1g is 2

(n+2)=2

�1

if n is even and 3 � 2

(n�1)=2

� 1 if n is odd.
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