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ABSTRACT

Automaticity is a measure of descriptional complexity for formal languages L, and

measures how closely L can be approximated by regular languages. I survey some of

the known results and open problems on automaticity. I also discuss a measure which

I call \rationality", and explain how it generalizes the well-known concept of linear

complexity.
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1. Introduction

Let L be a formal language, that is, a subset of �

�

, where � is a �nite alphabet.

We say L is regular if L is accepted by some �nite automaton. Of course, not every

language is regular, but we can approximate any language arbitrarily closely with

regular languages. We say a language L

0

is an n'th order approximation to a language

L if L and L

0

agree on all strings of length � n, that is, if L \ �

�n

= L

0

\ �

�n

,

where by �

�n

we mean (� [ f�g)

n

. The automaticity function A

L

(n) is de�ned to

be the least number of states in any deterministic �nite automaton (DFA) accepting

an n'th order approximation to L.

Example 1 Let jwj

a

denote the number of occurrences of the letter a in the string

w. Consider the language L = fw 2 f0; 1g

�

�

�

jwj

0

= jwj

1

g. Then it can be shown

that A

L

(n) = n+ 1 for n � 0.

Similarly, we de�ne the nondeterministic automaticity function N

L

(n) to be the

least number of states in any nondeterministic �nite automaton (NFA) accepting an

n'th order approximation to L.
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Example 2 Let L be the language of Example 1. Then it can be shown thatN

L

(n) =

O((logn)

2

=(log logn)).

Automaticity is a measure of descriptional complexity for languages, and was �rst

studied (in a slightly di�erent form) by Trakhtenbrot [29]. Dwork and Stock-

meyer [4, 5] used it (under the name \nonregularity") to prove that if a two-way

probabilistic �nite automaton M recognizes a nonregular language with probability

1

2

+ � for some �xed � > 0, then there exists a constant b such that M uses at least

2

n

b

expected time for in�nitely many n. Similar results were obtained by Kaneps

and Freivalds [11, 12].

More recently, the author and co-authors [27, 28, 20, 8, 26] studied the problem of

approximating L by regular languages, proved new results and uni�ed old results in

the area. One of the basic results is Karp's theorem [13, 28]:

Theorem 1 If L is a nonregular language, then A

L

(n) � (n+ 3)=2 in�nitely often.

Furthermore, this bound is best possible, in the sense that the theorem is not true if

the \2" in the denominator is replaced by any smaller positive real number, or if the

\3" in the numerator is replaced by any larger real number.

Deterministic automaticity can also be de�ned more generally for formal power

series. A formal power series f in non-commuting variables is a map from �

�

! �,

where � is a set, possibly of in�nite cardinality. The image of a word w 2 �

�

under

f is denoted (f; w), and we write f =

P

w2�

�

(f; w)w.

A deterministic �nite automaton with output (DFAO) is a 6-tuple M =

(Q;�;�; �; q

0

; �), where Q is a �nite nonempty set of states, � is a �nite nonempty

set called the input alphabet, � is a �nite nonempty set called the output alphabet,

q

0

is the initial state, � : Q� �! Q is the transition function, and � : Q! � is the

output map. We extend the domain of � to Q��

�

in the usual way. We say a DFAO

M computes a �nite-state function g

M

: �

�

! � if g(w) = �(�(q

0

; w)) for all w 2 �

�

.

For any formal series f : �

�

! �, the automaticity function A

f

(n) is de�ned to

be the smallest number of states in any DFAO M such that (f; w) = (g

M

; w) for

all strings w of length � n. Thus A

L

(n) = A

�(L)

(n), where � is the characteristic

function.

Automaticity is computable, and there exists a simple deterministic algorithm for

computing A

f

(n), given the values of f on all strings of length � n.

The following theorems give upper bounds on deterministic and nondeterministic

automaticity [28]:

Theorem 2 Let j�j = k, j�j = l, and let f : �

�

! �. If 2 � k, l <1, then

A

f

(n) � (Ck

n+2

=n)(1 + o(1));

where C = (log

k

l)=(k � 1)

2

.
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Theorem 3 Let k = j�j � 2 and let L � �

�

. Then

N

L

(n) �

8

>

>

<

>

>

:

2(k

n=2+1

� 1)

k � 1

if n even,

k

(n+1)=2

+ k

(n+3)=2

� 2

k � 1

if n odd,

= O(k

n=2

):

It is an interesting and challenging problem to compute A

L

(n) and N

L

(n) for

speci�c languages. We do not even know a closed form for max

L��

�

A

L

(n) when

j�j � 2. For example, consider the case where L = fx 2 f0; 1g

�

j [x

R

]

2

is a primeg,

where by [z]

b

we mean the integer represented by the string z considered in base b,

and z ! z

R

is the reversal function. Then we have [26]:

Theorem 4 We have A

L

(n) = 
(2

n=43

).

There are some natural descriptional complexity classes associated with A

L

and

N

L

. We de�ne the class of deterministic polynomial automaticity (DPA) as follows:

DPA = fL � �

�

j 9k such that A

L

(n) = O(n

k

)g:

We de�ne the class of nondeterministic poly-log automaticity (NPLA) as follows:

NPLA = fL � �

�

j 9k such that N

L

(n) = O((log n)

k

)g:

In [8], the inclusion NPLA � DPA was stated as an open problem. We resolve this

open problem by proving NPLA 6� DPA:

Theorem 5 Let

L = fw

1

#w

2

# : : :#w

t

##w

1

#w

2

# : : :#w

t

###0

2

t

j w

i

2 f0; 1g

�

and jw

1

j = jw

2

j = � � � = jw

t

j = tg:

Then A

L

(n) = 2


((logn)

2

)

, so L 62 DPA, but N

L

(n) = O((logn)

2

), so L 2 NPLA.

Proof. If x 2 L and n := jxj, then n = 2t

2

+ 2t+ 2

t

+ 3. Thus t � log

2

n. It is not

hard to show, using the methods discussed in [8], that A

L

(n) � 2

c(logn)

2

. (To see

this, note that by considering strings of the form w

1

#w

2

# : : :#w

t

, we �nd there are

approximately 2

t

2

= 2

c(logn)

2

pairwise n-dissimilar strings.) Since A

L

(n) = A

L

(n),

we see that L 62 DPA.

On the other hand, we can accept an n'th order approximation to L using

O((logn)

2

) states. We use nondeterminism to check if any of the equality condi-

tions are violated. More precisely, given a string of the form

w

1

#w

2

# : : :#w

s

##x

1

#x

2

# : : :#x

t

###0

a

of length � n we can check

� if jw

1

j 6= s using O(log n) states;

� if s 6= t using O(log n) states;
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� if jw

1

j 6= jw

i

j or jw

1

j 6= jx

j

j using O(log n) states;

� if s; t; jw

i

j; jx

j

j � log

2

n using O(log n) states;

� if w

i

6= x

i

using O((logn)

2

) states (guessing i and the position where w

i

6= x

i

,

and checking);

� if a 6= 2

t

by checking inequality modulo primes � 4:4 logn, which can be done

using O((logn)

2

=(log logn)) states.

It follows that L 2 NPLA. 2

2. Formal Power Series and Rationality

Now we consider a \generalization"

3

of automaticity to formal power series with

coe�cients chosen from a �eld K. The role of automata is now replaced by rational

functions; see, for example, [24, 1]. The main goal of this section and the next is not

so much to prove new results as to illustrate how known results from di�erent �elds

are connected. These connections are particularly poignant for me since, in the unary

case, extremal examples are associated with continued fractions I discovered about

twenty-�ve years ago.

More formally, let � be an alphabet of cardinality k, e. g., � = f0; 1; : : : ; k � 1g

or � = fx

0

; x

1

; : : : ; x

k�1

g. Let K be a �eld, and let f be a formal power series

with coe�cients in K. The series f is said to be rational if it can be obtained by a

�nite number of applications of the operations + (sum or union), � (concatenation or

product), and

�

(Kleene star or quasi-inverse). For example, if f = (2x

0

+2x

1

)

�

x

1

(x

0

+

x

1

)

�

, then the coe�cient of x

i

1

x

i

2

: : : x

i

r

in f is [i

r

i

r�1

: : : i

2

i

1

]

2

.

A formal series f is recognizable if there exists a matrix-valued homomorphism

� : �

�

! K

m�m

and row and column vectors � 2 K

1�m

, 
 2 K

m�1

such that

(f; w) = ��(w)
 for all w 2 �

�

. We call (�; �; 
) a linear representation for f .

The dimension of the representation (�; �; 
) is de�ned to be m. By the Kleene-

Sch�utzenberger Theorem [1, Theorem I.6.1], we know that a series is rational if and

only if it is recognizable. The rank of a rational series is de�ned to be the minimum

possible dimension of any linear representation of f .

Given a formal series f : �

�

! K, we de�ne the rationality measure R

f

(n) to

be the minimum possible rank of any recognizable (= rational) series g such that

(f; w) = (g; w) for all w with jwj � n. This measure of descriptional complexity

(indexed slightly di�erently) was originally introduced by Hespel [9]. For a language

L, we de�ne R

L

(n) = R

�(L)

(n).

First, we prove that the rationality measure R

f

(n) is computable. To do so, we

introduce (as is usual when dealing with rational series) the notion of Hankel matrix.

Given a formal power series f : �

�

! K, its associated Hankel matrix H

f

is de�ned

to be an in�nite matrix with rows and columns indexed by elements of �

�

, such that

the entry in the row indexed by x and column indexed by y is (f; xy).

3

The reason why \generalization" is in quotes is that in order for it to be a true generalization,

we would have to consider semirings instead of �elds.
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The rank of a (possibly in�nite) matrix H may be de�ned as follows: it is 0 if

all entries of H are 0; it is t if (a) there exists in H a t � t submatrix with nonzero

determinant and (b) every (t + 1) � (t + 1) submatrix has zero determinant; and

otherwise the rank is in�nite. The following result is well-known (e. g., [6]):

Theorem 6 The rank of a rational series f is equal to the rank of its associated

Hankel matrix H

f

.

Given a (not necessarily rational) formal power series f , we now de�ne its associated

truncated Hankel matrix H

(n)

f

as follows: it is a square matrix with 1+k+k

2

+� � �+k

n

rows and columns, indexed by the elements of �

�n

. The entry in row x and column

y is (f; xy), provided that jxyj � n; otherwise it is a unique indeterminate z

x;y

. The

minrank of a matrix with �eld entries and indeterminates is de�ned to be the least

possible rank over all possible substitutions of �eld elements for the indeterminates.

The following theorem was essentially stated by Hespel and Jacob [10]:

Theorem 7 The minrank of H

(n)

f

is equal to R

f

(n).

Proof. The procedure given in [2] computes the minrank of an r�r matrix, provided

(a) every variable occurs exactly once and (b) for each row i there exists an integer

k

i

such that all the �eld elements in row i appear in columns 1 through k

i

, and all

the indeterminates appear in columns k

i

+1 through r. Evidently the matrix de�ned

above is of this form. The method is to consider each row in turn, and decide if the

columns 1 through k

i

(i. e., �eld elements and not indeterminates) linearly depend

on previous rows and columns 1 through k

i

. If so, the row is discarded. If not, the

rank is incremented by one. The rank t computed by this procedure is clearly a lower

bound on R

f

(n), since no matter what values are chosen for the indeterminates, the

resulting Hankel matrix will have rank at least t.

On the other hand, this procedure expresses each row as a linear combination of

some set of t rows of H

(n)

f

. From this information we can easily compute a linear

representation that is consistent with the provided data on strings of length � n.

This shows that R

f

(n) � t. 2

Example 3 Let f be the formal power series over f0; 1g

�

such that (f; x) = 1 if

[x]

2

= 0, and otherwise (f; x) = p

r

, the r'th prime, if [x]

2

= r. Then the associated

truncated Hankel matrix is given in Figure 1.

Here the blank entries represent indeterminates. Clearly this truncated matrix has

rank 3, and a basis can be formed from the rows r

�

, r

1

, and r

10

, corresponding to the

respective pre�xes.

We can now construct a linear representation of rank 3. To do so, we �rst need to

compute �(0), �(1) such that

�(0)

2

4

r

�

r

1

r

10

3

5

=

2

4

r

0

r

10

r

100

3

5

and �(1)

2

4

r

�

r

1

r

10

3

5

=

2

4

r

1

r

11

r

101

3

5

:
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� 0 1 00 01 10 11 000 001 010 011 100 101 110 111

� 1 1 2 1 2 3 5 1 2 3 5 7 11 13 17

0 1 1 2 1 2 3 5

1 2 3 5 7 11 13 17

00 1 1 2

01 2 3 5

10 3 7 11

11 5 13 17

000 1

001 2

010 3

011 5

100 7

101 11

110 13

111 17

Figure 1: The truncated Hankel matrix H

(3)

f

in Example 3

There are many choices. One possibility is to choose

�(0) =

2

4

1 0 0

0 0 1

2 1 1

3

5

and �(1) =

2

4

0 1 0

�16 12 �1

2 0 3

3

5

:

Finally, we set

� =

�

1 0 0

�

and 
 =

2

4

1

2

3

3

5

:

and the corresponding rational function approximates f to order 3.

Now that we see that the rationality measure R

f

(n) is computable, we turn to the

properties of this measure. First, we prove a useful lemma, which is analogous to

Moore's result for the case of �nite automata [28, Lemma 4].

Lemma 8 Let f be a rational series of rank m, and let g be a rational series of rank

n. If (f; w) = (g; w) for all w with jwj � m+ n� 1, then f = g.

Proof. Let f have linear representation (�; �; 
), and let g have linear representation

(�

0

; �

0

; 


0

). Then we can form a linear representation for h = f�g of dimension m+n

as follows:

�

00

=

�

� ��

0

�

; �

00

(a) =

�

�(a) 0

0 �

0

(a)

�

; and 


00

=

"







0

#

:
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Now by construction (h;w) = 0 for all w of length � m + n � 1. Also, h is of rank

� m+ n. Then, by [1, Corollary II.3.6], we have h = 0. Hence f = g. 2

Theorem 9 Let f; g : �

�

! K be formal series. Then

(a) R

f

(n) � R

f

(n+ 1) for n � 0.

(b) R

f

(n) � A

f

(n) for n � 0.

(c) If L is a language, then R

L

(n) � R

L

(n) + 1 for n � 0.

(d) R

f+g

(n) � R

f

(n) +R

g

(n) for n � 0.

(e) R

f

(n) = O(1) if and only if f is rational.

Proof. (a) If g is an (n+1)'th order approximation to f , then g is also an n'th order

approximation to f .

(b) If A

f

(n) = q, then there exists a DFAO M = (Q;�;�; �; q

0

; �) computing an

n'th order approximation to f , with jQj = q. Let

� =

�

1 0 0 : : : 0

�

; �(a)

i;j

= (m

i;j

)

0�i;j<q

where

m

i;j

=

(

1 if �(i; a) = j;

0 otherwise;

and


 =

2

6

6

6

4

�(0)

�(1)

.

.

.

�(q � 1)

3

7

7

7

5

:

Then it is easy to see that (�; �; 
) is a linear representation for g

M

, of dimension q.

Hence R

f

(n) � q.

(c) Let (�; �; 
) be a linear representation of dimension R

L

(n) that represents

an n'th order approximation to L (or more precisely, �(L)). We can form a lin-

ear representation (�

0

; �

0

; 


0

) of dimension 1 + R

L

(n) that represents an n'th order

approximation to L as follows:

�

0

(a) =

2

6

6

6

4

0

�(a)

.

.

.

0

0 : : : 0 1

3

7

7

7

5

for a 2 �; and

�

0

=

�

�� 1

�

; 


0

=

2

6

4




1

3

7

5

:
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(d) Left to the reader.

(e) Suppose f is rational. Then it is of rank d, for some �nite d. Clearly R

f

(n) � d

for all n.

For the converse, suppose R

f

(n) = O(1). Then, since R

f

(n) increases monotoni-

cally by (a), we know that there exist n

0

; d such that R

f

(n) = d for all n � n

0

. Note

that this means that for each n � n

0

there exists a linear representation (�

n

; �

n

; 


n

)

of dimension d such that (f; w) = �

n

�

n

(w)


n

for all w with jwj � n. A priori, it is at

least conceivable that each of these representations gives a di�erent rational function.

Let us show that for n su�ciently large, each of these linear representations represents

the same rational function. Let n; n

0

� max(n

0

; 2d � 1), and consider the rational

functions f

n

; f

n

0

represented by (�

n

; �

n

; 


n

) and (�

n

0

; �

n

0

; 


n

0

). Then f

n

and f

n

0

are

each of rank d, but agree on all strings of length � 2d� 1. By Lemma 8, they must

be identical. It follows that f = f

n

= f

n

0

, and so f is rational. 2

We now prove the analogue of Karp's theorem mentioned previously.

Theorem 10 If f is not rational, then R

f

(n) � (n+ 2)=2 for in�nitely many n.

Proof. Suppose f is not rational, but (contrary to what we want to prove), there

is an n

0

such that R

f

(n) � (n + 1)=2 for all n > n

0

. By Theorem 9 (e), we know

R

f

(n)!1 as n!1. Hence there exists r > n

0

with R

f

(r+1) > R

f

(r). Let g be a

rational function of rank s = R

f

(r+1) which forms an (r+1)'th order approximation

to f . Similarly, let h be a rational function of rank s

0

= R

f

(r) which forms an r'th

order approximation to f . Since R

f

(r + 1) > R

f

(r), there exists a word x of length

r + 1 with (g; x) 6= (h; x), and (g; w) = (h;w) for all strings w of length � r. Then,

by Lemma 8, we have r+1 � s+ s

0

� 1 � (r+2)=2+ (r+1)=2� 1. Hence we obtain

r + 1 � r + 1=2, a contradiction, and the result follows. 2

Theorem 11 Theorem 10 is best possible over Q and any �nite �eld, in the sense

that the 2 in the denominator cannot be replaced by any smaller positive real number,

and the 2 in the numerator cannot be replaced by any larger real number.

Proof. In Section 3, we observe that the formal series S =

P

i�0

X

2

i

�1

satis�es

R

S

= b(n+ 2)=2c for all n � 0. Furthermore, this holds over Q and any �nite �eld.

Now suppose that f is not rational, but we have R

f

(n) � (n+ c)=d in�nitely often,

where 0 < d < 2. (Note that c could conceivably be negative.) Choose k large enough

so that d � 2� 1=k. Then for all n > 4k � 2kc we have

2k(n+ c) > 2kn+ 4k � n� 2 = (n+ 2)(2k � 1):

It follows that for all n > 4k � 2kc we have

k(n+ c)

2k � 1

>

n+ 2

2

;

hence for in�nitely many n and all nonrational f we have

R

f

(n) �

n+ c

d

�

n+ c

2� 1=k

>

n+ 2

2

;
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a contradiction when f = S.

Similarly, suppose that for all nonrational f we have A

f

(n) � (n + c)=2 in�nitely

often, where c > 2. But then for all n we have

R

S

(n) = b(n+ 2)=2c � (n+ 2)=2 < (n+ c)=2;

a contradiction. 2

We now obtain upper bounds for R

f

(n).

Theorem 12 Let j�j = k, and let f : �

�

! K be a formal series. Then

R

f

(n) �

8

>

>

<

>

>

:

n+ 1 if k = 1;

2(k

(n+1)=2

�1)

k�1

if k > 1 and n odd;

k

n=2

+k

(n+2)=2

�2

k�1

if k > 1 and n even:

(1)

Furthermore, this bound is best possible.

Proof. For k = 1, the associated truncated Hankel matrix is of dimension (n+ 1)�

(n + 1), and so clearly R

f

(n) � n + 1. This bound is achieved if (f; 0

i

) = 0 for

0 � i < n and (f; 0

n

) = 1.

For k � 2, see Hespel [9]. 2

It is easy to see that no series f can attain the maximum possible rationality for

all n. However, the following example shows that (1) can be achieved up to a constant

factor.

Example 4 Let j�j = k, and de�ne a series f by (f; w) = 1 if w is a palindrome

(equals its reversal), and 0 otherwise. Then it is not hard to prove that R

f

(n) =

k

b(n+2)=2c

�1

k�1

for n � 0.

What is the expected value of the rationality E[R

f

(n)] of a \randomly-chosen"

rational series? In the unary case, this was computed for K = GF(2) by Rueppel

[23]. Here we give a lower bound for j�j = k � 2 and over any �nite �eld. Our

model is that each coe�cient (f; w) is chosen from GF(q) randomly and uniformly

with probability 1=q.

Theorem 13 We have

E[R

f

(n)] �

8

>

>

<

>

>

:

2

(n+1)=2

� 1�O(1) if n is odd and k = 2;

k

(n+1)=2

�1

k�1

� o(1) if n is odd and k > 2;

k

n=2

� o(1) if n is even.

Proof. Gerth [7] observed that the number of s� t matrices over GF(q) with rank

r is given by

Y

0�i�r�1

(q

t

� q

i

)

q

s�i

� 1

q

i+1

� 1

:
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Suppose n is even, and consider the truncated Hankel matrix associated with f . If

we consider the rows labelled with strings of length n=2, and the columns labelled with

strings of length � n=2, then these elements are all independent, and give a randomly

chosen k

n=2

�

k

(n=2)+1

�1

k�1

matrix. The expected rank E[R

n

] of this matrix is a lower

bound on E[R

f

(n)]. By Gerth's result it can be seen that E[R

n

] = k

n=2

� o(1).

Now suppose n is odd. We consider the truncated Hankel matrix with rows labelled

with strings of length (n+1)=2 and columns labelled with strings of length � (n�1)=2.

These elements are independent, and give a randomly chosen k

(n+1)=2

�

k

(n+1)=2

�1

k�1

matrix. If k = 2, then lim

n!1

E[R

n

] = 2

(n+1)=2

� 1 � c

q

, where c

q

is a constant

that depends on q (e. g., c

2

:

= :460501, c

3

:

= :162089, etc.). If k � 2, then E[R

n

] =

k

(n+1)=2

�1

k�1

� o(1). 2

There are also examples of formal series with polynomial rationality of all degrees:

Theorem 14 For all integers r � 0 there exists a formal series f = f

r

such that

R

f

(n) = �(n

r

).

Proof. For r = 0 this is clear. For r � 1, let f = f

r

be the characteristic series of

L

r

= f0

a

1

1 0

a

2

1 : : : 1 0

a

r

1 0

a

1

1 0

a

2

1 : : : 1 0

a

r

1 j a

1

; : : : ; a

k

� 0g:

Then the proof of [8] can easily be modi�ed to show that R

f

(n) = �(n

r

). 2

3. Rationality in the Unary Case and Linear Complexity

In this section we examine the rationality measure in the unary case, where j�j = 1.

It turns out that in this case, the measure of rationality essentially coincides with the

well-known concept of linear complexity.

Let s = (s

i

)

i�0

be a sequence over a �eld K. We say that s satis�es a linear

recurrence of order k (or is a linear feedback shift register) if there exist constants

a

0

; a

1

; : : : ; a

k

with a

k

6= 0, such that

P

0�j�k

a

j

s

i+j

= 0 for all i � 0. The linear

complexity (or linear span) of s, L

s

(n), is de�ned to be the least k such that there

exists a sequence t = (t

i

)

i�0

which satis�es a linear recurrence of order k, and further

s

i

= t

i

for 0 � i < n. Linear complexity { particularly when K is a �nite �eld, such as

GF(2) { has been actively studied in combinatorics and cryptography [22, 18]. In sys-

tems and control theory, it is known as the minimum partial realization problem [14].

Theorem 15 Suppose f(X) =

P

i�0

s

i

X

i

. Then R

f

(n) = L

s

(n+ 1).

Proof. Suppose R

f

(n) = t. Then there exists a t� t matrix M , and row and column

vectors �; 
 such that (f; 0

i

) = �M

i


. Then, by the Cayley-Hamilton Theorem, M

satis�es its own characteristic equation, so there exist constants a

0

; a

1

; : : : ; a

t�1

such

that

M

t

+ a

t�1

M

t�1

+ � � �+ a

1

M + a

0

I = 0;
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where I is the t� t identity matrix. Multiplying by M

i

, we get

M

i+t

+ a

t�1

M

i+t�1

+ � � �+ a

1

M

i+1

+ a

0

M

i

= 0

for 0 � i � n� t. Hence

�M

i+t


 + a

t�1

�M

i+t�1


 + � � �+ a

1

�M

i+1


 + a

0

�M

i


 = 0

for 0 � i � n� t, and so we get

a

t

s

i+t

+ a

t�1

s

i+t�1

+ � � �+ a

0

s

i

= 0

for 0 � i � n� t, where a

t

= 1. It follows that L

s

(n+ 1) � t.

Now suppose L

s

(n+1) = t. Then there exist constants a

0

; a

1

; : : : ; a

t

, with a

t

6= 0,

such that

P

0�j�t

a

j

s

i+j

= 0 for 0 � i � n� t. Let

M =

2

6

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1

�

a

0

a

t

�

a

1

a

t

�

a

2

a

t

: : : �

a

t�1

a

t

3

7

7

7

7

7

5

:

Then clearly

2

6

6

6

4

s

i+1

s

i+2

.

.

.

s

i+t

3

7

7

7

5

= M

2

6

6

6

4

s

i

s

i+1

.

.

.

s

i+t�1

3

7

7

7

5

for 0 � i � n� t. It follows that

2

6

6

6

4

s

i

s

i+1

.

.

.

s

i+t�1

3

7

7

7

5

= M

i

2

6

6

6

4

s

0

s

1

.

.

.

s

t�1

3

7

7

7

5

for 0 � i � n� t+ 1. Hence, if we de�ne

� :=

�

1 0 : : : 0

�

; 
 :=

2

6

6

6

4

s

0

s

1

.

.

.

s

t�1

3

7

7

7

5

;

then s

i

= �M

i


 for 0 � i � n. It follows that R

f

(n) � t. 2

One of the basic tools of linear complexity is the Berlekamp-Massey algorithm [15].

This gives an e�cient algorithm for computing L

s

(n) in the unary case, as well as the

following useful observation: if L

s

(n + 1) > L

s

(n), then L

s

(n + 1) = n + 1� L

s

(n).

As A. Klapper has kindly pointed out to me, this gives an alternative proof of

Theorem 10 in the unary case.

There is no known bound for R(n) for the primes similar to that in Theorem 4.

However, for the unary case there is the following conjecture, due to G. Norton [19]:
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Conjecture 16 Let p =

P

i�0

p

i+1

X

i

, where p

n

denotes the n'th prime (p

1

= 2).

Then R

p

(n) = b(n+ 2)=2c for all su�ciently large n.

We remark that R

p

(n) = b(n+ 2)=2c for 0 � n � 24, except for n = 6; 7.

We now turn to examples of unary power series f 2 K[[X ]] such that R

f

(n) =

b(n+2)=2c for all n � 0. It is relatively easy to �nd such examples when K = Q. For

example, one can choose f :=

P

i�0

c

i

X

i

such that the c

i

grow su�ciently quickly to

avoid any linear recurrence, say c

i

= (i+ 1)!. It is not di�cult to show that

�

�

�

�

�

�

�

�

�

�

�

1! 2! 3! : : : r!

2! 3! 4! : : : (r + 1)!

3! 4! 5! : : : (r + 2)!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r! (r + 1)! (r + 2)! : : : (2r � 1)!

�

�

�

�

�

�

�

�

�

�

�

= r!

0

@

Y

1�j�r�1

j!

1

A

2

> 0:

However, this example does not easily map to �nite �elds, since the series f mod p

is actually rational for all primes p. We would like to �nd a series with coe�cients in

f0; 1;�1g.

One such power series is g =

P

i�0

X

2

i

�1

, which corresponds to the sequence

s = (1; 1; 0; 1; 0; 0; 0; 1; : : :). Rueppel conjectured that L

s

(n) = b(n+ 1)=2c, and this

was �rst proven by Dai [3]. In the linear complexity literature, such sequences are

said to have \perfect staircase pro�le" or PSP.

We recall that if K is a �eld, then formal series in K[[1=T ]] have a unique continued

fraction expansion [a

0

(T ); a

1

(T ); : : :], where the partial quotients a

i

are polynomials.

Many examples of sequences with PSP can be constructed using the following beau-

tiful connection between linear complexity and continued fractions, due to Nieder-

reiter [17].

Theorem 17 A sequence s = (s

i

)

i�0

: : : satis�es L

s

(n) = b(n + 1)=2c for n � 1 i�

the formal series

P

i�0

s

i

T

�(i+1)

has a continued fraction expansion [0; a

1

; a

2

; a

3

; : : :]

with deg(a

j

) = 1 for all j � 1.

In 1979 I had showed [25] that

P

i�0

T

�2

i

has continued fraction expansion

[0; T � 1; T + 2; T; T; T � 2; T; T + 2; T; T � 2; T + 2; T; T � 2; : : :]

where all the partial quotients (except a

0

) have degree 1. Combining this with The-

orem 17, we get a proof of Rueppel's conjecture, and this completes the proof of

Theorem 11.

Morii and Kasahara [16] pointed out that the sequence s

0

= (1; 0; 1; 0; 0; 0;

1; 0; : : :) which is derived fromRueppel's sequence s by a shift, also has PSP. This can

also be obtained by combining Theorem 17 with a result due to van der Poorten

and myself [21] that

P

i�1

�T

1�2

i

has a continued fraction expansion where all the

partial quotients (except a

0

) are �T .

Another example of sequence with PSP (although not with coe�cients in

f0; 1;�1g) is (1; 0; 1; 0; 2; 0; 5; 0; 14; : : :), which corresponds to the power series C =
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P

i�0

c

i

T

�(2i+1)

, where c

i

=

(

2i

i

)

i+1

is the i'th Catalan number. The continued frac-

tion expansion of C is easily shown to be [0; T;�T; T;�T; : : :]. When this is reduced

modulo 2, we obtain the Morii-Kasahara sequence.
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