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Abstra
t

We prove that the numerators and denominators of the 
onvergents to a real irra-

tional number � satisfy a linear re
urren
e with 
onstant 
oeÆ
ients if and only if � is

a quadrati
 irrational. The proof uses the Hadamard Quotient Theorem of A. van der

Poorten.

Let � be an irrational real number with simple 
ontinued fra
tion expansion [a

0

; a

1

; a

2

; : : :℄.

De�ne the numerators and denominators of the 
onvergents to � as follows:

p

�2

= 0; p

�1

= 1; p

n

= a

n

p

n�1

+ p

n�2

for n � 0; (1)

q

�2

= 1; q

�1

= 0; q

n

= a

n

q

n�1

+ q

n�2

for n � 0: (2)

By the 
lassi
al theory of 
ontinued fra
tions (see, for example, [2, Chapter X℄), we have

p

n

q

n

= [a

0

; a

1

; : : : ; a

n

℄:
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In this note, we 
onsider the question of when the sequen
es (p

n

)

n�0

and (q

n

)

n�0


an

satisfy a linear re
urren
e with 
onstant 
oeÆ
ients. If, for example, � =

p

3, then � =

[1; 1; 2; 1; 2; 1; 2; : : :℄, and it is easy to verify that q

n+4

= 4q

n+2

� q

n

for all n � 0. Our main

result shows that this exempli�es the situation in general.

Theorem 1 Let � be an irrational real number. Let its simple 
ontinued fra
tion expansion

be � = [a

0

; a

1

; : : :℄; and let (p

n

) and (q

n

) be the sequen
e of numerators and denominators of

the 
onvergents to �, as de�ned above. Then the following four 
onditions are equivalent:

(a) (p

n

)

n�0

satis�es a linear re
urren
e with 
onstant 
omplex 
oeÆ
ients;

(b) (q

n

)

n�0

satis�es a linear re
urren
e with 
onstant 
omplex 
oeÆ
ients;

(
) (a

n

)

n�0

is an ultimately periodi
 sequen
e;

(d) � is a quadrati
 irrational.

Our proof is simple, but uses a deep result of van der Poorten known as the Hadamard

Quotient Theorem. We do not know how to give a short proof of the impli
ation (b) ) (
)

from �rst prin
iples.

Proof. The equivalen
e (
), (d) is 
lassi
al. We will prove the equivalen
e (b) , (
); the

equivalen
e (a) , (
) will follow in a similar fashion.

(
) ) (b): It is easy to see (
f. Frame [1℄) that

"

p

n

p

n�1

q

n

q

n�1

#

=

"

a

0

1

1 0

# "

a

1

1

1 0

#

� � �

"

a

n

1

1 0

#

: (3)

Now if the sequen
e (a

n

)

n�0

is ultimately periodi
, then there exists an integer r � 0,

and r integers b

0

; b

1

; : : : ; b

r�1

, and an integer s � 1 and s positive integers 


0

; 


1

; : : : ; 


s�1

su
h that

� = [b

0

; b

1

; : : : ; b

r�1

; 


0

; 


1

; : : : ; 


s�1

; 


0

; 


1

; : : : ; 


s�1

; : : :℄:

Now for ea
h integer i modulo s, de�ne

M

i

=

Y

0�j<s

"




i+j

1

1 0

#

:

Then for all n � r, we have, by Eq. (3)

"

p

n+s

p

n+s�1

q

n+s

q

n+s�1

#

=

"

p

n

p

n�1

q

n

q

n�1

#

M

n�r

: (4)

Sin
e for all pairs (i; j) it is possible to �nd matri
es A;B su
h that M

i

= AB and

M

j

= BA, and sin
e Tr(AB) = Tr(BA), it readily follows that t = Tr(M

i

) does not depend

on i. Hen
e the 
hara
teristi
 polynomial of ea
h M

i

is X

2

� tX+(�1)

s

. Sin
e every matrix

satis�es its own 
hara
teristi
 polynomial, we see that M

2

n�r

� tM

n�r

+ (�1)

s

I is the zero

matrix. Combining this observation with Eq. (4), we get

"

p

n+2s

p

n+2s�1

q

n+2s

q

n+2s�1

#

� t

"

p

n+s

p

n+s�1

q

n+s

q

n+s�1

#

+ (�1)

s

"

p

n

p

n�1

q

n

q

n�1

#

= 0:
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Therefore, q

n+2s

� tq

n+s

+(�1)

s

q

n

= 0 for all n � r, and hen
e the sequen
e (q

n

)

n�0

satis�es

a linear re
urren
e with 
onstant integral 
oeÆ
ients.

(b) ) (
): The proof pro
eeds in two stages. First we show, by means of a theorem

of van der Poorten, that if (q

n

)

n�0

satis�es a linear re
urren
e, then so does (a

n

)

n�0

. Next

we show that the a

n

are bounded be
ause otherwise the q

n

would grow too rapidly. The

periodi
ity of (a

n

)

n�0

then follows immediately.

Let us re
all a familiar de�nition: if the sequen
e of 
omplex numbers (u

n

)

n�0

satis�es a

linear re
urren
e with 
onstant 
omplex 
oeÆ
ients

u

n

=

X

1�i�d

e

i

u

n�i

for all n suÆ
iently large, and d is 
hosen to be as small as possible, then X

d

�

P

1�i�d

e

i

X

d�i

is said to be the minimal polynomial for the linear re
urren
e. Also re
all that a sequen
e of


omplex numbers (u

n

)

n�0

satis�es a linear re
urren
e with 
onstant 
oeÆ
ients if and only

if the formal series

P

n�0

u

n

X

n

represents a rational fun
tion of X.

De�ne the two formal series F =

P

n�0

(q

n+2

� q

n

)X

n

and G =

P

n�0

q

n+1

X

n

. Clearly F

and G represent rational fun
tions. We now use the following theorem of van der Poorten

[4, 5, 6℄:

Theorem 2 (Hadamard Quotient Theorem) Let F =

P

i�0

f

i

X

i

and G =

P

i�0

g

i

X

i

be formal series representing rational fun
tions in C(X). Suppose that the f

i

and g

i

are


omplex numbers su
h that g

i

6= 0 and f

i

=g

i

is an integer for all i � 0. Then

P

i�0

(f

i

=g

i

)X

i

also represents a rational fun
tion.

Sin
e q

n+2

= a

n+2

q

n+1

+ q

n

for all n � 0, it follows from this theorem that

P

n�0

a

n+2

X

n

represents a rational fun
tion, and hen
e the sequen
e of partial quotients (a

n

)

n�0

also

satis�es a linear re
urren
e with 
onstant 
oeÆ
ients.

We now require the following lemma:

Lemma 3 Suppose that (y

n

)

n�0

and (z

n

)

n�0

are sequen
es of 
omplex numbers, ea
h satis-

fying a linear re
urren
e, with the property that the minimal polynomial of (z

n

)

n�0

divides

the minimal polynomial of (y

n

)

n�0

. Let d denote the degree of the minimal polynomial of

(y

n

)

n�0

. Then there exist 
onstants 
 > 0 and n

0

su
h that for all n � n

0

we have

max(jy

n�d+1

j; jy

n�d+2

j; : : : ; jy

n

j) > 
jz

n

j:

Proof. Put Y =

P

n�0

y

n

X

n

= f=g with g
d(f; g) = 1 and deg g = d, and Z =

P

n�0

z

n

X

n

=

h=g; here f; g; h 2 C[X℄. Sin
e g
d(f; g) = 1, we 
an �nd a polynomial k =

P

0�i<d

k

i

X

i

of degree < d su
h that kf � h (mod g). Then Z = kY + m, for a polynomial m, and

z

n

=

P

0�i<d

k

i

y

n�i

for n > n

0

= degm. It follows that

jz

n

j �

0

�

X

0�i<d

jk

i

j

1

A

max(jy

n�d+1

j; jy

n�d+2

j; : : : ; jy

n

j);
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and the lemma follows, with 
 = (1 +

P

0�i<d

jk

i

j)

�1

.

Sin
e (a

n

)

n�0

satis�es a linear re
urren
e, we may express a

n

as a generalized power sum

a

n

=

X

1�i�d

A

i

(n)�

n

i

;

for all n suÆ
iently large. Here the �

i

are distin
t non-zero 
omplex numbers (the \
hara
-

teristi
 roots") and the A

i

(n) are polynomials in n.

Now take y

n

= a

n

and z

n

= n

`

�

n

, where � = �

i

and ` = degA

i

for some i. Then the

hypothesis of Lemma 3 holds, and we 
on
lude that at least one of a

n�d+1

; a

n�d+2

; : : : ; a

n

is

greater than 
n

`

j�j

n

, for all n suÆ
iently large. Then, using Eq. (2), we have

q

dm

�

Y

1�j�dm

a

j

> 


0

� 


m

� d

`m

� (m!)

`

� (j�j

d

)

m(m+1)=2

for some positive 
onstant 


0

and all m � 1. But (q

n

)

n�0

satis�es a linear re
urren
e, and

therefore log q

dm

= O(dm). It follows that j�

i

j � 1 for all i, and further that degA

i

= 0

for those i with j�

i

j = 1. Hen
e the sequen
e (a

n

)

n�0

is bounded. But a simple argument

using the pigeonhole prin
iple (see, for example, [3, Part VIII, Problem 158℄) shows that

any bounded integer sequen
e satisfying a linear re
urren
e is ultimately periodi
. This


ompletes the proof.
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