Continued Fractions and Linear Recurrences

H. W. Lenstra, Jr.* Department of Mathematics University of California, Berkeley Berkeley, CA 94720 USA hwl@math.berkeley.edu

J. O. Shallit[†] Department of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@graceland.uwaterloo.ca

August 6, 2001

1991 Mathematics Subject Classifications: 11A55, 11B37

Abstract

We prove that the numerators and denominators of the convergents to a real irrational number θ satisfy a linear recurrence with constant coefficients if and only if θ is a quadratic irrational. The proof uses the Hadamard Quotient Theorem of A. van der Poorten.

Let θ be an irrational real number with simple continued fraction expansion $[a_0, a_1, a_2, \ldots]$. Define the numerators and denominators of the convergents to θ as follows:

$$p_{-2} = 0; \quad p_{-1} = 1; \quad p_n = a_n p_{n-1} + p_{n-2} \quad \text{for } n \ge 0;$$
 (1)

$$q_{-2} = 1; \quad q_{-1} = 0; \quad q_n = a_n q_{n-1} + q_{n-2} \quad \text{for } n \ge 0.$$
 (2)

By the classical theory of continued fractions (see, for example, [2, Chapter X]), we have

$$\frac{p_n}{q_n} = [a_0, a_1, \dots, a_n].$$

^{*}Supported by the National Science Foundation under Grant No. DMS-9002939. The hospitality and support of the Institute for Computer Research (Waterloo) are gratefully acknowledged.

[†]Supported in part by a grant from NSERC.

In this note, we consider the question of when the sequences $(p_n)_{n\geq 0}$ and $(q_n)_{n\geq 0}$ can satisfy a linear recurrence with constant coefficients. If, for example, $\theta = \sqrt{3}$, then $\theta =$ [1, 1, 2, 1, 2, 1, 2, ...], and it is easy to verify that $q_{n+4} = 4q_{n+2} - q_n$ for all $n \geq 0$. Our main result shows that this exemplifies the situation in general.

Theorem 1 Let θ be an irrational real number. Let its simple continued fraction expansion be $\theta = [a_0, a_1, \ldots]$, and let (p_n) and (q_n) be the sequence of numerators and denominators of the convergents to θ , as defined above. Then the following four conditions are equivalent:

- (a) $(p_n)_{n>0}$ satisfies a linear recurrence with constant complex coefficients;
- (b) $(q_n)_{n>0}$ satisfies a linear recurrence with constant complex coefficients;
- (c) $(a_n)_{n>0}$ is an ultimately periodic sequence;
- (d) θ is a quadratic irrational.

Our proof is simple, but uses a deep result of van der Poorten known as the Hadamard Quotient Theorem. We do not know how to give a short proof of the implication $(b) \Rightarrow (c)$ from first principles.

Proof. The equivalence (c) \Leftrightarrow (d) is classical. We will prove the equivalence (b) \Leftrightarrow (c); the equivalence (a) \Leftrightarrow (c) will follow in a similar fashion.

(c) \Rightarrow (b): It is easy to see (cf. Frame [1]) that

$$\begin{bmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix}.$$
 (3)

Now if the sequence $(a_n)_{n\geq 0}$ is ultimately periodic, then there exists an integer $r\geq 0$, and r integers $b_0, b_1, \ldots, b_{r-1}$, and an integer $s\geq 1$ and s positive integers $c_0, c_1, \ldots, c_{s-1}$ such that

$$\theta = [b_0, b_1, \dots, b_{r-1}, c_0, c_1, \dots, c_{s-1}, c_0, c_1, \dots, c_{s-1}, \dots].$$

Now for each integer i modulo s, define

$$M_i = \prod_{0 \le j < s} \left[\begin{array}{cc} c_{i+j} & 1\\ 1 & 0 \end{array} \right].$$

Then for all $n \ge r$, we have, by Eq. (3)

$$\begin{bmatrix} p_{n+s} & p_{n+s-1} \\ q_{n+s} & q_{n+s-1} \end{bmatrix} = \begin{bmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{bmatrix} M_{n-r}.$$
 (4)

Since for all pairs (i, j) it is possible to find matrices A, B such that $M_i = AB$ and $M_j = BA$, and since Tr(AB) = Tr(BA), it readily follows that $t = \text{Tr}(M_i)$ does not depend on i. Hence the characteristic polynomial of each M_i is $X^2 - tX + (-1)^s$. Since every matrix satisfies its own characteristic polynomial, we see that $M_{n-r}^2 - tM_{n-r} + (-1)^s I$ is the zero matrix. Combining this observation with Eq. (4), we get

$$\begin{bmatrix} p_{n+2s} & p_{n+2s-1} \\ q_{n+2s} & q_{n+2s-1} \end{bmatrix} - t \begin{bmatrix} p_{n+s} & p_{n+s-1} \\ q_{n+s} & q_{n+s-1} \end{bmatrix} + (-1)^s \begin{bmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{bmatrix} = 0$$

Therefore, $q_{n+2s} - tq_{n+s} + (-1)^s q_n = 0$ for all $n \ge r$, and hence the sequence $(q_n)_{n\ge 0}$ satisfies a linear recurrence with constant integral coefficients.

(b) \Rightarrow (c): The proof proceeds in two stages. First we show, by means of a theorem of van der Poorten, that if $(q_n)_{n\geq 0}$ satisfies a linear recurrence, then so does $(a_n)_{n\geq 0}$. Next we show that the a_n are bounded because otherwise the q_n would grow too rapidly. The periodicity of $(a_n)_{n\geq 0}$ then follows immediately.

Let us recall a familiar definition: if the sequence of complex numbers $(u_n)_{n\geq 0}$ satisfies a linear recurrence with constant complex coefficients

$$u_n = \sum_{1 \le i \le d} e_i u_{n-i}$$

for all *n* sufficiently large, and *d* is chosen to be as small as possible, then $X^d - \sum_{1 \leq i \leq d} e_i X^{d-i}$ is said to be the minimal polynomial for the linear recurrence. Also recall that a sequence of complex numbers $(u_n)_{n\geq 0}$ satisfies a linear recurrence with constant coefficients if and only if the formal series $\sum_{n\geq 0} u_n X^n$ represents a rational function of X.

Define the two formal series $F = \sum_{n\geq 0} (q_{n+2} - q_n) X^n$ and $G = \sum_{n\geq 0} q_{n+1} X^n$. Clearly F and G represent rational functions. We now use the following theorem of van der Poorten [4, 5, 6]:

Theorem 2 (Hadamard Quotient Theorem) Let $F = \sum_{i\geq 0} f_i X^i$ and $G = \sum_{i\geq 0} g_i X^i$ be formal series representing rational functions in $\mathbf{C}(X)$. Suppose that the f_i and g_i are complex numbers such that $g_i \neq 0$ and f_i/g_i is an integer for all $i \geq 0$. Then $\sum_{i\geq 0} (f_i/g_i) X^i$ also represents a rational function.

Since $q_{n+2} = a_{n+2}q_{n+1} + q_n$ for all $n \ge 0$, it follows from this theorem that $\sum_{n\ge 0} a_{n+2}X^n$ represents a rational function, and hence the sequence of partial quotients $(a_n)_{n\ge 0}$ also satisfies a linear recurrence with constant coefficients.

We now require the following lemma:

Lemma 3 Suppose that $(y_n)_{n\geq 0}$ and $(z_n)_{n\geq 0}$ are sequences of complex numbers, each satisfying a linear recurrence, with the property that the minimal polynomial of $(z_n)_{n\geq 0}$ divides the minimal polynomial of $(y_n)_{n\geq 0}$. Let d denote the degree of the minimal polynomial of $(y_n)_{n\geq 0}$. Then there exist constants c > 0 and n_0 such that for all $n \geq n_0$ we have

$$\max(|y_{n-d+1}|, |y_{n-d+2}|, \dots, |y_n|) > c|z_n|.$$

Proof. Put $Y = \sum_{n\geq 0} y_n X^n = f/g$ with gcd(f,g) = 1 and $\deg g = d$, and $Z = \sum_{n\geq 0} z_n X^n = h/g$; here $f, g, h \in \mathbb{C}[X]$. Since gcd(f,g) = 1, we can find a polynomial $k = \sum_{0\leq i\leq d} k_i X^i$ of degree < d such that $kf \equiv h \pmod{g}$. Then Z = kY + m, for a polynomial m, and $z_n = \sum_{0\leq i\leq d} k_i y_{n-i}$ for $n > n_0 = \deg m$. It follows that

$$|z_n| \le \left(\sum_{0 \le i < d} |k_i|\right) \max(|y_{n-d+1}|, |y_{n-d+2}|, \dots, |y_n|),$$

and the lemma follows, with $c = (1 + \sum_{0 \le i < d} |k_i|)^{-1}$.

Since $(a_n)_{n>0}$ satisfies a linear recurrence, we may express a_n as a generalized power sum

$$a_n = \sum_{1 \le i \le d} A_i(n) \alpha_i^n,$$

for all n sufficiently large. Here the α_i are distinct non-zero complex numbers (the "characteristic roots") and the $A_i(n)$ are polynomials in n.

Now take $y_n = a_n$ and $z_n = n^{\ell} \alpha^n$, where $\alpha = \alpha_i$ and $\ell = \deg A_i$ for some *i*. Then the hypothesis of Lemma 3 holds, and we conclude that at least one of $a_{n-d+1}, a_{n-d+2}, \ldots, a_n$ is greater than $cn^{\ell} |\alpha|^n$, for all *n* sufficiently large. Then, using Eq. (2), we have

$$q_{dm} \ge \prod_{1 \le j \le dm} a_j > c' \cdot c^m \cdot d^{\ell m} \cdot (m!)^\ell \cdot (|\alpha|^d)^{m(m+1)/2}$$

for some positive constant c' and all $m \ge 1$. But $(q_n)_{n\ge 0}$ satisfies a linear recurrence, and therefore $\log q_{dm} = O(dm)$. It follows that $|\alpha_i| \le 1$ for all i, and further that $\deg A_i = 0$ for those i with $|\alpha_i| = 1$. Hence the sequence $(a_n)_{n\ge 0}$ is bounded. But a simple argument using the pigeonhole principle (see, for example, [3, Part VIII, Problem 158]) shows that any bounded integer sequence satisfying a linear recurrence is ultimately periodic. This completes the proof.

References

- [1] J. S. Frame. Continued fractions and matrices. Amer. Math. Monthly 56 (1949), 98–103.
- [2] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1989. Fifth edition, reprinting.
- [3] G. Pólya and G. Szegö. Problems and Theorems in Analysis II. Springer-Verlag, 1976.
- [4] A. J. van der Poorten. p-adic methods in the study of Taylor coefficients of rational functions. Bull. Austral. Math. Soc. 29 (1984), 109-117.
- [5] A. J. van der Poorten. Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris 306 (1988), 97–102.
- [6] R. Rumely. Notes on van der Poorten's proof of the Hadamard quotient theorem: Parts I-II. In C. Goldstein, editor, Séminaire de Théorie des Nombres Paris 1986-87, Vol. 75 of Progress in Mathematics, pages 349-382; 383-409. Birkhäuser Boston, 1989.