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Abstra
t

We dis
uss balan
ed binary representations.

1 Introdu
tion and De�nitions

Every non-negative integer n 
an be represented essentially uniquely in base 2, as follows:

n =

X

0�i�j

e

i

2

i

where e

i

2 f0; 1g and e

j

6= 0 for n 6= 0. We 
onsider the 
onsequen
es of enlarging the digit

set to f�1; 0; 1g. We 
all su
h an expansion a signed-digit expansion.

One immediate 
onsequen
e is that every integer, positive, negative, or zero, 
an be

represented using the digits f�1; 0; 1g. In fa
t,

Theorem 1.1 Every nonzero integer has an in�nite number of signed-digit expansions.

Proof. We prove this for positive integers n, the proof for negative integers being essentially

identi
al. Write the ordinary base-2 representation of n�1 as (n�1)

2

= e

j

e

j�1

� � � e

0

. Choose

any k > j, and 
onsider the representation of 1 as 1

k

z }| {

�1 � 1 � � � � 1. Now add these two

representations, term by term. The result is a representation of n using only the digits 1; 0;

and �1.

�

Resear
h supported in part by a grant from NSERC.

1



We now restri
t our attention to a parti
ular type of signed-digit expansion.

Theorem 1.2 Every integer has a signed-digit representation 
ontaining no two adja
ent

nonzero digits.

Proof. It suÆ
es to prove the result for non-negative integers. We use indu
tion on n.

Clearly the result is true for n = 0. Now, if n is even, take a representation of n=2 and


on
atenate 0. If n � 1 (mod 4), take a representation of (n � 1)=4 and 
on
atenate 01. If

n � �1 (mod 4), take a representation of (n+ 1)=4 and 
on
atenate 0 � 1.

Theorem 1.3 Every nonzero integer has exa
tly one representation 
ontaining no two ad-

ja
ent nonzero digits and no leading zeroes.

Proof. Suppose n =

P

0�i�j

e

i

2

i

=

P

0�i�j

f

i

2

i

an integer with at least two distin
t repre-

sentations. Without loss of generality we may assume n > 0 and n is the least su
h integer.

Consider both of these expansions modulo 2. If e

0

� 0 (mod 2), then f

0

� 0 (mod 2). Hen
e,

by dropping the least signi�
ant bit, we get two expansion for n=2 < n, a 
ontradi
tion.

Similarly, by 
onsidering these expansions modulo 4, we �nd that either (i) e

0

= f

0

= 1

and e

1

= f

1

= 0, or (ii) e

0

= f

0

= �1 and e

1

= f

1

= 0. In the former 
ase, (n � 1)=4 has

two distin
t representations, and in the latter (n+ 1)=4 has two distin
t representations.

We 
all su
h a representation the balan
ed binary representation.

We de�ne the weight of a signed-digit representation to be the number of nonzero digits.

Theorem 1.4 Balan
ed binary representation minimizes the weight over all signed-digit rep-

resentations.

Of 
ourse, there 
an be several signed-digit representations a
hieving the minimum

weight, su
h as 1 0 �1 and 11 for 3.

Theorem 1.5 There are t

n

=

2

n

�(�1)

n

3

distin
t representations of length n.

Proof. Any representation of length n must either end in 0 or 1 or �1. In the former


ase, the representation 
onsists of a valid representation of length n� 1 
on
atenated with

0. In the latter 
ase, the representation 
onsists of a valid representation of length n � 2


on
atenated with either 01 or 0 �1. Thus t

n

= t

n�1

+ 2t

n�2

. Also t

1

= 1 and t

2

= 1, whi
h

gives the result.

2 Algorithms

The following algorithm 
omputes the balan
ed binary representation for a non-negative

integer n.
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BBR(n)

(1) if (n = 0) then

(2) return(")

(3) else

(4) determine e su
h that 2

e

� n < 2

e+1

(5) if (3n > 2

e+2

) then

(6) return(2

e+1

, -BBR(2

e+1

� n)

(7) else

(8) return (2

e

, BBR(n � 2

e

))

The following algorithm 
omputes an alternative signed-digit representation that also has

minimal weight:

BBR2(n)

(1) if (n = 0) then

(2) return(")

(3) else

(4) determine e su
h that 2

e

� n < 2

e+1

(5) if (2

e+1

� n � n� 2

e

) then

(6) return(2

e+1

, -BBR2(2

e+1

� n)

(7) else

(8) return (2

e

, BBR2(n� 2

e

))

Note the outputs are di�erent: BBR(11) gives 16�4�1, while BBR2(11) gives 8+4�1.

Both representations are of weight 3.

3 Transdu
ers

We 
an 
onvert from ordinary binary representation to balan
ed binary using the following

�nite-state transdu
er:
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0, 0 0, 1 -1, 2 0, 2

1, 0

0 / 0

1 / 

0 / 0

0 / 10

1/ 

1/ -1 0

0 / 

1/ 0
1 / 0

0 / 

ε

ε

ε

ε

Figure 1: Transdu
er 
onverting ordinary binary to balan
ed binary

The input is given starting with the least signi�
ant digit and the output has the same

order. The input may need two additional zeroes at the end to a
hieve the 
omplete output.

For example, on input 010111100 the output is 010�100010.

On the other hand, it is easy to see that no �nite-state transdu
er 
an 
onvert an arbitrary

signed-digit binary expansion to ordinary binary. For example, if we take the most signi�
ant

digit �rst, then if the input is 10000 � � � 0, the transdu
er 
annot output any 
orre
t output

until seeing the next digit. If it is 1, the output should be 10000 � � � 01. But if it is �1,

the output should be 01111 � � � 11. Thus there is arbitrarily long delay, and no �nite-state

transdu
er will work.

However, we 
an 
onvert from signed-digit binary to ordinary binary using a pushdown

transdu
er. (For more about pushdown transdu
ers, see [6, 7, 9, 8, 14℄.) Suppose we read

the input starting with the most signi�
ant digit, followed by an endmarker. On input 1, for

ea
h following 0 you see, push a 
ounter onto the sta
k until a 1 or �1 is seen. If you see a

1, output a 1 followed by a 0 for ea
h 
ounter on the sta
k (popping sta
k as you output).

If you see a �1, output a 0 and then a 1 for ea
h 
ounter on the sta
k (popping sta
k as you

output). Finally, there is an endmarker, whi
h is treated like a 1.

4 k-automati
 and k-regular sequen
es

It follows from the transdu
er in Se
tion 3 that a sequen
e (s

n

)

n�0

is 2-automati
 using an

automaton pro
essing the ordinary base-2 representation of n i� it is 2-automati
 using an

automaton pro
essing the balan
ed binary representation of n.

Suppose we de�ne s(n) to be the sum of the digits in the balan
ed binary expansion of
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n. Then we have, for n � 0,

s(2n) = s(n);

s(4n + 1) = s(n) + 1;

s(4n + 3) = s(n+ 1) � 1:

It follows from this that

s(8n+ 1) = s(4n+ 1);

s(8n+ 3) = s(n) + s(2n+ 1) � s(4n+ 1);

s(8n+ 5) = �s(n) + s(2n+ 1) + s(4n + 1);

s(8n+ 7) = s(4n+ 3);

and hen
e s is 2-regular.

Suppose we de�ne w(n) to be the weight (number of non-zero terms) in the balan
ed

binary expansion of n. Then following the argument in Theorems 1.2 and 1.3 we �nd, for

n � 0, that

w(2n) = w(n);

w(4n+ 1) = w(n) + 1;

w(4n+ 3) = w(n+ 1) + 1:

It follows that

w(8n + 1) = w(4n + 1);

w(8n + 3) = �w(n) + w(2n+ 1) + w(4n+ 1);

w(8n + 5) = w(8n + 3);

w(8n + 7) = w(4n + 3);

and so (w(n))

n�0

is a 2-regular sequen
e in the sense of Allou
he and Shallit [1℄.

The sequen
e w(n) has the following expansion as a sum of pattern sequen
es:

w(n) = a

1

(n) �

X

i�0

a

11(01)

i

1

(n):

Here a

P

(n) denotes the number of o

urren
es of the pattern P in the (ordinary) binary

representation of n.

Note added January 1994: The sequen
e (w(n))

n�0

also appears in a paper of Weitzman

[20℄.

Theorem 4.1 Suppose we de�ne t(n) :=

P

0�k<2

n

(w(n)� s

2

(n)), where s

2

(n) 
ounts the

sum of the digits in the (ordinary) binary representation of n. Then t(n) =

1

6

n2

n

�

4

9

2

n

+

�

1

18

(�1)

n

+

1

2

.
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5 Previous work

Booth [3℄ dis
ussed the use of binary numbers with both positive and negative digits, as did

Avizienis [2℄ and Takagi & Yajima [18℄.

There are evident links between ordinary binary representation and addition 
hains. In

the same way, there are links between signed-digit representation and addition/subtra
tion


hains. See, for example, [17, 19, 4℄ and [11, Solution to Exer
ise 4.6.3.30, p. 638℄.

Reitwiesner [16℄ and Jedwab & Mit
hell [10℄ proved that balan
ed binary represention

gives a minimum weight representation.

Morain & Olivos [15℄, E~ge
io~glu & Ko�
 [5℄, and Koblitz [12℄ independently gave an

appli
ation of balan
ed binary representation to speeding up 
omputations on an ellipti



urve. Koyama & Tsuruoka [13℄ dis
ussed a signed-digit representation in whi
h the average

run-length of the blo
ks of zeroes is in
reased, while still retaining the minimum weight.
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