Enumerating Regular Expressions and Their
Languages

Jonathan Lee* and Jeffrey Shallit**

School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
jwlee@alumni.uwaterloo.ca
shallit@graceland.uwaterloo.ca

Abstract. We discuss enumeration of regular expressions and the dis-
tinct languages they represent.

1 Introduction

Regular expressions have been studied for almost fifty years, yet many interesting
and challenging problems about them remain unsolved. By a regular expression,
we mean a string over the alphabet

Y U {+,%(),¢60}

that represents a regular language. For example, (0+10)*(1+€) represents the
language of all strings over {0,1} that do not contain two consecutive 1’s.

We would like to enumerate valid regular expressions and the distinct lan-
guages they represent. Enumeration of regular languages is, generally speaking,
a difficult problem. For example, define Gi(n) to be the number of distinct
languages accepted by nondeterministic finite automata with n states over a k-
letter input alphabet. The following problem, studied by Domaratzki, Kisman,
and Shallit [2], seems very difficult:

Find good upper and lower bounds for G (n).

The analogous problem for regular expressions, however, is somewhat easier.
Strangely enough, it does not seem to have been studied previously. We define
Ry (n) to be the number of distinct languages specified by regular expressions of
length n over a k-letter alphabet. The “length” of a regular expression can be
defined in several different ways [3]:

— Ordinary length: total number of symbols, including parentheses, 0, ¢, etc.,
counted with multiplicity.

e (0+10)*(1+¢) has ordinary length 12

* Research of this author supported by an NSERC Undergraduate Student Research
Award.
** Research of this author supported in part by NSERC.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. BH22] 2005.
© Springer-Verlag Berlin Heidelberg 2005

mailto:jwlee@alumni.uwaterloo.ca
mailto:shallit@graceland.uwaterloo.ca

Enumerating Regular Expressions and Their Languages 3

— Reverse polish length: number of symbols in a reverse polish equivalent,
including a symbol e for concatenation
— Equivalently, number of nodes in a syntax tree for the expression

e (0+10)*(1+¢) in reverse polish would be 010e+x*c+e
e This has reverse polish length 10

— Alphabetic length: number of symbols from X, not including €, @), parens,
operators

e (0+10)*(1+¢) has alphabetic length 4

2 Valid Regular Expressions

In this section we introduce our basic method by counting the number of valid
regular expressions of (ordinary) length n. Let Si(n) be the number of such
expressions over an alphabet X of size k. Since a regular expression is defined
over the alphabet {€,0,(,),+,*} U X, we immediately get the trivial upper
bound Ry (n) < Si(n) < (k+46)™. To improve our estimate for Si(n), it becomes
necessary to state more precisely what a valid regular expression is.

There is some ambiguity about the definition of a valid regular expression.
For example, is the empty expression valid? How about () or ax*? The first two,
for example, generate errors in Grail version 2.5 [7].

Surprisingly, very few textbooks, if any, define valid regular expressions prop-
erly or formally. For example, using the definition given in Martin [6-p. 86|, the
expression 00 is not valid, since it is not fully parenthesized. (To be fair, after
the definition it is implied that parentheses can be omitted in some cases, but
no formal definition of when this can be done is given.)

Probably the best way to define valid regular expressions is with a grammar.
We now present a grammar for valid regular expressions:

S—E,|E |G

F—FE, |G

E, — E.G | GG
G—E.|C|P
C—0le|la (aeX)
FE, — G«

P —(9)

The meaning of the variables is as follows:

— S generates all regular expressions

— FE generates all unparenthesized expressions where the last operator was +

— FE, generates all unparenthesized expressions where the last operator was -
(implicit concatenation)

4 J. Lee and J. Shallit

— FE, generates all unparenthesized expressions where the last operator was x
(Kleene closure)

— C generates all unparenthesized expressions where there was no last operator
(i.e., the constants)

— P generates all parenthesized expressions

Here by “parenthesized” we mean there is at least one pair of enclosing paren-
theses. Note this grammar allows a * % but disallows ().

We claim this grammar is unambiguous. Because of this, we can apply the
Chomsky-Schiitzenberger theorem [I], which states that if a language is gener-
ated by an unambiguous CFG, then the generating function

fl@)y=> L n =’

i>0

is algebraic over Q(x).

So we look at the “commutative image” of this grammar, which replaces each
terminal by x, each occurrence of the empty string € by 1, and each occurrence
of | by 4. This gives the following system of equations:

S=FE;+FEs+G

E, =E, Fx+ Fz
F=FE,+G

E, = E.G + G?
G=FE.+C+P
C=(k+2z (E=|2))

E, =Gx
P =Sz

Now we can use Grobner bases to find the algebraic equation satisfied by S.
It is
(2% + 23S + ((k + 3)z? + (k + 3)z — 1)S + (k + 2)z = 0.

Solving for S, we get

(k+3)x2—(k+3)x+1—\/177.

5= 2(x? + x3)

where the discriminant
D = (k+1)%2* + 2(k* + 4k + 5)2% + (k + 1) (k + 3)2* — 2(k + 3)z + 1.

We can expand this as a power series to get a generating function enumerating
the regular expressions of length n. For example, for k = 2, we have

S = 4z + 2022 + 12022 + 7162* + 43562° + 2688025 + - - - .

(The 20 regular expressions of length 2 are

Enumerating Regular Expressions and Their Languages 5

Table 1. Number of Valid Regular Expressions

k= 1 2 3 4
n=1 3 4 5 6
2 12 20 30 42

3 60 120 210 336

4 297 716 1465 2682

5 1509 4356| 10375 21666

6 7800 26880| 74340 176736

7 40962| 168068| 538540| 1455018

8 1218052{1063156|3940280|12080862

— yz
— Yk

where y,z € {¢,0,a,b}.)

The number Si(n) of valid regular expressions of length n with alphabet size
k is summarized in Table [l

The asymptotic growth rate of the coefficients of the generating function for
S depends on the reciprocal of the smallest zero of the discriminant D [5]. This
smallest zero is, as k — oo, asymptotically equal to

l_£+472_1319+22463_
k k2 K3 4k* 8k5 ’
and its reciprocal is

For k = 1 this the smallest zero is about .16246250262 and for & = 2 it is
about .13755127577.
Using Darboux’s method, we can prove

Theorem 1. We have Sg(n) ~ crafn=3/2

6.1552665 and ap = 7.2700161767.

for some constant ci, where ay =

While we have counted valid regular expressions with n symbols, we are still
a long way from counting the distinct languages they represent. This is because
using our definition, many languages are double-counted. To improve the bound,
we can attempt to improve the grammar to weed out evidently uninteresting
regular expressions, such as those containing redundant parentheses.

An unambiguous grammar for regular expressions without redundant paren-
theses is as follows:

S—E,|E|E,|C
E,—>E, +F|F+F
F—E,|E, |C

E. — E.G |GG
G- (By) | E.|C

6 J. Lee and J. Shallit

C—0lela (a€ed)
E. — (E)x | (Eo)* [Eux | Cx

We can mimic the analysis given for the previous grammar. For £ = 2, we
get the equation (29 + 26)5% + (225 + 52° + 23)S3 + (52 + 523 + 5% — 2)S% +
(822 + 5z — 1)S + 42 = 0 which has the power series solution

S =4 + 2022 + 116> + 660z* + 37802° + 2184425 + - - .

The discriminant is a polynomial of degree 30, the smallest positive root is
146378001, and the asymptotic growth rate is O(6.832").
Maple worksheets for these examples are available at
http://www.cs.uwaterloo.ca/"shallit/papers.html .
Using more complicated grammars, we can dramatically improve these
bounds; we do this in Section Bl For now, however, we turn to lower bounds.

3 Lower Bounds

We now turn to lower bounds on Ry(n).

In the unary case (k = 1), we can argue as follows: consider any subset
of {€,a,a?,...,a'~'}. Such a subset can be denoted by a regular expression of
(ordinary) length at most ¢(t+1)/2. Since there are 2! distinct subsets, this gives

a lower bound of Ry (n) > 2V27~1_ Similarly, when k > 2, there are k" distinct
strings of length n, so Rx(n) > k™.

However, these naive bounds can be improved somewhat using a grammar-
based approach.

Consider a regular expression of the form

x1(e 4+ wa(e +w3(e +...)))

where the x; denote nonempty words. Every distinct choice of the x; specifies a
distinct language. Such expressions can be generated by the grammar

S—=Y |Y(e+S)
Y —aY | a, acX

which has the commutative image

S=Y +YSz!
Y = kY + kx.

The solution to this system is

kx

"1k —ke

Enumerating Regular Expressions and Their Languages 7

Once again, the asymptotic behavior of the coefficients of the power series
for S depend on the zeros of 1 — kz — kz°. The smallest (indeed, the only) real
root is, asymptotically as k — oo, given by

i (5%
Zwkf@m) 1 1.5 3
‘ 4i+1 ko k5 k9 k13
>0
The reciprocal of this series is
5 A g L4 26 204 1
5(5i + 4) SE R IO Y L

i>0

For k = 1 the only real root of 1 — kx — kz® is approximately .754877666 and
for k = 2 it is about .4756527435. Thus we have

Theorem 2. R (n) = £2(1.3247") and Ry(n) = £2(2.102374™).

We now turn to improving these lower bounds.

4 Better lower bounds

4.1 Trie representations of finite languages

We begin by describing how to represent non-empty finite languages not con-
taining € via a trie structure; an example is given Fig. [l

b

Fig. 1. Trie representation for 01(2+34+5)+6 (e+7)

Algorithm [[l below takes as input a finite non-empty language L not contain-
ing € and returns a trie in our desired format. The words in such a language L
correspond to the leaf nodes of the trie for L; moreover, the concatenation of
labels from the root to a leaf node gives an expression for the word associated
with that leaf node. For regular languages Ly and Ls, we write L 171 to denote
the left quotient of L; by Lo; formally

L2_1L1 = {x : there exists y € Ly such that yzr € L}.

8 J. Lee and J. Shallit

Algorithm 1 CREATE-TRIE(L)
Require: e ¢ L, L # ()
1: create a tree T' with an unlabelled root
2: for all ¢ € ¥ such that a 'L # do
3: add the subtree returned by CREATE-TRIE-HELP({a} 'L, a) as a child of the
root of T'
4: end for
5: return T

Algorithm 2 CREATE-TRIE-HELP(L, a)
1: create a tree 1" with a root labelled a
2: if L # {e} then {need to create children}
3: for all b € ¥ such that b™'L # () do

4: add the subtree returned by CREATE-TRIE-HELP({b} 'L, b) as a child of
the root of T'

5. end for

6: if e € L then

7 add a node labelled € as a child of the root of T’

8: end if

9: end if

10: return T

4.2 Star-free regular expressions

We begin with the simple problem of counting the number of regular languages
that may be specified by regular expressions of length n.

We develop lower bounds by specifying a context-free grammar that generates
regular expressions, factoring out common prefixes in a style similar to Horner’s
rule. In fact, the grammar is designed so that if r is a regular expression generated
by the grammar, then the structure of r mimics that of the trie for L(r) —
nodes with a single child correspond to concatenations while nodes with multiple
children correspond to concatenations with a union. For notational convenience,
we take our alphabet to be X = {ag,a1,...,ar_1}, where k > 1 denotes our
alphabet size.

S—=Y|Z

E—Y[(Z)](e+5)

Y > Pfor0<i<k

Z—Py+P,, +--+ P, where0<ng<n; <---<nyg <kfort>0

P, —a;|a;F for0<i<k
The set of regular languages represented corresponds to all non-empty finite

languages over X not containing the empty string e. We briefly describe the
non-terminals:

S generates all non-empty finite languages not containing € — this corresponds
to Algorithm 11

Enumerating Regular Expressions and Their Languages 9

FE generates all non-empty finite languages containing at least one word other
than € — this corresponds to line 2 of Algorithm

Y generates all non-empty finite languages (not containing €¢) whose words all
begin with the same letter — this corresponds to line 2 of Algorithm [l and
line 3 of Algorithm [2] when the body of the for loop is executed only once.

Z generates all non-empty finite languages (not containing ¢) whose words do
not all begin with the same letter — this corresponds to line 2 of Algorithm/[]
and line 3 of Algorithm 2] when the body of the for loop is executed more
than once.

P; generates all non-empty finite languages (not containing €) whose words all
begin with a; — this corresponds to line 1 of Algorithm 21

We remark that this grammar is unambiguous and that no regular language
is represented more than once; this should be clear from the relationship between
regular expressions generated by the grammar and their respective tries.

(Note that it is possible to slightly optimize this grammar in the case of
ordinary length to generate expressions such as 0 + 00 in lieu of 0(e 4+ 0), but
as it results in marginal improvements to the lower bound at the cost of greatly
complicating the grammar, we do not do so here.)

To obtain bounds, we make use of the following result adapted from Klarner
and Woodworth [5].

Theorem 3. Suppose it is known that the coefficients of an algebraic power
series F'(x) grow at a rate of 2(a™) and O(B™) for a < (3. Suppose also there
is a polynomial P € Zlx,y] such that P(x,F) = 0 and whose discriminant 6
with respect to y has only one root v in the interval [1/8,1/a]. Then modulo
some sub-exponential growth rate, the coefficients of F(x) grow asymptotically
like 1/~4™.

Proof. We may assume that F' has a radius of convergence 0 < R < co. Klarner
and Woodworth deduce that R is a singularity of F', so it suffices to show that ~ is
the smallest positive singularity of F'; that is, R. Suppose there exists a smallest
positive singularity 4’ < . By assumption, 4" < 1/8 so 1/9" > 3. However,
~" determines the radius of convergence of F, contradicting the fact that the
coefficient growth is O(8™). It remains to show that + is indeed a singularity.
Since the coefficient growth is £2(a™), there must be a singularity less than 1/a.
By assumption, this must be ~. L]

Table 2] lists the lower bounds obtained through this grammar.

Remark 1. By virtue of Theorem [3] these lower bounds were obtained by boot-
strapping off the trivial bounds of 2(k™), 2(k™/?) and 2(k™) for the ordinary,
reverse polish and alphabetic length cases, respectively.

Asymptotic analysis for alphabetic length. We first state a version of the
Lagrange implicit function theorem as a simplification of [4-Theorem 1.2.4]. If
f(t) is a power series in t, we write [t"]f(¢) to denote the coefficient of t™ in f(t).

10 J. Lee and J. Shallit

Table 2. Lower bounds for Ri(n) with respect to length measure and alphabet size

ordinary reverse polish alphabetic
1 £2(1.3247™) £2(1.2720™) 0(2™)
2 £2(2.5676™) £2(2.1532") £2(6.8284™)
3 02(3.6130™) 02(2.7176™) 2(11.1961™)
4 £2(4.6260™) £2(3.1806™) £2(15.5307™)
5 £2(5.6264™) £2(3.5834™) £2(19.8548™)
6 02(6.6215™) £2(3.9451™) 02(24.1740™)

Lemma 1. Let R be a commutative ring of characteristic 0 and take ¢(\) €
R[[N]] such that [\°]¢ is invertible. Then there exists a unique formal power
series w(t) € R[[t]] such that [t°]w =0 and w = tp(w). Forn > 1,

) =).

Due to the simplicity of alphabetic length, the problem of enumerating regular
languages in this case may be interpreted as doing so for rooted k-ary trees,
where each internal node is marked with one of two possible colours. We thus
investigate how our lower bound varies with k.

More specifically, consider a regular expression r generated by the grammar
from the previous section and its associated trie. Colour each node with a child
labelled € black and all other nodes white. After deleting all nodes marked e, call
the resultant tree T'(r). This operation is reversible, and shows that we may put
the expressions of alphabetic length n in correspondence with the k-ary rooted
trees with n + 1 vertices where every non-root internal node may assume one of
two colours. In order to estimate the latter, we first prove a basic result:

Lemma 2. There are %(nk_"l) k-ary trees of n nodes. Moreover, the expected

number of leaf nodes among k-ary trees of n nodes is asymptotic to (1 —1/k)*n
as n — oo.

Proof. Fix k > 1. For n > 1, let a,, denote the number of k-ary rooted trees
with n vertices and consider the generating series:

= Z ant”

n>1
By the recursive structure of k-ary trees, we have the recurrence:
F() =t + f(1)"*
Thus, by the Lagrange implicit function theorem, we have
an = [t"]f(?)
= L A

_l kn
T n\n-1/"

Enumerating Regular Expressions and Their Languages 11

We now calculate the number of leaf nodes among all k-ary rooted trees with
n vertices. Let b, ,,, denote the number of k-ary rooted trees with n vertices and
m leaf nodes and c,, the number of leaf nodes among all k-ary rooted trees with
n vertices. Consider the bivariate generating series:

g(s,t) = Z by ms™t".

n,m>1

By the recursive structure of k-ary trees, we have the recurrence:
gls,t) = t(s — 1+ (1 +g(s,1)").

The Lagrange implicit function theorem once again yields

9 n
Cn = &[t]g(s,t)
J1

= S VT = 1 (L g,)N

= Y (s L (L)

s=1

s=1

s=1

= A"+ N
_ (k(n—11)> .

Thus, the expected number of leaf nodes among n-node trees is

Cn _ n(k(y?—_ll))
An (nk—nl)

n(kn—n+1)(kn—n)---(kn —k —n+2)
(kn)(kn—1)---(kn —k +1)

kE—1\F
~n % as n — oo for fixed k. |

We wish to find a bound on the expected number of subsets of non-root
internal nodes among all k-ary rooted trees with n nodes, where a subset corre-
sponds to those nodes marked black. Fix k > 2. Since the map x — 27 is convex,
for every € > 0 and sufficiently large n, Jensen’s inequality (e.g., [8-Thm. 3.3])
applied to the lemma above implies the following lower bound on the number of

subsets:
2(1_(1—1/k)k—a)n)

Since —(1 — 1/k)* > —1/e for k > 1, we may choose € > 0 such that
~(1-1/k)* —e > —1/e.

This yields a lower bound of
2(1—1/e)n)

12 J. Lee and J. Shallit

Assuming k > 2, we now estimate (nkfl) By Stirling’s formula, we have that
as n — oo,

kn (kn)! n
(n — 1> ol (k—1n) (k—1)n+1
V2rkn (kn/e)k n
¥ Vamn (nfe)" /2a(k — D ((k — Lynfe)—1n (k— D+ 1

(=))

Putting our two bounds together, we have the following lower bound as n —
oo on the number of star-free regular expressions of alphabetic length n:

9(1-1/e)pk\ "
2 (W) where the implied constants depend only on &.

4.3 General regular languages

We now turn our attention to enumerating regular languages in general; that is,
we allow for regular expressions with Kleene stars.

Our grammars for this section are based on the those for the star-free cases.
Due to the difficulty of avoiding specifying duplicate regular languages, we settle
for a “small” subset of regular languages. For simplicity, we only consider taking
the Kleene star closure of singleton alphabet symbols.

Recall the trie representation of a star-free regular expression written in our
common prefix notation. With this representation, we may mark nodes with
stars while satisfying the following conditions:

— each starred symbol must have a non-starred parent other than the root;

— a starred symbol may not have a sibling or an identically-labelled parent
(disregarding the lack of star) with its own sibling; and

— astarred symbol may not have an identically-labelled child (disregarding the
lack of star).

The first condition eliminates duplicates such as
0*11x0*1*0% < 0*1*0x11%0% ;
the second eliminates those such as
01% < 0(et11%) and 0(1+2%1) « 02%1
and the third eliminates those such as
0%0 <> 00%.

In this manner, we end up with starred tries such as in Fig.

Enumerating Regular Expressions and Their Languages 13

b

Fig. 2. Trie representation for 01*(2+34*+5)+6 (e+7)

Algorithm 3 CREATE-STAR-TRIE(L)
Require: e Z L, L # ()

1: create a tree T' with an unlabelled root

2: for all a € ¥ such that {a} 'L # 0 do

3: add the subtree returned by CREATE-STAR-TRIE-HELP({a} 'L, a) as a child

of the root of T'
4: end for
5: return T’

Algorithm 4 CREATE-STAR-TRIE-HELP(L, a)
1: create a tree T" with a root labelled a
2: if exists b € X such that {b"}"'LN(e+ (X \ {6})X*) # 0 for all n > 0 then {need
a starred child labelled b*}

3: attach a child labelled b* to the root of T

4: if L # b" then {starred child will be an internal node}

5: for all c € X'\ {b} such that {c} 'L # @ do {determine children}

6: add the subtree returned by CREATE-STAR-TRIE-HELP({c} 'L, ¢) as a

child of the node labelled b*

7 end for

8: if b € L then

9: add a node labelled € as a child of the node labelled b*

10: end if

11: end if

12: else

13: for all b € ¥ such that {b} 'L # () do {need an unstarred child labelled b}

14: add the subtree returned by CREATE-STAR-TRIE-HELP({b}™'L, b) as a
child of the root of T’

15: end for

16: end if

17: if € € L and the root of T" has at least one unstarred child then
18: add a node labelled € as a child of the root of T'

19: end if

20: return T

14 J. Lee and J. Shallit

Algorithm [illustrates how to recreate such a starred trie from the language
it specifies.

Let T be any starred trie satisfying the conditions above. Then T represents
a regular expression, which in turn specifies a certain language. We now show
that when the algorithm is run with that language as input, it returns the trie T'
by arguing that at each step of the algorithm when a particular node (matched
with language L if the root and aL otherwise) is being processed, the correct
children are determined.

We first consider children of the root. By the original trie construction (for
finite languages without €), no such children may be labelled €. Thus, by the first
star condition, the only children may be unstarred alphabet symbols. Thus, line
2 of Algorithm [3] suffices to find all children of the root correctly.

Now consider a non-root internal node, say labelled a. By the third star
condition, a starred node may not have a child labelled with the same alphabet
symbol, so if a has a child labelled b*, then

("} 1L N (e + (X {b})X*) is non-empty for all n > 0.

Conversely, by the second condition, a starred node may not have an identically-
labelled parent that has € as a sibling, so if

{p"} L (e+ (Z\ (b)) 27)

is non-empty for all n > 0, then a must have a child labelled b*. By the second
star condition, a starred node may not have siblings, so the algorithm need not
check for other children once a starred child is found. This shows that line 2 of
Algorithm H] correctly finds all children in the case of a starred child.

Assuming a has a starred child b*, then by the third condition, line 5 of
Algorithm (] correctly determines all children of b*.

Otherwise, a has no starred children, and line 13 of Algorithm @ suffices to
find all children.

We give a grammar that generates expressions meeting these conditions. As
before, we take our alphabet to be {ag,as,...,ar-1}.

S—Y|Z

E—Y ()| (4Y)] (c+2)

Ei— Y [(Z) | (e+Y)) | (e+Zi) for 0<i < k

Y > P for0<i<k

Y - P for0<i<k

Y; = Pjfor0<i,j<kandi#j

Y/ = Pl for0<i,j <kandi#j

Z— P, +P, + -+ P, where 0 <ng<njg <---<ny <kfort>0
ZiHP;lO+P7{L1+~~+P,’Lt as above, but with n; # i forall 0 < j <t
P, —a; | a;F | a;a} | aajEj for 0 <4d,5 <k

P/ — a; | a;E | a;a} | a;aEj for 0 <4,j <k and i # j

3

Enumerating Regular Expressions and Their Languages 15

We describe the non-terminals.

S generates all expressions — this corresponds to Algorithm [

FE, E; generate expressions that may be concatenated to non-starred and starred
alphabet symbols, respectively. The non-terminal E corresponds to lines 2
and 13 while E; corresponds to line 5 of Algorithm [l These act the same as
S except for the introduction of parentheses to take precedence into account
and restriction that no prefixes of the form € + aa™ are generated, used to
implement the second condition.

Additionally, F; has the restriction that its first alphabet symbol produced
may not be a; — this is used to implement the third condition.

Y, Y'Y, Y/ generate expressions whose prefix is an alphabet symbol. As a

whole, these non-terminals correspond to Algorithm Ml and may be con-
sidered degenerate cases of Z and Z;; that is, trivial unions.
The tick-mark signifies that expressions of the form aa* for a € X are dis-
allowed, used to implement the second condition. The subscripted 7 signifies
that the initial alphabet symbol may not be a;, used to implement the third
condition.

Z, Z; generate non-trivial unions of expressions beginning with distinct alphabet
symbols — Z corresponds to line 2 of Algorithm Bland line 13 of Algorithm [l
while Z; corresponds to line 5 of Algorithm @l
The subscripted 4 signifies that none of initial alphabet symbols may be a;,
used to implement the third condition.

P;, P! generate expressions beginning with the specified alphabet symbol a;.
They correspond to line 1 of Algorithm [

The tick-mark signifies that expressions may not have the prefix a;a}, used
to implement the second condition.

Since the algorithm correctly returns a trie when run on the language repre-
sented by the trie, the correspondence between the algorithm and the grammar
gives us the following result.

Theorem 4. The grammar above is unambiguous and the generated reqular ex-
pressions represent distinct reqular languages.

Table Bl lists the improved lower bounds for Ry(n).

Remark 2. These lower bounds were obtained via Theorem [3] boot-strapping off
the bounds in Table 2

Table 3. Improved lower bounds for Rx(n) with respect to length measure and alpha-

bet size

ordinary reverse polish alphabetic
1 | R(1.3247") 0(1.27207) CR)
2 | Q.7799%) 2(2.2140™) Q2(7.4140™)
3 £2(3.9582") £2(2.8065™) 2(12.5367™)
4 2(5.0629™) £2(3.2860™) 02(17.6695™)
5 02(6.1319™) £2(3.6998™) 2(22.8082™)
6 £2(7.1804™) £2(4.0693™) £2(27.9500™)

16 J. Lee and J. Shallit

5 Better upper bounds

Turning our attention back to upper bounds, we develop grammars for regular
expressions such that every regular language is represented by at least one short-
est regular expression generated by the grammar, where a regular expression R
of length n is said to be shortest if there are no expressions R’ of length less
than n with L(R) = L(R').

In increasing order of precedence, the operations on regular languages are
union, concatenation and Kleene-star closure, which we denote by the symbols
+, e and *, respectively. In our grammars for this section, we will denote these
by the non-terminals A, B and C, respectively.

As + and e are associative, we will consider them to be variadic operators
taking at least 2 arguments and impose the condition that in any parse tree (see
Fig. B), neither of them are permitted to have themselves as children.

:o

Fig. 3. Parse tree for 0(1+23+4) *5%

Taking into mind associativity, we start with the following unambiguous
grammar as our basis for regular expressions — note that this is different from
the grammar given previously.

S—A|B|C|Dlel|l (start symbol)

A—Ag+ Ay | Ao+ A (union)
A0—>B|O‘D|€

B — ByBy| By B (concatenation)
By—(A)[C|D

C — (A)*|(B)* | D* (Kleene-star closure)

D—aforaeX (alphabet symbols) .

Enumerating Regular Expressions and Their Languages 17

We claim that each regular language has at least one shortest regular ex-
pression that is generated by the grammar; our immediate aim is to modify the
grammar to generate fewer regular expressions per regular language while still
generating at least one shortest one.

There are a few possible optimizations for removing duplicate regular lan-
guages.

— In all cases, by the commutativity of 4+ (viewed as a variadic operator), we
may impose the condition that its operands appear in the following order:
1. the symbol ¢;
2. starred expressions (those generated by C);
3. concatenated expressions (those generated by B); then
4. singleton alphabet symbols (those generated by D).
Also, given that for languages L1, Lo, ..., L, we have

(Li+ Lo+ Lp)* = (L + LE 4+ LY),

we impose the restriction that whenever + is an operand of *, none of its own
operands may be * or €. Otherwise, at most one operand may be €, provided
none of the other operands are *. These conditions prevent expressions such
as (a*)*, (e+a)* and € + a* when a* will suffice.

We implement these two conditions by modifying the “A”-productions to:

A—e+Ap|C+Ac | B+Ap | D+ Ap (union)
A~ B+Ap| D+ Ap
Ac - C|C+ Ac | A
Ap —-B|B+Ap | Ap
Ap—D|D+ Ap.

In addition, we modify the “C”-production to:
C — (AY*|(B)*|D* (Kleene-star closure).

— In the unary cases, by the commutativity of e (viewed as a variadic operator),
we may impose a similar condition as for +; namely, that its operands appear
in the following order:

1. starred expressions (those generated by C);

2. united expressions (those generated by A); then

3. single alphabet symbols (those generated by D).
We also impose the condition that at most one such operand may be a starred
expression. For if we have an operand of the form a* for a € X, all other
starred expressions are redundant. Otherwise, due to precedence, we may
assume we have operands of the form (r1) and (rg) for regular expressions
r1 and ro, so with respect to ordinary length,

(4 72)"| = [(r1)"(r2)"| = 2.

18

J. Lee and J. Shallit

Note that in the alphabetic and reverse polish length cases, this condition is
implied by the one we will state next.
We implement these conditions by modifying the “B”-productions to:

B —CB4s|(A)B4 | DBp (concatenation)
Ba — (A) | (A)Ba | Bp
Bp — D | DBp.

In the alphabetic and reverse polish measure of length cases, we impose the
restriction that no two adjacent operands of e, the concatenation operator,
are starred expressions. For if 71,7y denote regular expressions, then rir; =
(r1 + r2)*. Furthermore, with respect to alphabetic length,

[(re +72)"| = |rirsl;
and with respect to reverse polish length,
[(r1 +72)"| = |rir3 — 1.
We implement these conditions by modifying the “B”-productions to:

B=(A)By | CB; | DBy (concatenation)
By =(A)[C[D|(A)Bo|CBy | DBy
Bi=(A)|D| ABy | DBy.

With these enhancements, we obtain improved upper bounds on Rg(n), as

listed in Table [

Table 4. Improved upper bounds for Ri(n) with respect to length measure and al-

phabet size

ordinary reverse polish alphabetic
1 | 0(2.9090") O(2.7037") 0(21.75277)
2 0(4.2198") 0(3.9675™) 0(62.9522™)
3 0(5.3182") 0(4.6899™) 0(94.4282™)
4 | 0(6.4068") O(5.2957") 0(125.9043™)
5 O(7.4736™) 0(5.8276™) 0(157.3804™)
6 0(8.5261"™) 0(6.3074™) 0(188.8564™)

Remark 3. In the case of reverse polish length, the least positive root was less

than 1/(k+4), meaning it could be safely ignored by Theorem[Bl In the ordinary

unary case, the bound was boot-strapped from the bound obtained from relax-
ing the operand ordering of +; in the ordinary non-unary cases, the restriction
disallowing e and starred expressions to be siblings was dropped due to apparent
computational infeasibility.

By discarding the productions for the non-terminal C' altogether, we obtain

upper bounds for the star-free analogue of Ri(n), as shown in Table Bl

Enumerating Regular Expressions and Their Languages

19

Table 5. Improved upper bounds for star-free Ry(n) with respect to length measure

and alphabet size

ordinary reverse polish alphabetic
1 | O0(24702") O(2.4495™) 0(14.60327)
2 0(3.5051"™) 0(3.3096™) 0(29.2063™)
3 0(4.5681"™) 0(3.9837") 0(43.8095™)
4 | O0(5.6208") O(4.5579") 0(58.4126™)
5 0(6.6629™) 0(5.0670™) 0(73.0158™)
6 0(7.6969™) 0(5.5292") 0O(87.6189™)

Remark 4. For the unary reverse polish and alphabetic length cases, it can be
shown directly that the lower bounds given in Table 2] are indeed upper bounds

as well.

6 Exact Enumerations

Tables [G] to] give exact numbers for the number of regular languages repre-
sentable by a regular expression of length n, but not by any of length less than n.

Table 6. Star-free ordinary cases

1 2 3 4
1 3 4 5 6
2 1 4 9 16
3 2 11 33 74
4 3 28 117 336
5 3 63 391 1474
6 5 156 1350 6560
7 5 358 4546 28861
8 8 888 15753 128720
9 9 2194 55053 578033
10 14 5665 196185
Table 7. Star-free reverse polish cases
1 2 3 4
1 3 4 5 6
3 2 7 15 26
5 3 25 85 202
7 5 109 589 1917
9 9 514 4512 20251
11 14 2641 37477
13 24 14354 328718
15 41 81325 231152
17 71 475936
19 118

20 J. Lee and J. Shallit

Table 8. Star-free alphabetic cases

1 2 3 4
0 2 2 2 2
1 2 4 6 8
2 4 24 60 112
3 8 182 806 2164
4 16 1652 13182 51008
5 32 16854 242070 1346924
6 64 186114
Table 9. General ordinary cases
1 2 3 4
1 3 4 5 6
2 2 6 12 20
3 3 17 48 102
4 4 48 192 520
5 5 134 760 2628
6 9 397 3090 13482
7 12 1151 12442 68747
8 17 3442 51044 354500
9 25 10527 211812
10 33 32731 891228

Table 10. General reverse polish cases

1 2 3 4
1 3 4 5 6
2 1 2 3 4
3 2 7 15 26
4 2 13 33 62
5 3 32 106 244
6 4 90 361 920
7 6 189 1012 3133
8 7 580 3859 13529
9 11 1347 11655 48388
10 15 3978 43431 208634

We explain how these numbers were obtained. Using the upper bound
grammars described previously, a dynamic programming approach was taken
to produce (in order of increasing regular expression size) the regular expres-
sions generated by each non-terminal. To account for duplicates, each regular
expression was transformed into a DFA, minimized and relabelled via a breadth-
first search to produce a canonical representation. Using these representations as
hashes, any regular expression matching a previous one generated by the same
non-terminal was simply ignored.

Enumerating Regular Expressions and Their Languages 21

Table 11. General alphabetic cases

1 2 3 4
0 2 2 2 2
1 3 6 9 12
2 6 56 150 288
3 14 612 3232 9312
4 30 7923 82614 357911
5 72 114554
6 155 1768133
7 343
8 731
9 1600
10 3407

A Commutative images

We provide the commutative images for the grammars described. We do not
explicitly provide images for the star-free cases, as they may be obtained from
those below by simply ignoring the images of sentential forms containing a star.

We also set one of 6, 6, 8, to 1, depending on whether the ordinary, reverse
polish or alphabetic case is being considered, respectively — all others are set
to 0. As usual, k denotes the alphabet size.

Al Lower bounds

S=Y+Z7
E=Y + ZI26D 4 Y/,I45°+25T + Z$45°+26’"
En=Yy+ ZN$26° + Y]Qx4‘50+2‘5r + ZNx460+267‘

Y = kPy
Y = kP
Yy = (k—1)Py
Y = (k—1)Py
Mk
7 Pli (Bot6)(i=1)
> (3)me
k—1
Zn — (k - 1) Plig(oton(i=1)
1
=2

Py=z+ Epltor + g 2H00+20r + kEN.’[,'2+6°+35T
Py=z+ Exltér 4 (k — 1)$2+50+25r + (k- 1)EN$2+6"+3§T' .

22

A.

J. Lee and J. Shallit

2 Upper bounds

S=A+B+C+D+2(6,+ br)x (start symbol)
A= Aga?Cetd) 4 CAqaltor + BAgabe Tt + DApxdetér (union)
A" = BApa® T + DApx®otir
Ao =C+ CAca® ™t + Ap
Agp =B+ BADCC(S"-HS"' + Ap
Ap =D+ DADI§°+§T
C = Alg3%Tor 4 Bp3detér 4 Dybotor (Kleene-star closure)
D =kx (alphabet symbols)
In the unary cases:
B = CBaz’ + ABx*%° % + DBpar (concatenation)
By = Az®® + AB2**** 4+ Bp
Bp = D+ DBpa?®"
In the ordinary, non-unary cases:
B = ABy2* + CBy + DBy (concatenation)
By = Az?> 4+ C+ D + AByz? + CBy + DBy
In the non-ordinary, non-unary cases:
B = AByz®" + CB, + DB, (concatenation)
Bo=A+C+ D+ ABo.Z‘éT + CBlwér + DB().%'&T
By = A+ D+ AByx® + DBya?®"

References

1.

8.

N. Chomsky and M. P. Schiitzenberger. The algebraic theory of context-free lan-
guages. In P. Braffort and D. Hirschberg, editors, Computer Programming and
Formal Systems, pp. 118-161. North Holland, Amsterdam, 1963.

M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. J. Automata, Languages, and Combina-
torics 7 (2002), 469-486.

K. Ellul, B. Krawetz, J. Shallit, and M.-w. Wang. Regular expressions: new results
and open problems. To appear, J. Autom. Lang. Combin., 2003.

I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. Wiley, 1983.

D. A. Klarner and P. Woodworth. Asymptotics for coefficients of algebraic functions.
Aequationes Math. 23 (1981), 236-241.

J. C. Martin. Introduction to Languages and the Theory of Computation. McGraw-
Hill, 3rd edition, 2003.

D. Raymond and D. Wood. Grail: a C++ library for automata and expressions. J.
Symbolic Comput. 17 (1994), 341-350.

W. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

	Introduction
	Valid Regular Expressions
	Lower Bounds
	Better lower bounds
	Trie representations of finite languages
	Star-free regular expressions
	General regular languages

	Better upper bounds
	Exact Enumerations
	Commutative images
	Lower bounds
	Upper bounds

