Continued Fractions and Linear Recurrences

H. W. Lenstra, Jr.*
Department of Mathematics
University of California, Berkeley
Berkeley, CA 94720
USA
hwl@math.berkeley.edu

J. O. Shallit ${ }^{\dagger}$
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@graceland.uwaterloo.ca

August 6, 2001

1991 Mathematics Subject Classifications: 11A55, 11B37

Abstract

We prove that the numerators and denominators of the convergents to a real irrational number θ satisfy a linear recurrence with constant coefficients if and only if θ is a quadratic irrational. The proof uses the Hadamard Quotient Theorem of A. van der Poorten.

Let θ be an irrational real number with simple continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. Define the numerators and denominators of the convergents to θ as follows:

$$
\begin{array}{cccc}
p_{-2}=0 ; & p_{-1}=1 ; & p_{n}=a_{n} p_{n-1}+p_{n-2} & \text { for } n \geq 0 ; \\
q_{-2}=1 ; & q_{-1}=0 ; & q_{n}=a_{n} q_{n-1}+q_{n-2} & \text { for } n \geq 0 . \tag{2}
\end{array}
$$

By the classical theory of continued fractions (see, for example, [2, Chapter X]), we have

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right] .
$$

[^0]In this note, we consider the question of when the sequences $\left(p_{n}\right)_{n>0}$ and $\left(q_{n}\right)_{n>0}$ can satisfy a linear recurrence with constant coefficients. If, for example, $\theta=\sqrt{3}$, then $\theta=$ $[1,1,2,1,2,1,2, \ldots]$, and it is easy to verify that $q_{n+4}=4 q_{n+2}-q_{n}$ for all $n \geq 0$. Our main result shows that this exemplifies the situation in general.

Theorem 1 Let θ be an irrational real number. Let its simple continued fraction expansion be $\theta=\left[a_{0}, a_{1}, \ldots\right]$, and let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be the sequence of numerators and denominators of the convergents to θ, as defined above. Then the following four conditions are equivalent:
(a) $\left(p_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with constant complex coefficients;
(b) $\left(q_{n}\right)_{n>0}$ satisfies a linear recurrence with constant complex coefficients;
(c) $\left(a_{n}\right)_{n \geq 0}$ is an ultimately periodic sequence;
(d) θ is a quadratic irrational.

Our proof is simple, but uses a deep result of van der Poorten known as the Hadamard Quotient Theorem. We do not know how to give a short proof of the implication (b) \Rightarrow (c) from first principles.

Proof. The equivalence $(\mathrm{c}) \Leftrightarrow(\mathrm{d})$ is classical. We will prove the equivalence $(\mathrm{b}) \Leftrightarrow(\mathrm{c})$; the equivalence (a) \Leftrightarrow (c) will follow in a similar fashion.
$(c) \Rightarrow(b)$: It is easy to see (cf. Frame [1]) that

$$
\left[\begin{array}{cc}
p_{n} & p_{n-1} \tag{3}\\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \ldots\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]
$$

Now if the sequence $\left(a_{n}\right)_{n \geq 0}$ is ultimately periodic, then there exists an integer $r \geq 0$, and r integers $b_{0}, b_{1}, \ldots, b_{r-1}$, and an integer $s \geq 1$ and s positive integers $c_{0}, c_{1}, \ldots, c_{s-1}$ such that

$$
\theta=\left[b_{0}, b_{1}, \ldots, b_{r-1}, c_{0}, c_{1}, \ldots, c_{s-1}, c_{0}, c_{1}, \ldots, c_{s-1}, \ldots\right] .
$$

Now for each integer i modulo s, define

$$
M_{i}=\prod_{0 \leq j<s}\left[\begin{array}{cc}
c_{i+j} & 1 \\
1 & 0
\end{array}\right] .
$$

Then for all $n \geq r$, we have, by Eq. (3)

$$
\left[\begin{array}{cc}
p_{n+s} & p_{n+s-1} \tag{4}\\
q_{n+s} & q_{n+s-1}
\end{array}\right]=\left[\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right] M_{n-r}
$$

Since for all pairs (i, j) it is possible to find matrices A, B such that $M_{i}=A B$ and $M_{j}=B A$, and since $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$, it readily follows that $t=\operatorname{Tr}\left(M_{i}\right)$ does not depend on i. Hence the characteristic polynomial of each M_{i} is $X^{2}-t X+(-1)^{s}$. Since every matrix satisfies its own characteristic polynomial, we see that $M_{n-r}^{2}-t M_{n-r}+(-1)^{s} I$ is the zero matrix. Combining this observation with Eq. (4), we get

$$
\left[\begin{array}{cc}
p_{n+2 s} & p_{n+2 s-1} \\
q_{n+2 s} & q_{n+2 s-1}
\end{array}\right]-t\left[\begin{array}{cc}
p_{n+s} & p_{n+s-1} \\
q_{n+s} & q_{n+s-1}
\end{array}\right]+(-1)^{s}\left[\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right]=0 .
$$

Therefore, $q_{n+2 s}-t q_{n+s}+(-1)^{s} q_{n}=0$ for all $n \geq r$, and hence the sequence $\left(q_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with constant integral coefficients.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: The proof proceeds in two stages. First we show, by means of a theorem of van der Poorten, that if $\left(q_{n}\right)_{n \geq 0}$ satisfies a linear recurrence, then so does $\left(a_{n}\right)_{n \geq 0}$. Next we show that the a_{n} are bounded because otherwise the q_{n} would grow too rapidly. The periodicity of $\left(a_{n}\right)_{n \geq 0}$ then follows immediately.

Let us recall a familiar definition: if the sequence of complex numbers $\left(u_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with constant complex coefficients

$$
u_{n}=\sum_{1 \leq i \leq d} e_{i} u_{n-i}
$$

for all n sufficiently large, and d is chosen to be as small as possible, then $X^{d}-\sum_{1 \leq i \leq d} e_{i} X^{d-i}$ is said to be the minimal polynomial for the linear recurrence. Also recall that a sequence of complex numbers $\left(u_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with constant coefficients if and only if the formal series $\sum_{n \geq 0} u_{n} X^{n}$ represents a rational function of X.

Define the two formal series $F=\sum_{n \geq 0}\left(q_{n+2}-q_{n}\right) X^{n}$ and $G=\sum_{n \geq 0} q_{n+1} X^{n}$. Clearly F and G represent rational functions. We now use the following theorem of van der Poorten $[4,5,6]:$

Theorem 2 (Hadamard Quotient Theorem) Let $F=\sum_{i \geq 0} f_{i} X^{i}$ and $G=\sum_{i \geq 0} g_{i} X^{i}$ be formal series representing rational functions in $\mathbf{C}(X)$. Suppose that the f_{i} and g_{i} are complex numbers such that $g_{i} \neq 0$ and f_{i} / g_{i} is an integer for all $i \geq 0$. Then $\sum_{i \geq 0}\left(f_{i} / g_{i}\right) X^{i}$ also represents a rational function.

Since $q_{n+2}=a_{n+2} q_{n+1}+q_{n}$ for all $n \geq 0$, it follows from this theorem that $\sum_{n \geq 0} a_{n+2} X^{n}$ represents a rational function, and hence the sequence of partial quotients $\left(a_{n}\right)_{n \geq 0}$ also satisfies a linear recurrence with constant coefficients.

We now require the following lemma:
Lemma 3 Suppose that $\left(y_{n}\right)_{n \geq 0}$ and $\left(z_{n}\right)_{n \geq 0}$ are sequences of complex numbers, each satisfying a linear recurrence, with the property that the minimal polynomial of $\left(z_{n}\right)_{n \geq 0}$ divides the minimal polynomial of $\left(y_{n}\right)_{n \geq 0}$. Let d denote the degree of the minimal polynomial of $\left(y_{n}\right)_{n \geq 0}$. Then there exist constants $c>0$ and n_{0} such that for all $n \geq n_{0}$ we have

$$
\max \left(\left|y_{n-d+1}\right|,\left|y_{n-d+2}\right|, \ldots,\left|y_{n}\right|\right)>c\left|z_{n}\right|
$$

Proof. Put $Y=\sum_{n \geq 0} y_{n} X^{n}=f / g$ with $\operatorname{gcd}(f, g)=1$ and $\operatorname{deg} g=d$, and $Z=\sum_{n \geq 0} z_{n} X^{n}=$ h / g; here $f, g, h \in \overline{\mathrm{C}}[X]$. Since $\operatorname{gcd}(f, g)=1$, we can find a polynomial $k=\sum_{0 \leq i<d} k_{i} X^{i}$ of degree $<d$ such that $k f \equiv h(\bmod g)$. Then $Z=k Y+m$, for a polynomial m, and $z_{n}=\sum_{0 \leq i<d} k_{i} y_{n-i}$ for $n>n_{0}=\operatorname{deg} m$. It follows that

$$
\left|z_{n}\right| \leq\left(\sum_{0 \leq i<d}\left|k_{i}\right|\right) \max \left(\left|y_{n-d+1}\right|,\left|y_{n-d+2}\right|, \ldots,\left|y_{n}\right|\right),
$$

and the lemma follows, with $c=\left(1+\sum_{0 \leq i<d}\left|k_{i}\right|\right)^{-1}$.
Since $\left(a_{n}\right)_{n \geq 0}$ satisfies a linear recurrence, we may express a_{n} as a generalized power sum

$$
a_{n}=\sum_{1 \leq i \leq d} A_{i}(n) \alpha_{i}^{n},
$$

for all n sufficiently large. Here the α_{i} are distinct non-zero complex numbers (the "characteristic roots") and the $A_{i}(n)$ are polynomials in n.

Now take $y_{n}=a_{n}$ and $z_{n}=n^{\ell} \alpha^{n}$, where $\alpha=\alpha_{i}$ and $\ell=\operatorname{deg} A_{i}$ for some i. Then the hypothesis of Lemma 3 holds, and we conclude that at least one of $a_{n-d+1}, a_{n-d+2}, \ldots, a_{n}$ is greater than $c n^{\ell}|\alpha|^{n}$, for all n sufficiently large. Then, using Eq. (2), we have

$$
q_{d m} \geq \prod_{1 \leq j \leq d m} a_{j}>c^{\prime} \cdot c^{m} \cdot d^{\ell m} \cdot(m!)^{\ell} \cdot\left(|\alpha|^{d}\right)^{m(m+1) / 2}
$$

for some positive constant c^{\prime} and all $m \geq 1$. But $\left(q_{n}\right)_{n \geq 0}$ satisfies a linear recurrence, and therefore $\log q_{d m}=O(d m)$. It follows that $\left|\alpha_{i}\right| \leq 1$ for all i, and further that $\operatorname{deg} A_{i}=0$ for those i with $\left|\alpha_{i}\right|=1$. Hence the sequence $\left(a_{n}\right)_{n \geq 0}$ is bounded. But a simple argument using the pigeonhole principle (see, for example, [3, Part VIII, Problem 158]) shows that any bounded integer sequence satisfying a linear recurrence is ultimately periodic. This completes the proof.

References

[1] J. S. Frame. Continued fractions and matrices. Amer. Math. Monthly 56 (1949), 98-103.
[2] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1989. Fifth edition, reprinting.
[3] G. Pólya and G. Szegö. Problems and Theorems in Analysis II. Springer-Verlag, 1976.
[4] A. J. van der Poorten. p-adic methods in the study of Taylor coefficients of rational functions. Bull. Austral. Math. Soc. 29 (1984), 109-117.
[5] A. J. van der Poorten. Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris 306 (1988), 97-102.
[6] R. Rumely. Notes on van der Poorten's proof of the Hadamard quotient theorem: Parts I-II. In C. Goldstein, editor, Séminaire de Théorie des Nombres Paris 1986-87, Vol. 75 of Progress in Mathematics, pages 349-382; 383-409. Birkhäuser Boston, 1989.

[^0]: *Supported by the National Science Foundation under Grant No. DMS-9002939. The hospitality and support of the Institute for Computer Research (Waterloo) are gratefully acknowledged.
 ${ }^{\dagger}$ Supported in part by a grant from NSERC.

