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Abstrat. We de�ne a new measure of omplexity for �nite strings,

alled automati omplexity and denoted A(x). Although A(x) is anal-

ogous to Kolmogorov-Chaitin omplexity, it has the advantage of being

omputable. We give upper and lower bounds for A(x), and estimate it

for some spei� strings.

1 Introdution

We are interested in a omputable measure of omplexity for �nite strings x

over a �nite alphabet, typially f0; 1g. Any suh measure should reet, in some

sense, how \ompliated" the string x is.

Of ourse, any suh disussion must start with Kolmogorov-Chaitin omplex-

ity [11℄ C(x), whih (roughly speaking) measures the omplexity of a string x

as the size of the shortest pair

(T; y) = (Turing mahine desription; input)

suh that T on input y outputs x. Not only does C(x) measure the omplexity

of x, but also the pair (T; y) an be viewed as the optimal way to ompress the

string x.

However it has three major de�ienies (the �rst two are equivalent):

1. It is unomputable! It is known that \C(x) < n" is omputably enumerable,

but \C(x) � n" is not omputably enumerable.

2. There is no e�etive proedure for �nding a ompression pair (T; y).

3. K depends somewhat on the partiular model of universal Turing mahine

hosen, and is de�ned in a mahine-independent way only up to an additive

onstant.

One onsequene of de�ieny (3) above is that sine C(xx) = C(x) +O(1),

with the onstant depending on the partiular model of universal Turing mahine

hosen, it doesn't make sense to ask if C(xx) > C(x) for any, most, or all strings

x. We will see below, however, that in the measure of omplexity proposed in

?
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this paper, we have A(xx) � A(x) for all strings x, and in fat there are in�nitely

many strings x for whih this inequality is strit; see Theorems 4 and 13.
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It would be nie to �nd a measure without these de�ienies. Turing mahines

are extremely powerful, and this suggests that we ould replae the Turing ma-

hine with a less powerful model and hope to �nd a omputable measure.

For example, we ould onsider replaing the Turing mahine with a ontext-

free grammar (CFG). We hoose, perhaps arbitrarily, some measure of the om-

plexity of a ontext-free grammar, and then ask for the smallest grammar G

suh that L(G) = fxg.

If we demand that the ontext-free grammar be in Chomsky normal form

(i.e., all produtions are of the form A ! BC or A ! a where A;B;C are

variables and a is a terminal), and use the number of variables as the measure of a

grammar's size, then then we get a well-known measure of omplexity assoiated

with \word hains". Diwan [8℄ was apparently the �rst to study this measure;

for other papers see [6,15, 2, 1, 7℄.

In this paper we onsider replaing the Turing mahine with a deterministi

�nite automaton, or DFA.

Given a string x, in analogy with the word hain problem mentioned above,

we might seek to �nd a smallest DFA M suh that L(M ) = fxg. But this is

learly uninteresting, sine if jxj = n, a smallest suh DFA always has exatly

n+ 2 states. Hene we onsider relaxing the requirement somewhat.

If a DFA M has the property that it aepts a string x, but no other strings

of length jxj, we say M aepts x uniquely. In this paper, we examine the on-

sequenes of the following de�nition. We de�ne A(x), the automati omplexity

of x, to be the smallest number of states in any DFA M that aepts x uniquely.

Of ourse, there may be many suh DFA's with the smallest number of states.

We do not are how M behaves on strings that are shorter or longer than x.

More formally,

De�nition 1. Let � = f0; 1g and x 2 �

�

with jxj = n. De�ne A(x) to be the

smallest number of states in any DFA M suh that L(M ) \�

n

= fxg.

An earlier paper of the �rst author and Y. Breitbart [16℄ explored a similar

notion of desriptional omplexity for languages. However, that measure turns

out to be uninteresting for the ase of a single string.

There is a onnetion between the measure studied in this paper and the

so-alled \separating words" problem, whih, given two strings w and x, both

1

The question whether C(xx) > C(x) is relevant to questions raised by \sienti�"

reationists putting forth a theory of \intelligent design". It has been laimed, for

example, that \...there is no more information in two opies of Shakespeare's Hamlet

than in a single opy. This is of ourse patently obvious, and any formal aount

of information had better agree." (William Dembski, Intelligent Design: The Bridge

Between Siene and Theology, Intervarsity Press, 1999, Chapter 6, p. 158. I am

grateful to Wesley Elsberry for pointing this out.) But in fat all that the Kolmogorov

theory an laim is that C(xx) = C(x) + O(1), whih is not the same as C(xx) =

C(x). By Dembski's reasoning we would also have C(x

n

) = C(x) for all n, and this

is learly untrue; in fat it is easy to see that C(x

n

)�C(x) is unbounded as n!1.

2



of length � n, asks for the number B(w; x) of states in the smallest DFA M

suh that M separates w from x, i.e., M aepts exatly one of fw; xg. It is

known that B(w; x) = O(logn) if jwj 6= jxj, and B(w; x) = O(n

2=5

(logn)

3=5

)

if jwj = jxj; see, for example, [10,13, 14℄. Given w, the funtion A(w) an be

viewed as measuring the size of the smallest DFA M suh that M separates w

from �

jwj

� fwg.

2 Basi results

Clearly A(x) � jxj + 1, sine we an uniquely aept any string of length jxj

with a hain of jxj states that loops bak to the start state, plus one additional

\dead" state. It follows that A is omputable, sine we an simply examine all

�nite automata with jxj+ 1 or fewer states, and test eah DFA by brute fore

to see if x is aepted uniquely. As we will see below, it is possible to improve

this algorithm somewhat, but we still do not know if A(x) is omputable in time

polynomial in jxj.

It is possible, however, that A(x) is signi�antly smaller than jxj+1. Roughly

speaking, there are two ways to save states. The �rst is to use a loop. For example,

the DFA in Figure 1 shows that A(0

9

1

8

) � 8. (Unspei�ed transitions go to a

\dead state" whih is not shown.)

0 0

1

0

1 1 1

1

Fig. 1. Automaton uniquely aepting 0

9

1

8

.

The seond way to save states is through reuse. For example, you an reuse

states, if the string is of the form x y z y

R

w, as shown in Figure 2. (By y we

mean the string obtained by hanging 0 to 1 and vie versa.)
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0 1 0 1
1

2
2

1 0 1 0 0

Fig. 2. Automaton uniquely aepting 010112200101

Hopefully the reader is already onvined that this de�nition is somewhat

natural and worthy of study.

2

Let us �rst see if the de�nition is useful; for

example, an we use the measure as a data ompression tehnique?

The answer is yes, in the following sense.

Theorem 2. Given a desription of a DFA M whih uniquely aepts x, and

the length n = jxj, we an eÆiently reover x.

Proof. By \eÆiently", we mean polynomial in the desription size of M and n,

the length of x.

LetM = (Q;�; Æ; q

1

; F ) be a DFA uniquely aepting x. Let Q = fq

1

; q

2

; : : : ; q

r

g,

with r = jQj. Create a direted graph G = (V;E) with vertex set V de�ned as

follows:

V = fp

i;j

: 1 � i � r; 0 � j � ng:

Plae a direted edge (p

i;j

; p

k;l

) labeled a if Æ(q

i

; a) = q

k

and l = j + 1. Note

that G is ayli.

Sine M uniquely aepts x, there exists a single index t with q

t

2 F suh

that there is exatly one path from p

1;0

to p

t;n+1

, and for all u 6= t, there is

no path from p

1;0

to p

u;n+1

. We an now �nd this path using, for example,

depth-�rst searh, in O(jV j+ jEj) = O((n+ 1)jQjj�j) time.

Given a DFA, we an also eÆiently deide if it uniquely aepts a given x.

Theorem 3. Given a DFA M with r states and a string x of length n � 1, we

an determine in O(n + r

3

logn) steps whether M uniquely aepts x.

Proof. Let M = (Q;�; Æ; q

1

; F ), where Q = fq

1

; q

2

; : : : ; q

r

g. We an determine

if M aepts x by simply simulating it on x, whih an be done in O(n) time.

Now reate a matrixM = (a

i;j

)

1�i;j�n

where a

i;j

= Cardfb 2 � : Æ(q

i

; b) =

q

j

g. Then an easy indution gives that if M

k

= (

i;j;k

)

1�i;j�n

, then 

i;j;k

=

Cardfx 2 �

k

: Æ(q

i

; x) = q

j

g. Now ompute

P

j:q

j

2F



1;j;jxj

. This sum is 1 i�

M uniquely aepts x.

2

But if not, there are some alternatives that also may be of interest. For example, we

ould de�ne B(x) to be the smallest number of states in any DFA M suh that x is

the lexiographially least string of length jxj aepted by M .
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Thus it suÆes to ompute M

k

eÆiently. To do so we an use the familiar

\binary method" of exponentiation; see, for example, [3℄. Furthermore, during

the omputation of M

k

, we an always redue an entry that is � 2 to 2. The

result is a matrix M

0

with entries in f0; 1; 2g with the property that if an entry

of M

k

is 0 or 1, so is the orresponding entry of M

0

, and if an entry of M

k

is 2

or more, the orresponding entry in M

0

is 2. Sine the sizes of the entries of M

0

are bounded by 2, it follows that this omputation an be done in O(r

3

logn)

bit operations.

Our last theorem of this setion is the following:

Theorem 4. We have A(xx) � A(x) for all strings x.

The following simple proof was shown to us at the DCAGRS 2000 workshop

in London, Ontario, by Kai Salomaa:

Proof. Consider the DFAM = (Q;�; Æ; q

0

; F ) minimizingA(xx). Then we know

there is only one path of length jxxj from q

0

to a state of F , and this path is

labeled xx. Let q = Æ(q

0

; x). Construt a new DFA M

0

= (Q;�; Æ; q

0

; fqg). Then

we laim M

0

uniquely aepts x. For if not, there exists another string w 6= x,

jwj = jxj, suh that Æ(q

0

; w) = q. Then Æ(q

0

; wx) 2 F , and so M aepts wx,

another string of length jxxj, and wx 6= xx. This ontradition proves that

A(x) � A(xx), as desired.

In Theorem 13 below we show that in fat A(xx) > A(x) for in�nitely many

strings x.

3 Upper bounds

In this setion we prove some upper bounds on A(x).

Theorem 5. Let x 2 �

�

with j�j = k � 2 and jxj = n. Suppose n > k

t

+ t� 1.

Then A(x) � n+ 2� t.

Proof. If n > k

t

+ t � 1, then x = a

1

a

2

� � �a

n

has at least k

t

+ 1 subwords of

length t. Hene some subword of length t appears at least twie in x. Let y be

a longest repeated subword, and let the �rst two ourrenes of y be denoted y

0

and y

00

(they may overlap).

Then we have the two fatorizations shown in Figure 3.

u y

00

w

w

y

0

x =

v

u

v

0

Fig. 3. Two fatorizations of x.
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where y = y

0

= y

00

. Furthermore, sine y is a longest repeated subword, we know

that either w = � or the �rst letter of v di�ers from the �rst letter of w.

By a lassi theorem of Lyndon & Sh�utzenberger [12℄, the equality yv = v

0

y

implies that there exist strings r; s and an integer e � 0 suh that

y = (rs)

e

r

v = sr

v

0

= rs:

Thus x = u(rs)

e+1

rw. It follows that the �rst letter of s di�ers from the �rst

letter of w, so we an aept x uniquely with a DFA as in Figure 4.

u

r

s

w

Fig. 4. DFA uniquely aepting x = u(rs)

e+1

rw.

The total number of states is jurswj+ 2 = n + 2� jyj.

Theorem 6. Let x 2 f0; 1g

n

. Then

A(x) �

3

4

n+ (logn)

r

n

8

for almost all strings x.

Proof. (Sketh.) The idea is to write x = x

0

ax

00

where jx

0

j = jx

00

j = b

n

2

 and

a 2 f�; 0; 1g. Then the expeted number of mismathes between x

0

and x

00

R

is

n

4

+O(1), with standard deviation

p

n

8

+O(1). We an now build a DFA for x

0

,

and attempt to reuse states orresponding to the mismathes between x

0

and

x

00

R

, as in Figure 2.

4 Lower bounds

First, we show by a simple ounting argument the existene of a onstant C suh

that almost all strings x of length n satisfy A(x) > C

n

logn

.

More preisely, we prove
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Theorem 7. Suppose j�j = k � 2, and let 0 < "; Æ < 1 be �xed. If n is

suÆiently large, then

A(x) � (1� Æ)"

log k

k

n

logn

for all strings x 2 �

n

, with at most k

"n

exeptions.

Proof. It is easy to see there are at most q

qk+1

essentially distint automata with

� q states and exatly one �nal state. (The fator q

qk

omes from the transition

funtion, and the fator q omes from the assignment of �nal states. Note we an

simulate a DFA with � q states by one with exatly q states, by simply adding

non-onneted states, if neessary.) Eah of these automata uniquely aepts at

most one string of length n. Thus if

q

qk+1

< k

"n

; (1)

then at most k

"n

di�erent strings of length n an be represented. Now a routine

alulation shows that if q < (1� Æ)"

log k

k

n

logn

, then the inequality (1) holds.

It is possible to improve this bound as follows:

Theorem 8. We have A(x) � n=13 for almost all strings x 2 f0; 1g

n

.

Proof. Suppose M is a DFA with A(x) states that uniquely aepts x. Let n =

jxj. Consider the transition diagram D of M , whih is a labeled direted graph

whose verties are the states of M and whose (labeled) edges orrespond to

transitions. We de�ne the aepting path P for x to be the sequene of n + 1

edges traversed in this graph. Note that the �rst element of P is an edge labeled

� that enters the initial state q

0

of M . We de�ne the abbreviated aepting path

P

0

to be the sequene of edges obtained from P by onsidering eah edge in

order and deleting it if it has previously been traversed. The idea is to enode

P

0

in a spae-eÆient manner so that x an be reovered.

The outdegree of eah vertex enountered along P

0

is � 2, sine M is a DFA.

We laim the indegree of eah vertex is � 2. If not, then let v be a vertex with

indegree � 3. Then there are at least three distint edges entering v, say g

1

; g

2

; g

3

.

Let x

1

be a pre�x of x suh that the edge g

1

is used in the last transition when

the DFA proesses x

1

. (If v = q

0

, the initial state, we may have x

1

= �.) Let x

1

x

2

be a pre�x of x suh that g

2

is used in the last transition when proessing x

1

x

2

,

x

2

6= �. Let x

1

x

2

x

3

be a pre�x of x suh that g

3

is used in the last transition

when proessing x

1

x

2

x

3

, x

3

6= �. Finally, let x

4

be suh that x = x

1

x

2

x

3

x

4

.

Then x

0

:= x

1

x

3

x

2

x

4

is also aepted by M , and jxj = jx

0

j. If x = x

0

, then

x

2

x

3

= x

3

x

2

. Then, by a theorem of Lyndon & Sh�utzenberger [12℄, there exist

a string z 6= � and integers i; j � 1 suh that x

2

= z

i

, x

3

= z

j

. Now if there is a

path labeled z

i

going from v to v, and a path labeled z

j

from v to v, then there

is a path labeled z

gd(i;j)

from v to v. But then g

2

= g

3

, a ontradition. Hene

x 6= x

0

, ontraditing the hypothesis that x is aepted uniquely.
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Now onsider the verties visited by P

0

= (e

0

; e

1

; : : : ; e

t

), the abbbreviated

aepting path for x. Eah vertex v is of exatly one of the following types:

Type 1. There is exatly one edge e

i

of P

0

entering v and there is exatly one

edge e

i+1

leaving v.

Type 2. There are exatly two edges, e

i

and e

j

, i < j, entering v, and exatly

one edge e

i+1

leaving v.

Type 3. There is one edge, e

i

, entering v, and exatly two edges, e

i+1

and

e

j

, i < j, leaving v.

Type 4. There are exatly two edges, e

i

and e

j

, entering v, with i < j, and

there are exatly two edges, e

i+1

and e

j+1

, leaving v.

We now desribe a spae-eÆient enoding E of P

0

whih will avoid reording

the state numbers. Instead, we reord the labels of the edges along with some

additional information that tells us what type eah vertex is, and allows us to

reover how these verties are onneted.

If P

0

= (e

0

; e

1

; : : : ; e

t

), then we de�ne E(i; n) to be a ertain enoding, over

the alphabet f0; 1; [; ℄

0

; ℄

1

; �;+g of the edges (e

i

; : : : ; e

n

). We also de�ne a

i

to

be the label of the edge e

i

orresponding to the symbol ausing the transition.

The meaning of the symbols is as follows: 0 and 1 represent the labels on the

edges of P

0

. A left braket [ represents a vertex that is the target of a bakedge.

A right braket (℄

0

or ℄

1

) represents a bakedge labeled with its subsript. The

symbol + represents a vertex of outdegree 2, and the symbol � (introdued later)

represents a �nal state.

The base ase is when i > n, in whih ase we de�ne E(i; n) = �. For the

indutive de�nition there are four ases, depending on the type of the vertex

reahed by the direted edge e

i

, given in Figures 5{8.

e ei i+1

Fig. 5. Vertex of type 1: E(i; n) := a

i

E(i + 1; n)

e e

e

i i+1

j

Fig. 6. Vertex of type 2: E(i; n) = a

i

[E(i+ 1; j � 1) ℄

a

j

E(j + 1; n)
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e e

e

i i

j

+1

Fig. 7. Vertex of type 3: E(i; n) = a

i

+ E(i+ 1; n)

e e

e

i i+1

j

ej+1

Fig. 8. Vertex of type 4: E(i; n) = a

i

[ +E(i+ 1; j � 1) ℄

a

j

E(j + 1; n)

Finally, if P

0

= (e

0

; e

1

; : : : ; e

t

), we de�ne E(x) to be E(0; t) with a symbol

� inserted after the symbol leading to the (unique) aepting state, followed by

the symbol #, followed by the base-2 representation of n = jxj, followed by

##. Thus E(x) is a self-delimiting enoding of x over the 8-symbol alphabet

f0; 1;+; �; [; ℄

0

; ℄

1

;#g. We onsider some examples of this enoding.

Figure String Enoding

Figure 1 0

9

1

8

[+00℄

0

1[111�℄

1

#10001##

Figure 10 0110100110 [+0[+1[+10℄

1

℄

0

℄

0

110 �#1010##

Figure 11 01101001100101 0[1 � 101[001+℄

1

℄

0

#1110##

We leave it to the reader to verify that P

0

an be reonstruted from E(0; t)

and x an be reonstruted from E(x). It is easy to prove by indution that

jE(a; b)j � 2(b� a+ 1). Now P

0

has at most 2A(x) edges with nonempty labels,

so we �nd jE(0; t)j � 4A(x) + 2. It follows that jE(x)j � 4A(x) + 6 + log

2

jxj.

Sine E is over an 8-letter alphabet, it an be reoded over f0; 1g using three

bits for eah symbol. It follows that C(x) � 12A(x)+18+3 log

2

jxj. On the other

hand, it is known that C(x) � jxj� log

2

jxj for almost all x. Hene A(x) � jxj=13

for almost all x.
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Remark. We have not tried to optimize the onstant 13 in Theorem 8. H.

Petersen informs us (personal ommuniation) that 13 an be redued to 7.

We an improve the lower bound for ertain kinds of strings, as follows:

Theorem 9. Suppose w 2 �

�

is kth-power-free for some integer k � 2, i.e., w

ontains no subword of the form x

k

with x 6= �. Then A(w) �

jwj+1

k

.

Proof. Let w = a

1

a

2

� � �a

n

be uniquely aepted by some DFAM = (Q;�; Æ; q

0

; A),

and de�ne p

i

:= Æ(q

0

; a

1

a

2

� � �a

i

) for 0 � i � n.

Suppose some state is visited at least k+1 times on the aeptane path for

w. Then there exist indies i

1

; i

2

; : : : ; i

k+1

suh that

p

i

1

= p

i

2

= � � � = p

i

k+1

:

De�ne

w

0

= a

1

a

2

� � �a

i

1

w

1

= a

i

1

+1

� � �a

i

2

w

2

= a

i

2

+1

� � �a

i

3

.

.

.

w

k

= a

i

k

+1

� � �a

i

k+1

w

k+1

= a

i

k+1

� � �a

n

:

Then M uniquely aepts w = w

0

w

1

w

2

w

3

� � �w

k+1

. However, it also aepts,

for example, w

0

= w

0

w

2

w

1

w

3

� � �w

k+1

. But jw

0

j = jwj. If w

1

6= w

2

, this gives

a ontradition. Hene w

1

= w

2

. By a similar argument we �nd w

i

= w

j

for

1 � i; j � k. It follows that w = w

0

w

k

1

w

k+1

, and so w ontains a k'th power, a

ontradition.

Thus we have shown that no state an be visited k+1 times on the aeptane

path for w. Now for 0 � i < jQj let b

i

be the number of times state q

i

is visited

on the aeptane path for w. Then we have

X

0�i<jQj

b

i

q

i

= n+ 1:

But by the argument above 0 � b

i

� k. Thus

n+ 1 =

X

0�i<jQj

b

i

q

i

�

X

0�i<jQj

kq

i

= kjQj:

It follows that jQj � (n+ 1)=k, and so A(w) = jQj � (n+ 1)=k, as desired.

Remark. If j�j � 2 then there are in�nitely many ube-free strings. For exam-

ple, if t = 01101001 � � � denotes the in�nite Thue-Morse word, then every pre�x

is ube-free. If j�j � 3 then there are in�nitely many square-free strings [5℄.

10



5 Some spei� examples

In this setion we determine the automati omplexity for some partiular ex-

amples. There are interesting onnetions to number theory.

Theorem 10. We have A(0

n

1

n

) = O(

p

n).

Proof. Assume n � 1. Let r = b

p

n, so r

2

� n < (r + 1)

2

. Write n = r

2

+ a.

Then 0 � a � 2r and r � 1. Then we an aept 0

n

1

n

with a DFA of the form

given in Figure 9. (Unspei�ed transitions go to a \dead state" whih is not

shown.)

0 0 0 0 0 loop of 
size 
on input 0

rq q q0 1 a-1 aq

p

p

p

1

2

a+1

loop of
size 
on input 1

r+1

1

1

1

1

. . .

..

.

Fig. 9. Automaton uniquely aepting 0

n

1

n

, where n = r

2

+ a.

This DFA does indeed aept 0

n

1

n

beause

1. We go from state q

0

to state q

a

on 0

a

;

2. We then go around the loop at q

a

r times;

3. Next on 1

a

we go from q

a

to p

a+1

;

4. Finally, we go around the loop at p

a+1

r � 1 times.

11



This path aepts 0

a

(0

r

)

r

11

a

(1

r+1

)

r�1

= 0

r

2

+a

1

r

2

+a

.

On the other hand, we laim that this DFA aepts no other string of length

2n. Suppose it did. Then any aepting path must go around the loop on q

a

b

times and the loop on p

a+1

 times. Then

2n = a+ br + a + 1 + (r + 1):

Sine n = r

2

+ a, it follows that 2r

2

� 1 = br+ (r+ 1). Reduing modulo r, we

get  � �1 (mod r). Thus  2 fr�1; 2r�1; : : :g. But if  � 2r�1 then the string

would be of length � (2r�1)(r+1)+2a+1= 2r

2

+r�1+2a+1� 2n+r > 2n,

a ontradition.

Finally, our DFA uses a+1+r�1+a+1+r = 2r+2a+1 � 6r+1 � 6

p

n+1

states.

We now show that the bound of O(

p

n) is tight. First we state the following

lemma:

Lemma 11. Let ; d be integers � 1. Suppose the linear diophantine equation

N = x+yd is solvable in integers, i.e., suppose gd(; d) jN . If N > 2d��d,

then the linear diophantine equation N = x + yd has at least two solutions in

non-negative integers x; y.

The proof is easy and left to the reader. This result (in a more general form)

has reently been proved independently by Bek & Robins [4℄.

We now prove

Theorem 12. Any DFA that uniquely aepts 0

n

1

n

must have at least

p

n� 1

states.

Proof. Suppose M is a DFA with <

p

n � 1 states that uniquely aepts 0

n

1

n

.

De�ne p

i

= Æ(q

0

; 0

i

) for 0 � i � n. Sine M has < n states, some state must

be repeated, and thus there must be a \loop" of r � 1 states that is repeated j

times, for some integer j � 0. There may also be a \tail" at the beginning, and

at the end we may not go around the \loop" an integral number of times. Let

s = n� rj. Then r; s <

p

n� 1.

Similarly, de�ne r

i

= Æ(p

n

; 1

i

) for 0 � i � n. By the same argument there

must be a \loop" of u � 1 states that is repeated k times, for some integer k � 0.

Let t = n� ku. Then t; u <

p

n � 1.

Sine M aepts 0

n

1

n

uniquely, it must be the ase that the equation ra +

ub = 2n� s� t has exatly one solution (a; b) = (j; k). Then, by Lemma 11, we

have 2n� s� t � 2ru� r�u. Thus 2n� 2(

p

n� 1) � 2n� s� t � 2ru� r�u �

2(

p

n� 1)(

p

n� 1)� 2. But then 2

p

n+ 2 � 0, a ontradition.

We an now exhibit in�nitely many strings for whih A(xx) > A(x).

Theorem 13. Let x = 0

n

1. Then A(xx) = 
(

p

n), but A(x) = O(1).

Proof. It is lear that A(x) = O(1), sine we an aept 0

n

1 uniquely with a

3-state DFA. However, mimiking the lower bound proof of Theorem 12 above,

it is easy to see that A(0

n

10

n

1) = 
(

p

n).

12



It is possible to generalize Theorem 10. We need some tehnial lemmas. The

�rst onerns solvability of ertain linear diophantine equations.

Lemma 14. Let k � 1, and let n

1

; n

2

; : : : ; n

k

be positive integers, relatively

prime in pairs. Let r � 0 be an integer. De�ne P := n

1

n

2

� � �n

k

. If r = 0, the

linear diophantine equation

a

1

P

n

1

+ a

2

P

n

2

+ � � �+ a

k

P

n

k

= (n

1

� 1)

P

n

1

+ (n

2

� 1)

P

n

2

+ � � �+ (n

k

� 1)

P

n

k

� rP

(2)

has a unique solution

(a

1

; a

2

; : : : ; a

k

) = (n

1

� 1; n

2

� 1; : : : ; n

k

� 1)

in non-negative integers. If r � 1, then (2) has no solutions in non-negative

integers.

Proof. By indution on k. If k = 1 Eq. (2) beomes a

1

= n

1

� 1� rn

1

. If r = 0

this equation has the unique solution a

1

= n

1

�1, but if r � 1 then learly there

are no solutions in non-negative integers.

Now assume the result is true for 1; 2; : : : ; k� 1. We prove it for k. Consider

Eq. (2) mod n

k

. We get

a

k

P

n

k

� �

P

n

k

(mod n

k

):

Sine the n

i

are pairwise relatively prime, it follows that a

k

� �1 (mod n

k

).

Sine a

k

is a non-negative integer, we an therefore write a

k

= jn

k

� 1 for some

integer j � 1.

Now substitute a

k

= jn

k

� 1 in Eq. (2). After a little easy algebra, we get

a

1

P

n

1

+ a

2

P

n

2

+ � � �+ a

k�1

P

n

k�1

=

(n

1

� 1)

P

n

1

+ (n

2

� 1)

P

n

2

+ � � �+ (n

k�1

� 1)

P

n

k�1

� (j + r � 1)P (3)

By indution Eq. (3) has a solution i� j+ r�1 = 0. But j � 1. Hene j = 1 and

a

k

= n

k

� 1, and hene Eq. (3) has a solution i� r = 0. If r = 0, by indution

the solution is (a

1

; a

2

; : : : ; a

k�1

) = (n

1

� 1; n

2

� 1; : : : ; n

k�1

� 1).

Lemma 15. (a) If M

1=k

> 2B, then

M

M

1=k

� B

< M

k�1

k

+ 2BM

k�2

k

:

(b) If 0 < B < A and k � 1, then

(A �B)

k

� A

k

� kA

k�1

B:

13



Proof. (a) We have

(M

1=k

�B)(M

k�1

k

+ 2BM

k�2

k

) = M +BM

k�2

k

(M

1=k

� 2B) > M:

(b) An easy indution on k proves that if 0 < x < 1 and k � 1 then (1� x)

k

�

1� kx. Now let x = B=A and multiply by A

k

.

For our last lemma, we will need a ertain number-theoreti funtion. For

t � 1, de�ne f(t) to be the least integer n suh that every set of n onseutive

positive integers ontains a subset of size t that is pairwise relatively prime.

Then, for example, f(4) = 6, sine the set f2; 3; 4; 5; 6g ontains no subset of 4

relatively prime integers, while it is easy to hek that every set of 6 onseutive

positive integers does.

It seems quite diÆult to estimate f preisely. However, the following lemma

follows easily from results of Erd}os and Selfridge [9℄:

Lemma 16. For all Æ > 0 and t suÆiently large we have f(t) < t

2+Æ

.

Proof. Erd}os and Selfridge de�ned F (n; k) to be the largest subset of pair-

wise relatively prime integers in fn + 1; n + 2; : : : ; n + kg, and proved that

min

n�0

F (n; k) > k

1=2��

. Now let k = t

2+5�

for some � < 1=10. We �nd

min

n�0

F (n; t

2+5�

) > (t

2+5�

)

1=2��

> t

1+�=2�5�

2

> t;

sine � < 1=10. Hene for all 0 < � < 1=10 and all t suÆiently large, any t

2+5�

onseutive integers ontains a pairwise relatively prime subset of ardinality

> t. In other words, f(t) < t

2+Æ

where Æ = 5�.

We are now ready to prove

Theorem 17. Let a

1

; a

2

; : : : ; a

k

be k distint symbols. Then A(a

n

1

a

n

2

� � �a

n

k

) =

O(n

1�1=k

), where the onstant in the big-O may depend on k.

Proof. The idea is as follows: we hoose k pairwise relatively prime integers, eah

� n

1=k

, say n

1

; n

2

; : : : ; n

k

. Let P = n

1

n

2

� � �n

k

. We then form a DFA similar to

that in Figure 9, with k loops, one on eah a

i

, 1 � i � k, of size P=n

i

. Eah

loop is preeded by a \tail" of length n � (P=n

i

)(n

i

� 1) = n � P + P=n

i

. By

Lemma 14, this DFA uniquely aepts a

n

1

a

n

2

� � �a

n

k

.

The total number of states is � N , where

N := 1 + k(n � P ) + 2

X

1�i�k

P

n

i

: (4)

By Lemma 5 we an hoose the pairwise relatively prime numbers n

i

suh that

n

1=k

� k

2+Æ

< n

i

< n

1=k

. Setting A = n

1=k

and B = k

2+Æ

in Lemma 15 (b) we

obtain

P = n

1

n

2

� � �n

k

� n� k

3+Æ

n

k�1

k

:

14



Hene

k(n� P ) < k

4+Æ

n

k�1

k

: (5)

On the other hand, setting M = P and B = k

2+Æ

in Lemma 15 (a) we obtain

P

n

i

< P

k�1

k

+ 2k

2+Æ

P

k�2

k

(6)

for all n suÆiently large. Combining Eqs. (4){(6), we obtain N = O(k

4+Æ

n

k�1

k

),

as desired.

6 In�nite words

Up to now we have been dealing with �nite words. However, it is also interesting

to onsider the ase of in�nite words. In this paper, by an in�nite word we will

mean a one-sided, right-in�nite word, i.e., a map from N to �. For an in�nite

word x we are interested in omputing

I(x) = lim inf

x is a pre�x of x

A(x)

jxj

and

S(x) = lim sup

x is a pre�x of x

A(x)

jxj

:

for \interesting" in�nite words x.

We start with the Thue-Morse word t. Let � be a morphism de�ned by

�(0) = 01, �(1) = 10. Then t = t

0

t

1

t

2

� � � = lim

n!1

�

n

(0). We de�ne T (r) =

t

0

t

1

� � � t

r�1

, the pre�x of t of length r.

Theorem 18. We have

I(t) �

1

3

and

S(t) �

2

3

:

Proof. The lower bound for I(t) follows immediately from Theorem 9, sine, as

is well-known, the Thue-Morse word is ube-free.

For the upper bound, we break the argument up as follows. We laim that

we an aept T (m) using h(m) states, where h is given in the table below.

m h(m)

2 � 2

2n

� m � 3 � 2

2n

m+ 3� 2

2n

3 � 2

2n

< m < 4 � 2

2n

2 � 2

2n

+ 2

4 � 2

2n

� m < 5 � 2

2n

m + 2� 2 � 2

2n

5 � 2

2n

� m � 6 � 2

2n

m + 1� 2 � 2

2n

6 � 2

2n

< m < 8 � 2

2n

4 � 2

2n

+ 2

15



For 2 � 2

2n

� m � 3 � 2

2n

, we use the fat that T (2 � 2

2n

) = T (2

2n

)T (2

2n

)

R

,

whih allows us to reuse 2

2n

� 1 states, as illustrated in Figure 10.

For 3�2

2n

� m < 4�2

2n

, we use the fat that T (4�2

2n

) = T (2

2n

)(T (2

2n

))

2

T (2

2n

),

whih allows us to reuse 2

2n

states in an inner loop and m� 3 � 2

2n

states in an

outer loop, as illustrated in Figure 11.

For 4�2

2n

� m < 5�2

2n

, it is easiest to give the enoding of the orresponding

mahine, as introdued in Setion 4:

t

0

[t

1

� � � t

m�3�2

2n

�1

�t

m�3�2

2n [t

m�3�2

2n

+1

� � � t

2

2n+1

�1

+t

2

2n+1 � � � t

m�2

2n+1

�1

℄

t

m�2

2n+1

℄

t

3�2

2n

This is illustrated in Figure 12.

For 5�2

2n

� m � 6�2

2n

, we use the fat that T (5�2

2n

) = (T (2

2n

)T (2

2n

)T (2

2n

))

5=3

,

as illustrated in Figure 13.

For 6 � 2

2n

� m � 8 � 2

2n

, we use the fat that T (m) = T (2

2n+3

� m)xx

R

,

where x = t

2

2n+3

�m

� � � t

2

2n+2
, as illustrated in Figure 14.

In the �gures that follow, unspei�ed transitions go to a \dead state" whih

is not shown.

0 1

1

0
1

001

1

0

Fig. 10. Automaton uniquely aepting t

10
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0 1 1 0 1 0 0

1

1

0

Fig. 11. Automaton uniquely aepting t

14

0 1 1 0 1 0 0 1

1

0

0

0

Fig. 12. Automaton uniquely aepting t

18

0 1 1 0 1 0 0 1 1 0 0

0

1

1

Fig. 13. Automaton uniquely aepting t

22
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0 1 1 0

1

0 0 1 1 0 0 1 0 1 1

0
1

001011001

Fig. 14. Automaton uniquely aepting t

26

If we onsider the Thue-Morse word on three symbols [5℄, we an get a sharper

result.

Theorem 19. Let u = 102120102012 � � � be the in�nite Thue-Morse word on

three symbols, generated by 1! 102, 0! 12, 2! 0. Then

I(u) =

1

2

:

Proof. The lower bound omes from Theorem 9. For the upper bound, we laim

that if we let rs be a pre�x of u with jrj = jsj = 2

2k

for some k � 0, then r

di�ers in every single position from s

R

. Hene we may reuse states in analogy

with Figure 2.

To prove the laim, let u = u

0

u

1

u

2

� � � . Let r = u

0

u

1

� � �u

2

2k

�1

and s =

u

2

2k � � �u

2

2k+1

�1

. It is known that u

i

= (2t

i

+ t

i+1

) mod 3, where t = t

0

t

1

t

2

� � �

is the Thue-Morse word. For 0 � i < 2

2k+1

we have t

i

= 1 � t

2

2k+1

�i�1

. Now t

is ube-free, so t

i�1

t

i

t

i+1

62 f000; 111g. Hene t

i

+ t

i+1

6= 2t

i�1

, and t

j

2 f0; 1g

for j � 0, so t

i

+ t

i+1

6� 2t

i�1

(mod 3). Adding t

i

to this last inongruene, we

have

u

i

� 2t

i

+ t

i+1

6� t

i

+ 2t

i�1

� 2(1� t

i

) + (1� t

i�1

)

� 2t

2

2k+1

�i�1

+ t

2

2k+1

�i

� u

2

2k+1

�i�1

(mod 3):

This proves that r di�ers in every position from s

R

.

One might wonder if S(x) = 0 implies that x is ultimately periodi. The

answer is no, as the following example shows:

Theorem 20. Let v = 0

2

1 0

4

1 0

16

1 0

256

10

65536

1 � � � . Then S(v) = 0.

Proof. First, we need the following lemma.
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Lemma 21. Let y 2 f0; 1g

�

. Then for all r; s � 1 we have A(y10

r

10

s

) � jyj+

6

p

m, where m = max(r; s).

Proof. Suppose r � s. (The proof for r < s is similar and is left to the reader.)

De�ne t := b

p

r and u = min(bs=t; t). Now onstrut the following DFA:

y

0

t+1

0

t

0

s�tu

1

1

0

r�t

2

+1

Fig. 15. DFA uniquely aepting y10

r

10

s

We laim this DFA uniquely aepts y10

r

10

s

. It learly aepts this string,

by going around the �rst loop t � 1 times and the seond loop u times. To see

that aeptane is unique, onsider going around the �rst loop k � 0 times and

the seond loop j � 0 times. This gives a string of length jyj+1+r�t

2

+1+k(t+

1)+1+ s� tu+ jt. Setting this equal to the desired length of jyj+1+ r+1+ s,

we get the linear diophantine equation

r � t

2

+ 1 + k(t + 1) + s � tu+ jt = r + s;

in other words, k(t+1)+ jt = t

2

� 1+ tu. Now onsider this equation modulo t.

We �nd k � �1 (mod t). Suppose k � 2t� 1. Then t

2

� 1+ tu = k(t+1) + jt �

(2t� 1)(t+1)+ jt. Simplifying, we obtain u � t+1+ j. But j � 0, so u � t+1,

ontraditing the de�nition of u. It follows that k = t � 1, and hene j = u, as

desired.

Our DFA has N := jyj + 1 + r � t

2

+ 1 + t + 1 + s � tu + t � 1 + 1 states.

Sine

p

r � 1 � t �

p

r, it follows that r � t

2

� 2

p

r � 1 and

s � tu � s � tmin(bs=t; t) = max(s � tbs=t; s � t

2

) = max(s mod t; s� t

2

)

� max(t; r� t

2

) � max(

p

r; 2

p

r � 1) � 2

p

r � 1:

Hene N < jyj+ 6

p

r.

Now we an omplete the proof of Theorem 20. Every suÆiently long pre�x

of v is of the form

x = 0

2

1 0

2

2

1 0

2

2

2

1 0

2

2

3

1 � � � 1 0

2

2

n

1 0

a

where 0 � a � 2

2

n+1

. Let y = 0

2

1 0

2

2

1 0

2

2

2

1 0

2

2

3

1 � � � 1 0

2

2

n�1

, r = 2

2

n

, and

s = a. Then jxj = 2

2

n

+ a + O(2

2

n�1

), while Lemma 21 states that A(x) �

6

p

2

2

n

+ a+O(2

2

n�1

). It follows that A(x)=jxj = O(1=

p

x), and so S(v) = 0.
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7 Open Problems

There are many open problems related to this work. For example, is A(x) om-

putable in polynomial time?
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