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Let £ := {0,1,...,k — 1} for an integer k > 2. Define o(a) = (a + 1) mod k
for a € ¥;. In this paper we consider several new pattern avoidance problems, of
which the following is a typical example: what is the smallest k for which one can
simultaneously avoid the patterns zz and xo(z) over X7

1 Introduction and definitions

Pattern avoidance problems have long been studied in formal language theory, and
have interesting applications to group theory, universal algebra, and other areas.
For example, Axel Thue®? constructed an infinite squarefree word over {0, 1,2};
i.e., a word that contains no subword of the form xzz, where x is a nonempty word.

Eventually, generalizations of Thue’s problem were considered. Erdds, for ex-
ample, suggested trying to find infinite words containing no subword of the form
zy, where y is a permutation of the letters of . Such words are now sometimes
called “abelian squarefree”®. For other papers on pattern avoidance, the reader can
fruitfully consult, for example, 154,

In this paper, we consider some new generalizations of Thue’s problem. We
start with some notation. Let X,I' be finite alphabets. A morphism is a map
h : T* — X~ such that h(xy) = h(z)h(y) for all z,y € T*. We let X« denote the
set of all one-sided infinite words over X, and we let ¥° = ¥* U v, If z € X,
then by #* we mean the one-sided infinite word zzx - --.

If there exist words z,y € X%, w,z € X such that w = zyz, then we say y
is a finite subword of w. Suppose we are given a finite or infinite subset P C ¥*.
Then we say a word w € X avoids P if we cannot write w = xyz such that y € P.
We say P is avoidable over X if it is possible to construct an infinite word w € X
which avoids P.

Sometimes we employ a common abuse of notation. For example, instead of
saying that the infinite word w avoids {zz : x € 1}, we will instead simply say
that w avoids the pattern zxz. When we use this formulation, we always assume
the strings in the pattern are nonempty.

We define ¥, = {0,1,2,...,k — 1} for some integer k& > 2, and we define the
morphism oy (a) = (a + 1) mod k. If the subscript & is clear from the context, we
omit it. In this paper, we consider avoiding patterns of the form zo?(z).

We use two notational conventions that may be somewhat confusing. First, we
think of the elements of ¥; as residue class representatives so that, for example,
—1 and 2 denote the same element of ¥3. Second, since we allow negative numbers
in words, we sometimes use the notation (a1,as,as,...,a,) to denote the word
apagas - - -an. Thus, for example, 012 and (0, —2, —1) denote the same element of
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5.

Some of the infinite words we construct arise from iterated morphisms. Call a
morphism h : T* — X* non-erasing if h(a) # ¢ for all a € T'. Let h : £* — X* be
a non-erasing morphism, and let @ € X be a letter such that h(a) = ax. Then we
define h*(a) = ax h(z) h?(x) h3(z)---. Note that h¥(a) is a fixed point of the map
h extended to X¥.

2  Avoiding zo(x)

It is clear that over X5 = {0, 1}, there are only two infinite words avoiding the
pattern zo(z), namely 0¥ and 1¥. However, we have the following result:

Theorem 1 QOver Xy fork > 3, there are uncountably many infinite words avoiding
zo(x).

Proof. Define a; =1, and set a;41 = a; + 1 or a; + 2, according to choice. Then

w = JJ((—i) mod 3)* = 291 192 0% 294 1% ¢ . ..
i>1

avoids the pattern zo(z), and there are uncountably many such words. W

3 Avoiding zz, zo(z), ..., 0/ (z) simultaneously

The following theorem constitutes our main result. It characterizes, for each integer
J > 0, the smallest integer k for which we can avoid the j + 1 patterns zz, zo(z),
.., xo?(z) simultaneously over ¥ = {0,1,...,k—1}.

Theorem 2
(a) One can avoid the pattern xx over Xg, and 3 is best possible.

(b) One can avoid the patterns xx and xo(x) simultaneously over L5, and b is best
possible.

(¢) One can avoid the patterns zz, xo(x), vo?(x) simultaneously over X5, and 5
is best possible.

(d) One can avoid the patterns rx, xo(z), xo?(x), xo3(x) simultancously over g,
and 6 is best possible.

(e) For j >4, one can avoid the j + 1 patterns zz, xo(z), ..., xol(x) simultane-
ously over X;14, and j + 4 is best possible.

Remark. Our proofs of these facts are of two different types. First, in order to
show that it is possible to avoid a certain set of patterns over X, we explicitly
construct an infinite word over ¥ having the desired property. Second, to show
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that k is optimal for a certain set of patterns, we use a classical breadth-first tree
traversal technique, as follows:

Suppose we wish to avoid a given set of words P over X;. We maintain a queue,
(@, and initialize it with the empty word e. If the queue is empty, we are done.
Otherwise, we take the next element w from the queue, and form k& new words by

appending 0,1,...,%k — 1 to it. For each new word wa, we check to see whether
some suffix of wa occurs in P. If it does, we discard it; otherwise we add it to the
queue.

If this algorithm terminates, we have proved that it is not possible to avoid P
over Y. The resulting proof may be represented in the form of a tree, with the
leaves representing minimal length prefixes that contain an occurrence of one of the
patterns as a suffix.

In the particular case of the patterns we discuss in this section, two additional
efficiencies are possible. First, since a word w simultaneously avoids the patterns
zx, xo(z), ..., zol (z) iff o(w) does, we may without loss of generality consider
only the words that begin with the letter 0. Second, if the last letter was a, then
the next letter must be contained in the set {a+j+1,...,a+k—1}, for otherwise
our word would contain a length-2 subword of the form zo?(z) for 0 < i < j. This
observation significantly cuts down on the branching factor of the trees we generate.

Proof of Theorem 2. Let us start with assertion (a). As already noted, a classical
result due to Thue %2 shows that one can avoid the pattern zx over X3 = {0, 1, 2}.
Furthermore, it is an old and easy observation that any word of length > 4 over
¥y = {0, 1} contains an occurrence of the pattern 2. More generally, we have

Proposition 3 Let k > 2 be an integer, and let v be an integer with 1 < r < k.
Then any word of length > 4 over ¥y, contains an occurrence of the pattern xo®(x)

for some a £ r (mod k).

Proof. We use the tree traversal algorithm. Assume the first letter is 0; then if
the next letter is a # r, we are done. Hence assume the next letter is ». Then,
by a similar argument, the next letter must be 27, and the next 3r. However, the
word (0,7, 2r, 3r) contains the pattern zo?"(x) for x = (0,r). Since r # 0, we have

2r Z 7 (mod k). W

Now let us prove assertion (b) of Theorem 2. By Proposition 3 with » = 2, one
cannot avoid the patterns za and zo(x) simultaneously over X3. We also have

Proposition 4 FEvery word of length > 24 over X4 contains an occurrence of either
zx or xo(x).

Proof. We use the tree traversal algorithm. The resulting tree has depth 24 and
contains 233 leaves. Figure 1 below lists these leaves in breadth-first order. W
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Figure 1: Leaves of the tree giving a proof of Proposition 4.

0202 0203210202 031321310310 021020320210313 02102032021032020 0313213103132103131
0213 0210203203 031321031320 021020320210310 02102032021032021 0313213103132103132
0310 0210313210 031321031321 021020320210321 02103132131031320 0320210203202103203
02031 0210320213 032021032020 021031321310310 02103132131032132 0321310313213103202
03131 0313213102 032021032021 031321310321313 02103202102032020 0321310313213103203
03203 0313210202 032131031320 031321310321310 02103202102032131 0321310313213103210
021021 0313210203 032131032131 032021020320213 02103202102032132 02032102032021020320
031320 0313210310 032131032132 032021020321021 02103202102032103 02032102032021032020
032020 0320210202 032102032020 032131031321313 03132131031321020 02032102032021032021
032132 0320210313 032102032102 032131031321020 03132131031321021 02103132131031321020
032103 0320210310 032102032103 032131031321021 03132131031321032 02103132131031321021
0203203 0320210321 0203202102031 032131031321032 03213103132131031 02103132131031321032
0210202 0321310310 0203202103203 032102032021021 03213103132103131 03202102032021032020
0210310 0321310320 0203210203203 0203202102032020 03213103132103132 03202102032021032021
0210321 02032021021 0210203210202 0203202102032021 03210203202102031 03213103132131032132
0320213 02032102031 0210203210203 0203202102032131 03210203202103203 03210203202102032131
0321313 02102032020 0210313213102 0203202102032132 020320210203210202 03210203202102032132
0321021 02102032131 0210320210202 0203202102032103 020320210203210203 03210203202102032103
02032020 02102032132 0313213103131 0210203202102031 020321020320210202 021031321310313210310
02032132 02102032103 0313213103202 0210203202102032 020321020320210313 021032021020320210313
02032103 02103132132 0313213103203 0210203202103203 020321020320210310 021032021020320210310
02102031 03132103131 0313213103210 0210313213103131 020321020320210321 021032021020320210321
02103131 03202102031 0320210203203 0210313213103202 021031321310313213 032131031321310321313
02103203 03202103203 0321020320213 0210313213103203 021031321310321313 032131031321310321310
03132132 03213103131 02032021032020 0210313213103210 021031321310321310 032102032021020321021
03213102 03213103210 02032021032021 0210320210203203 021032021020320213 0203210203202102032131
03210202 03210203203 02032102032020 0313213103132131 021032021020321021 0203210203202102032132
020320213 03210203213 02102032021021 0313213103132132 031321310313210310 0203210203202102032103
020321313 020320210202 02103202102031 0320210203202102 032021020320210313 0210313213103132103131
020321021 020320210313 03132131031320 0320210203210202 032021020320210310 0210313213103132103132
021031320 020320210310 03132131032132 0320210203210203 032021020320210321 0210320210203202103203
021032020 020320210321 03202102032020 0321310313213102 032102032021020320 0321020320210203210202
031321313 020321020321 03202102032131 0321310313210310 032102032021032020 0321020320210203210203
031321021 021020320213 03202102032132 0321020320210202 032102032021032021 02032102032021020321021
031321032 021020321021 03202102032103 0321020320210313 0203210203202102031 02103202102032021032020
032021021 021031321313 03213103132132 0321020320210310 0203210203202103203 02103202102032021032021
032102031 021032021021 020320210203203 0321020320210321 0210320210203202102 020321020320210203210202
0203213102 021032021031 020321020320213 02032021020321021 0210320210203210202 020321020320210203210203
0203213103 021032021032 021020320210202 02032102032021021 0210320210203210203

Thus we cannot avoid the patterns z# and zo(2) simultaneously over X4. How-
ever, we can avoid the patterns zz and zo(z) simultaneously over ¥5. This will
follow from Theorem 5 below.

Next, let us prove assertion (c). As we have seen in Proposition 3 above, every
word of length > 4 over ¥4 contains an occurrence of one of the patterns zz, zo(z),
or xo?(z). We now show

Theorem 5 It is possible to simultaneously avoid the patterns zx, xo(x), and
zol(z) over ¥s.

Before starting the proof, we introduce some notation. If w = ajasaz--- is a
word over X, then

A(w) :

(a2 —a1,dsz — dgz,a4 — Clg,..-),
where the differences are, of course, taken mod k. Similarly, we write

S(W) = (07a17a1+a27a1+a2+Cl3,...),

—
=

where the sums are, of course, taken mod k. Note that A(S(w)) = w, and
ar = 0, then S(A(w)) = w. Finally, if 2 = a1---a, € X}, we define si(z) =
(21<i<mai) mod k.

The following lemma relates occurrences of patterns of the form zot(
other, easier-to-study patterns in A(w).

)in w to
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Lemma 6 Let w € £°, and let a € Xy, Then w avoids the pattern xo®(x) iff
A(w) avoids {ycy : y € X}, ¢ € Ty, and si(yc) = a}.

Proof. Suppose w contains an occurrence of the pattern zo?(z). Write z =
b1by---b;. Then
w=wbiby---bijo®(by) -0 (b;)--- .
Thus
A(w) = A(w'by), (bz — b1,y .o by —bi—1,0%(b1) — biyby — b1y .o by —bi_q,...),
and hence contains ycy with
y=1(ba—by,....0; —b;_1), c=0c%(b1) —b;.
Also

se(ye) = (by —b1) 4+ -4+ (by — bi—1) + 0 (b1) — b
b — b))+ (a+ by —b)

a.

Now suppose A(w) contains a subword yey with y € ¥, ¢ € X, and s (yc) = a.
Then A(w) = xycyz for some = byby---b; and y = didy - -d;. Then
A(w) = biby---bjdidy - - -dijedrdy - - - di - - -
Then if e is the first letter of w, we have

w=(e,e+b,e+by+by...,e+bi+br+---+bjet+tf+det+f+di+do,...,
e+ ft+ditda+---+diet fHg+eet+ f+g+etd,
e+f+g+ct+ditdy,...et+frgte+dit+da+---+d;,...)

where f:=b1+by+---+b; and g := dy +da+-- -+ d;. It follows that w contains
an occurrence of xo®(z), where # = (e+ f,e+ f+dy,...,e+ f+di+da+---+d;)
and a =g +c. But ¢ + ¢ =si(didz---dic) = si(yc). M

Now to prove Theorem 5, it suffices to construct an infinite word v where
v avoids

Pyi={ycy : y€XE, c€ X5, and s5(yc) € {0,1,2}}.

For then we could set w = S(v), and by Lemma 6, w avoids the patterns zz, zo(z),
and zo?(x) over X5. We construct such a v using the following theorem.

Theorem 7 Let h be the morphism over {3,4} defined by h(4) = 4433 and h(3) =
44433. Let w be a finite word. If w avoids Pz, then h(w) avoids Py.
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Proof. We prove the contrapositive.

Suppose h(w) contains an occurrence of the pattern yey with y € Xf, ¢ € X,
and ss(ye) € {0,1,2}. Write h(w) = z1ycyzz. Without loss of generality, we may
assume that |zq| is as small as possible, or, in other words, that the occurrence of
yey we are dealing with lies as far to the left as possible within h(w).

Also note that s5(i) = ss5(h(7)) for i € {3,4}, and so it follows that ss(w) =
s5(h(w)) for all finite strings w € {3,4}*.

We claim that if yey is a subword of h(w) for some w such that y, ¢ obey the
given conditions, then |y| > 5. Table 1 below suffices to prove this.

The explanation of the table is as follows. We examine all possible subwords yc
of length < 5 that occur in {4433,44433}*. For each such subword, it suffices to
show that either s5(yc) ¢ {0,1,2}, or yey cannot occur as a subword of h(w) for
any w € {3,4}*. For this last check, it suffices to observe that if ycy contains any
of the subwords 434, 343, 333, or 4444, then it cannot occur as a subword of h(w).

Table 1: Proof that |y| > 5.

ycy contains
ly| ye | ss(ye) yey | forbidden if so,
subword which one

0 3 3 3 no
4 4 4 no

1 33 1 333 yes 333

34 2 343 yes 343

43 2 434 yes 434
44 3 444 no

2 334 0 33433 yes 343

344 1 34434 yes 434

433 0 43343 yes 343

443 1 44344 yes 434

444 2 44444 yes 4444

3 3344 4 3344334 no
3443 4 3443344 no

3444 0 3444344 yes 434
4334 4 4334433 no
4433 4 4433443 no

4443 0 4443444 yes 434

4 | 33443 2 334433344 yes 333
33444 3 334443344 no

34433 2 344333443 yes 333
34443 3 344433444 no
43344 3 433444334 no
44334 3 443344433 no
44433 3 444334443 no

It follows that |y| > 5. There are now several cases to consider.
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Case 1: y starts with 33. Then yey = 33--- ¢ 33---. Since h(w) € {4433,44433}*,
we must have ¢ = 4. Also, y must end with 4, and furthermore the letter im-
mediately preceding the occurrence of yey in h(w) must be 4. We can therefore
write y = 33t4 for some string ¢, and observe that 4 33t4 4 33t4 = 4ydy is a sub-
word of h(w). Now let ¥/ = 433¢, and note that y'4y’ is a subword of h(w). But
s5(y'4) = s5(433t4) = s5(33t44) = s5(y4) € {0, 1,2}, so ¢4y’ € Py, contradicting
our assumption that yey was the leftmost such occurrence in h(w).

Case 2: y starts with 34. Then yey = 34--- ¢ 34---, so ¢ = 3. Thus yecy =
34--- 334..., so y must end in 4, and further the letter immediately preceding
the occurrence of yey in ~A(w) must be 3. We can therefore write y = 34¢3 for some
string ¢, and observe that 3 34¢3 3 34¢3 = 3y3y is a subword of h(w). Now let
Yy’ = 334t and note that ¢'3y’ is a subword of A(w). But s5(y'3) = s5(334¢3) =
s5(34133) = s5(y3) € {0,1,2}, so ¥'3y" € P, contradicting our assumption that
yey was the leftmost such occurrence in h(w).

Case 3: y starts with 43. Then yey = 43--- ¢ 43---, so ¢ = 4, and further
the letter immediately preceding the occurrence of yey in h(w) must be 4. Thus
y = 43t. Write t = ¢'b, where |b] = 1. Then y = 43t’b. Then 4ycy = 4 431’6 4 43t'b
is a subword of h(w). Let y = 443t'. Then y'by’ is a subword of h(w), and
s5(y'b) = s5(443t'b) = s5(43t'64) = s5(y4) € {0,1,2}, so y'by’ € Py, contradicting
our assumption that yey was the leftmost such occurrence in h(w).

Case 4: y starts with 444. Then ycy = 444--- ¢ 444 ---, so ¢ = 3, and further, y
ends with 3. Since |y| > 5, we can write y = 444¢3 for some string ¢. Tt follows that
y3y3 = 444¢3 3 444¢3 3 is a subword of h(w). Hence there exists a string u such
that A(3u) = ¥3, and 3u3u is a subword of w. We have s5(u3) = s5(3u) = s5(y3) €

{0, 1,2}, so u3u is an occurrence of a string of P> in w, as desired.

Case 5: y starts with 443. There are two subcases to consider:

Case ba: ¢ = 3. Then the last two characters of y must be 43. We have
yey = 443 ---43 3 443 ---43. Then y3y3 is a subword of h(w), and there
must exist u such that h(4u) = y3 and udu is a subword of w. Then
ss(ud) = ss(du) = s5(y3) € {0,1,2}, so udu is an occurrence of a string
of P in w, as desired.

Case 5b: ¢ = 4. Then ycy = 443 --- 4 443 - - -, so the last three characters
of y must be 433. Since |y| > 5, we must have y = 4433 ---433. Write
y = 4433y'. Then yey = 4433 ¢ 44433 ¢/ is a subword of hA(w) and
there exists u such that A(u) = 3. Then h(udu) = ¢ 44433 y'. Now
s5(u3) = ss(h(ud)) = s5(y'44433) = s5(4433y'4) = s5(y4), so u3u is an

occurrence of a string of P, in w, as desired.

This completes the proof of Theorem 7. W
Proof of Theorem 5. Define

v = h¥(4) = 443344334443344433 - - - .
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We claim v avoids P. This follows because the word 4 avoids Ps, and by Theorem 7,
if w avoids P, then so does h(w). Now consider S(v) = 0431432032103104314 - - -.
From Lemma 6, it follows that S(v) avoids the patterns zz, ro(z), and zo?(z).

This completes the proof of Theorem 5, and hence assertion (c¢) of Theorem 2.
|

We now turn to assertion (d) of Theorem 2. From Proposition 4 with r = 4
we know any word of length > 4 over X5 contains an occurrence of one of the
patterns zz, ro(z), xo%(z), or zo®(x). The methods of Theorem 7 and Lemma 6
lead immediately to

Theorem 8 It is possible to simultaneously avoid the patterns zx, xo(r), xo?(x),
and zo3(x) over Yg.

Proof. We construct an infinite word w over g such that w simultaneously
avoids the patterns zz, zo(z), ro?(x), and zo3(x). Let g be the morphism over
{4,5} defined by ¢g(5) = 55544 and ¢(4) = 555544. We claim that w = S(¢g“(5))
simultaneously avoids the patterns zz, ro(z), zo*(z), and zo3(x). The proof
follows exactly the same plan as that of Theorem 7. We omit it here. W

Remark. We note that the morphismsused in the proof of Theorem 7 and Theorem
8 do not generalize to any other j. For example, if we were to define h analogously
for j = 4, we would have h(6) = 666655 and h(5) = 6666655. By inspection, we see
that h(6) = 6666655 contains ycy where y = 66 and ¢ = 6. Hence s7(yc) =4 = j

and so S(h(6)) does not avoid the pattern zo?*(z).

Finally, we turn to assertion (e). First, we show it is not possible to avoid the
, zo*(x) on 7 letters. Here the corresponding tree has 215
leaves, and the longest leaf has length 36. See Figure 2 below.

patterns zz, xo(x), ...

Figure 2: Leaves of the tree giving the proof of assertion (e)

0531 0543205432 0653106542065432 06542065431654320543210 065431654320543216432105321065
0542 0543216431 0654206543165431 06543165432054321643216 0532106421065310654206543165431
0643 0642106420 0654316543205431 053210642106531065420653 0543216432105321064210653106543
05320 0642106421 05321064210653105 054321643210532106421064 0642106531065420654316543205431
06420 0642106532 05432164321053216 064210653106542065431653 0653106542065431654320543216431
06532 0653106531 06421065310654205 065310654206543165432053 0654206543165432054321643210531
054310 0653106532 06531065420654310 065420654316543205432165 0654316543205432164321053210643
064216 0653106543 06542065431654321 065431654320543216432106 05321064210653106542065431654321
065316 0654206542 06543165432054320 0532106421065310654206542 05432164321053210642106531065421
065421 0654316542 053210642106531064 0543216432105321064210654 06421065310654206543165432054320
065432 05321064216 054321643210532105 0642106531065420654316542 06531065420654316543205432164320
0532165 05432164320 064210653106542064 0653106542065431654320542 06542065431654320543216432105320
0543164 06421065316 065310654206543164 0654206543165432054321642 06543165432054321643210532106420
0543206 06531065421 065420654316543206 0654316543205432164321054 053210642106531065420654316543206
0543210 06542065432 065431654320543210 05321064210653106542065432 054321643210532106421065310654205
0653105 06543165431 0532106421065310653 05432164321053210642106532 064210653106542065431654320543210
0654205 053210642105 0543216432105321065 06421065310654206543165431 065310654206543165432054321643216
0654310 054321643216 0642106531065420653 06531065420654316543205431 065420654316543205432164321053216
05321642 064210653105 0653106542065431653 06542065431654320543216431 065431654320543216432105321064216
05321643 065310654205 0654206543165432053 06543165432054321643210531 0532106421065310654206543165432053
05321054 065420654310 0654316543205432165 053210642106531065420654310 0543216432105321064210653106542064
05321065 065431654321 05321064210653106543 054321643210532106421065316 0642106531065420654316543205432165
05431653 0532106421064 05432164321053210643 064210653106542065431654321 0653106542065431654320543216432106
05431654 0543216432106 06421065310654206542 065310654206543165432054320 0654206543165432054321643210532105
05432053 0642106531064 06531065420654316542 065420654316543205432164320 0654316543205432164321053210642105
05432165 0653106542064 06542065431654320542 065431654320543216432105320 05321064210653106542065431654320542
06421053 0654206543164 06543165432054321642 0532106421065310654206543164 05432164321053210642106531065420653
06421054 0654316543206 053210642106531065421 0543216432105321064210653105 06421065310654206543165432054321642
06531064 05321064210654 054321643210532106420 0642106531065420654316543206 06531065420654316543205432164321054
06542064 05432164321054 064210653106542065432 0653106542065431654320543210 06542065431654320543216432105321065
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06543164 06421065310653
053210531 06531065420653
053210643 06542065431653
054320542 06543165432053
054321642 053210642106532
064210643 054321643210531
064210654 064210653106543
065420653 065310654206542
065431653 065420654316542

0532105320 065431654320542
0532105321 0532106421065316
0532106420 0543216432105320
0543205431 0642106531065421

065310654206543165431
065420654316543205431
065431654320543216431
0532106421065310654205
0543216432105321064216
0642106531065420654310
0653106542065431654321
0654206543165432054320
0654316543205432164320
05321064210653106542064
05432164321053210642105
06421065310654206543164
06531065420654316543206

0654206543165432054321643216
0654316543205432164321053216
05321064210653106542065431653
05432164321053210642106531064
06421065310654206543165432053
06531065420654316543205432165
06542065431654320543216432106
06543165432054321643210532105
053210642106531065420654316542
054321643210532106421065310653
064210653106542065431654320542
065310654206543165432054321642
065420654316543205432164321054

Using the tree traversal algorithm, we can prove

06543165432054321643210532106421064
053210642106531065420654316543205431
053210642106531065420654316543205432
054321643210532106421065310654206542
054321643210532106421065310654206543
064210653106542065431654320543216431
064210653106542065431654320543216432
065310654206543165432054321643210531
065310654206543165432054321643210532
065420654316543205432164321053210642
065420654316543205432164321053210643
065431654320543216432105321064210653
065431654320543216432105321064210654

Theorem 9 One cannot avoid the patterns zz, xo(z), ..., zo? (x) on j+3 letters,
forj > 5.

Proof. Consider trying to generate an infinite word w over Z starting with 0,
subject to two conditions: (1) avoiding the pattern zo®(z) for all i, where |z| > 2,
and (2) avoiding all subwords of length 2 that are not of the form (n,n — 1) or
(n,n —2) for n € Z.

Let us now apply the tree traversal algorithm to this avoidance problem. The
tree T so produced has 71 leaves and the longest leaf has length 12. All the
occurrences of ro'(z) found at the leaves of T, for |z| > 2, satisfy i € X =
{-3,—4,—-6,-7,—8}.

Now consider the labels of this tree reduced modulo 7 4+ 3. The patterns at the
leaves are still of the form zo?(z), except now i is reduced modulo j + 3. In order
for T to correctly represent a proof that the pattern zo'(z) cannot be avoided for
0 < i < j we must check that i mod (7 +3) € {0,1,...,4} for all { € X. But this
is clearly true for j > 5.

Figure 3 lists the leaves of T'in coded form. We use the letters A, B,C, D, E, F, G
to represent 10,11,12,13,14, 15,16 respectively, and the word aas - - - a; represents

the leaf (—aq, —ag,...,—q;). W

Figure 3: Leaves of the tree giving the proof of Theorem 9.

0246 024568AC 013567894 0234568ABCE
0235 024568AB 01235789B 01356789BDF
0134 02456794 01234689B 01246789ACD
02457 02456789 0245679BCE 01235789ABC
01357 0234689B 0245679BCD 01234689ABD
01245 02346894 0245678ACE 0245678ACDEG
023467 02345798 0234579ABD 0245678ACDEF
013568 02345689 0234579ABC 0234568ABCDF
012468 01356798 0234568ABD 0234568ABCDE
012356 01356794 0135678ACE 01356789BDEG
012345 01246784 0135678ACD 01356789BDEF
0245689 01235784 01356789BC 01246789ACEG
0234684 01234684 01246789BD 01246789ACEF
0234578 0245679BD 01246789BC 01235789ABDF
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0234567 0245678AB 01246789AB 01235789ABDE

0124679 0234579AC 01235789AC 01234689ABCE
0123579 0234568AC 012346894C 012346894ABCD
0123467 0135678AB 0245678ACDF

We now show it is possible to simultaneously avoid the patterns zz, zo(x), ...,
xo? (z) on Xj44 for j > 4. Actually, we prove a more general result from which this
result will follow.

Theorem 10 Let k > 4 be an integer, and let A C Xy such that Card A < k — 3.
Then it is possible to simultaneously avoid the patterns {zo®(z) : a € A} over Ty

Proof. Once again, the idea is to consider the first differences of words, modulo
k. Suppose we can construct a word w over X such that w avoids both (i) the
pattern yey, where |y| > 1 and |¢| = 1, and (ii) the letters a € A. Then it follows
from Lemma 6 that S(w) avoids the pattern zc?(z).

Lemma 11 Let w = ajasas--- be any squarefree word over X3. Then the word
ajayasasasas - - - avoids the pattern yey for y € Eg’ and ¢ € ¥3.

Proof. Suppose y = byby---by, and the pattern ycy occurs in z =
ajaiagasasas - --. There are three cases to consider, depending on |y| and where y

starts in z.

Case 1: |y| is even and y starts with a;a;. Let k = 2j. Then we have

bl bg e bgj C bl bg e bgj
@i @i wrr Qigj—1 Qity Gitg Qitj4l " Git2j
and so da;1; = 01 = a; = 02 = A;4541- ollows at w contains € square
d 4= b b tit1. It follows that tains the sq

@i +54+1, a contradiction.

Case 2: |y| is even and y starts with a;a;41. Let k = 24. Then we have

bl bg bgj C bl bg bgj

Gi Qit1 woc Gigj Gigj Qigj+l Gigjt1 -0 Gigaj

and so a; = by = @441 = by = a;41. It follows that w contains the square a;a;41,
a contradiction.

Case 3: |y| is odd. Let k = 25+ 1. Then either

by by - by bajy1 by by - by bojpa

Gi Qg v Qigj—1 Qigj it Gigj+l Gigj41 -0 Qitaj Gid2j+1
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or

by by -+ by bojp1 by by - by b1

Qi Aig1 -0 Qigj Qidj Qigj41 Qidj+1 igj42 °° Gid2j41 Gid2541
In either case we find
a;= b =a4j41

aiy1 = bz = a;4542

Aitj = baj11 = aitajq1
It follows that a;a; 41 @it; = Gi4j4104542 - @it2j+1 and so w contains the

square a;d; 41 - - d;+2;+1, & contradiction. The proof of the Lemma is complete. B

Remark. One cannot avoid the pattern ycy, with |y| > 1 and |¢| = 1, over an
alphabet of 2 letters. As the tree traversal algorithm shows, any word of length > 7
over {0, 1} contains an occurrence of ycy.

Now we can complete the proof of Theorem 10. Let x be any squarefree word
over {0,1,2}. Since Card A = k — 3, we have Xy — A = {d, e, f} for some distinct
integers 0 < d,e, f < k.

Consider the morphism ¢ : X7, — X7, defined as follows:

0—dd
1 —ee

2= ff

We claim S(¢(x)) avoids the patterns zz, zo(z), ..., za/ (z).

Let v = S(p(x)). Then A(v) = ¢(x) clearly avoids ycy by Lemma 11, and it
also avoids all the letters in A by construction. Then by Lemma 6, v avoids the
patterns zo?(z) fora e 4. M

As a consequence we get

Corollary 12 It is possible to simultaneously avoid the patterns zx, zo(x), ...,
xol (z) on ;14 for j > 4.

The proof of Theorem 2 is now complete. H

4 Even more results

One may also consider the problem of avoiding other sets of patterns of the form
zo®(x). In this section, we let j > 1 be an integer, and consider avoiding the 2j 4 1
patterns zo =/ (z), ..., zo~(z), zz, zo(z), ..., ol (x) simultaneously over the
alphabet Y.

Theorem 13 For j > 1, one can simultancously avoid the patterns zo=i(z), ...
vo~Y(z), zx, vo(x), ..., vol(x) over ¥aj414, and this is best possible.
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Proof.

By Theorem 10 with A = {—j,1—j,...,—1,0,1,2,...7}, we see that we can
simultaneously avoid the patterns zo~/(z), ..., zo~ (), zz, zo(z), ..., zo/(2)
over Yo;44.

It follows from Proposition 3 that one cannot avoid zo =/ (z), ..., zo~1(z), z=,
zo(z), ..., zol (x) over ¥aj42 or smaller alphabet.

To prove that one cannot simultaneously avoid the patterns zo=7(z), ...,
zo~(z), zx, vo(x), ..., zol(x) over Ya; 43, we use the tree traversal algorithm.
Then every word of length > 8 over Y;;,3 contains an occurrence of zo'(z) for
some [ with —j <[ < j. Figure 4 below gives the output of the tree traversal
algorithm, showing that there are 24 leaves. Here t =57+ 1. N

Figure 4: Leaves of the tree giving a proof of Theorem 13.

(0, -t, -2t, -3t) (o, -t, -2t, -t, 0, t) (o, -t, -2t, -t, 0, -t, -2t, -3t)
(0, -t, 0, -t) (0, -t, 0, t, 0, t) (o, -t, -2t, -t, 0, -t, -2t, -t)
(0, t, 0, t) (0, t, 0, -t, 0, -t) (o, -t, 0, t, 0, -t, 0, -t)

(0, t, 2t, 3t) 0, t, 2t, t, 0, -t) (o, -t, 0, t, 0, -t, O, t)

(0, -t, -2t, -t, -2t) (o, -t, -2t, -t, 0, -t, 0) (o, t, 0, -t, 0, t, 0, -t)

(0, -t, 0, t, 2t) (0, -t, 0, t, 0, -t, -2t) (0, t, 0, -t, 0, t, O, t)

(0, t, 0, -t, -2t) (0, t, 0, -t, 0, t, 2t) (o, t, 2t, t, 0, t, 2t, t)

(0, t, 2t, t, 2t) (o, t, 2t, t, 0, t, 0) (o, t, 2t, t, 0, t, 2t, 3t)

5 Avoiding zoi(z) for all i

Generalizing the results of the previous section, we may ask if it is possible to avoid
the patterns o’ (z) for all i. Unfortunately, this is clearly impossible, for if a word
z begins with i j, then it contains a subword of the form i 07 ~%(3).

However, we can relax our conditions for avoidance, as follows: we say an infinite
word weakly avoids the patterns zo?(z) if it contains no subwords of the form zo'(z)
with |#| > 2. (In contrast, our previous notion of avoidability we will call strong.)

Proposition 14 Quver Yo, every word of length > 8 contains a subword of the form
zot(x) for some i > 0, with x| > 2.

Proof. Our simple tree traversal algorithm proves this. The tree generated has
24 leaves, and the leaves are given in Figure 5. W

Figure 5: Leaves of the tree giving a proof of Proposition 14.

0000 000101 00010000
0011 001001 00010001
0101 010000 00100010
0110 011100 00100011
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00011 0001001 01000100

00101 0010000 01000101
01001 0100011 01110110
01111 0111010 01110111

However, it is possible to weakly avoid the patterns zo(z) for all i > 0 over X3.
Let w be any squarefree word over {0,1,2}, and consider the morphism f which
maps

0— 00
1—=10
2 — 20.

Theorem 15 The infinite word f(w) weakly avoids the patterns xo'(z) for all
i>0.

Proof. Let w = cyczcs--+, and f(w) contains a subword of the form » = zo'(z)
for some ¢ and |z| > 2. There are two cases, depending on || mod 2.
Case 1: |z| = 0 (mod 2). In this case, there are two possibilities, depending

where z starts in f(w):

x o' ()
z = d10d20d]0 | dj+10"'d2j0
z = 0d10d20d] | 0dj_|_1"'0d2j

where d; = ¢ty for some integer k > 0. Comparing the second symbol in the first
case, or the first symbol in the second case, we see that if 2 = zo?(z), then i = 0.
Hence d; = d;jq; for 1 <t < j, and so ¢p4¢ = cpqj4¢ for 1 <t < j, contradicting
the assumption that w was squarefree.

Case 2: || =1 (mod 2).

@ a'(z)
—_—N— ——
2= 0d10-- | dj0djqy---

If 2 = zoi(x), then, in the first case, we must have d; = dy, and in the second
d; = d; 1. Both correspond to a square in w, a contradiction. W

We might also try weakly avoiding o' (z) for 0 < i < k over ¥, while simulta-

neously (strongly) avoiding zx.

Theorem 16 If k = 4, one can, over ¥, simultancously weakly avoid zo'(x) for
0 < 2 < k and strongly avoid xx. Here k is best possible.
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Proof. We can weakly avoid zo'(z) for 0 < i < k and strongly avoid zz over ¥4
as follows: let w be any squarefree word over {1, 2,3}, and consider the morphism
f which maps

1—10

2 =20
3 — 30.

Then it follows from the same method of the proof of Theorem 15 that f(w) weakly
avoids zo'(z) for all i. However, it is clear from the construction that f(w) has no
subword of the form ce for ¢ € ¥4, so f(w) also strongly avoids zx.

On the other hand, the tree traversal algorithm shows that over X3, any word of
length > 8 has a (weak) occurrence of zo(z) with 0 < i < 3, or a strong occurrence
of xx. The tree generated has 24 leaves, and the leaves are given in Figure 6. W

Figure 6: Leaves of the tree giving a proof of Theorem 16.

0101 010202 01020101
0120 012102 01020102
0202 020101 01210120
0210 021201 01210121
01021 0102012 02010201
01212 0121010 02010202
02012 0201021 02120210
02121 0212020 02120212
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