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Abstra
t. We de�ne a new measure of 
omplexity for �nite strings,


alled automati
 
omplexity and denoted A(x). Although A(x) is anal-

ogous to Kolmogorov-Chaitin 
omplexity, it has the advantage of being


omputable. We give upper and lower bounds for A(x), and estimate it

for some spe
i�
 strings.

1 Introdu
tion

We are interested in a 
omputable measure of 
omplexity for �nite strings x

over a �nite alphabet, typi
ally f0; 1g. Any su
h measure should re
e
t, in some

sense, how \
ompli
ated" the string x is.

Of 
ourse, any su
h dis
ussion must start with Kolmogorov-Chaitin 
omplex-

ity [11℄ C(x), whi
h (roughly speaking) measures the 
omplexity of a string x

as the size of the shortest pair

(T; y) = (Turing ma
hine des
ription; input)

su
h that T on input y outputs x. Not only does C(x) measure the 
omplexity

of x, but also the pair (T; y) 
an be viewed as the optimal way to 
ompress the

string x.

However it has three major de�
ien
ies (the �rst two are equivalent):

1. It is un
omputable! It is known that \C(x) < n" is 
omputably enumerable,

but \C(x) � n" is not 
omputably enumerable.

2. There is no e�e
tive pro
edure for �nding a 
ompression pair (T; y).

3. K depends somewhat on the parti
ular model of universal Turing ma
hine


hosen, and is de�ned in a ma
hine-independent way only up to an additive


onstant.

One 
onsequen
e of de�
ien
y (3) above is that sin
e C(xx) = C(x) +O(1),

with the 
onstant depending on the parti
ular model of universal Turing ma
hine


hosen, it doesn't make sense to ask if C(xx) > C(x) for any, most, or all strings

x. We will see below, however, that in the measure of 
omplexity proposed in

?
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this paper, we have A(xx) � A(x) for all strings x, and in fa
t there are in�nitely

many strings x for whi
h this inequality is stri
t; see Theorems 4 and 13.
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It would be ni
e to �nd a measure without these de�
ien
ies. Turing ma
hines

are extremely powerful, and this suggests that we 
ould repla
e the Turing ma-


hine with a less powerful model and hope to �nd a 
omputable measure.

For example, we 
ould 
onsider repla
ing the Turing ma
hine with a 
ontext-

free grammar (CFG). We 
hoose, perhaps arbitrarily, some measure of the 
om-

plexity of a 
ontext-free grammar, and then ask for the smallest grammar G

su
h that L(G) = fxg.

If we demand that the 
ontext-free grammar be in Chomsky normal form

(i.e., all produ
tions are of the form A ! BC or A ! a where A;B;C are

variables and a is a terminal), and use the number of variables as the measure of a

grammar's size, then then we get a well-known measure of 
omplexity asso
iated

with \word 
hains". Diwan [8℄ was apparently the �rst to study this measure;

for other papers see [6,15, 2, 1, 7℄.

In this paper we 
onsider repla
ing the Turing ma
hine with a deterministi


�nite automaton, or DFA.

Given a string x, in analogy with the word 
hain problem mentioned above,

we might seek to �nd a smallest DFA M su
h that L(M ) = fxg. But this is


learly uninteresting, sin
e if jxj = n, a smallest su
h DFA always has exa
tly

n+ 2 states. Hen
e we 
onsider relaxing the requirement somewhat.

If a DFA M has the property that it a

epts a string x, but no other strings

of length jxj, we say M a

epts x uniquely. In this paper, we examine the 
on-

sequen
es of the following de�nition. We de�ne A(x), the automati
 
omplexity

of x, to be the smallest number of states in any DFA M that a

epts x uniquely.

Of 
ourse, there may be many su
h DFA's with the smallest number of states.

We do not 
are how M behaves on strings that are shorter or longer than x.

More formally,

De�nition 1. Let � = f0; 1g and x 2 �

�

with jxj = n. De�ne A(x) to be the

smallest number of states in any DFA M su
h that L(M ) \�

n

= fxg.

An earlier paper of the �rst author and Y. Breitbart [16℄ explored a similar

notion of des
riptional 
omplexity for languages. However, that measure turns

out to be uninteresting for the 
ase of a single string.

There is a 
onne
tion between the measure studied in this paper and the

so-
alled \separating words" problem, whi
h, given two strings w and x, both

1

The question whether C(xx) > C(x) is relevant to questions raised by \s
ienti�
"


reationists putting forth a theory of \intelligent design". It has been 
laimed, for

example, that \...there is no more information in two 
opies of Shakespeare's Hamlet

than in a single 
opy. This is of 
ourse patently obvious, and any formal a

ount

of information had better agree." (William Dembski, Intelligent Design: The Bridge

Between S
ien
e and Theology, Intervarsity Press, 1999, Chapter 6, p. 158. I am

grateful to Wesley Elsberry for pointing this out.) But in fa
t all that the Kolmogorov

theory 
an 
laim is that C(xx) = C(x) + O(1), whi
h is not the same as C(xx) =

C(x). By Dembski's reasoning we would also have C(x

n

) = C(x) for all n, and this

is 
learly untrue; in fa
t it is easy to see that C(x

n

)�C(x) is unbounded as n!1.
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of length � n, asks for the number B(w; x) of states in the smallest DFA M

su
h that M separates w from x, i.e., M a

epts exa
tly one of fw; xg. It is

known that B(w; x) = O(logn) if jwj 6= jxj, and B(w; x) = O(n

2=5

(logn)

3=5

)

if jwj = jxj; see, for example, [10,13, 14℄. Given w, the fun
tion A(w) 
an be

viewed as measuring the size of the smallest DFA M su
h that M separates w

from �

jwj

� fwg.

2 Basi
 results

Clearly A(x) � jxj + 1, sin
e we 
an uniquely a

ept any string of length jxj

with a 
hain of jxj states that loops ba
k to the start state, plus one additional

\dead" state. It follows that A is 
omputable, sin
e we 
an simply examine all

�nite automata with jxj+ 1 or fewer states, and test ea
h DFA by brute for
e

to see if x is a

epted uniquely. As we will see below, it is possible to improve

this algorithm somewhat, but we still do not know if A(x) is 
omputable in time

polynomial in jxj.

It is possible, however, that A(x) is signi�
antly smaller than jxj+1. Roughly

speaking, there are two ways to save states. The �rst is to use a loop. For example,

the DFA in Figure 1 shows that A(0

9

1

8

) � 8. (Unspe
i�ed transitions go to a

\dead state" whi
h is not shown.)

0 0

1

0

1 1 1

1

Fig. 1. Automaton uniquely a

epting 0

9

1

8

.

The se
ond way to save states is through reuse. For example, you 
an reuse

states, if the string is of the form x y z y

R

w, as shown in Figure 2. (By y we

mean the string obtained by 
hanging 0 to 1 and vi
e versa.)
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0 1 0 1
1

2
2

1 0 1 0 0

Fig. 2. Automaton uniquely a

epting 010112200101

Hopefully the reader is already 
onvin
ed that this de�nition is somewhat

natural and worthy of study.

2

Let us �rst see if the de�nition is useful; for

example, 
an we use the measure as a data 
ompression te
hnique?

The answer is yes, in the following sense.

Theorem 2. Given a des
ription of a DFA M whi
h uniquely a

epts x, and

the length n = jxj, we 
an eÆ
iently re
over x.

Proof. By \eÆ
iently", we mean polynomial in the des
ription size of M and n,

the length of x.

LetM = (Q;�; Æ; q

1

; F ) be a DFA uniquely a

epting x. Let Q = fq

1

; q

2

; : : : ; q

r

g,

with r = jQj. Create a dire
ted graph G = (V;E) with vertex set V de�ned as

follows:

V = fp

i;j

: 1 � i � r; 0 � j � ng:

Pla
e a dire
ted edge (p

i;j

; p

k;l

) labeled a if Æ(q

i

; a) = q

k

and l = j + 1. Note

that G is a
y
li
.

Sin
e M uniquely a

epts x, there exists a single index t with q

t

2 F su
h

that there is exa
tly one path from p

1;0

to p

t;n+1

, and for all u 6= t, there is

no path from p

1;0

to p

u;n+1

. We 
an now �nd this path using, for example,

depth-�rst sear
h, in O(jV j+ jEj) = O((n+ 1)jQjj�j) time.

Given a DFA, we 
an also eÆ
iently de
ide if it uniquely a

epts a given x.

Theorem 3. Given a DFA M with r states and a string x of length n � 1, we


an determine in O(n + r

3

logn) steps whether M uniquely a

epts x.

Proof. Let M = (Q;�; Æ; q

1

; F ), where Q = fq

1

; q

2

; : : : ; q

r

g. We 
an determine

if M a

epts x by simply simulating it on x, whi
h 
an be done in O(n) time.

Now 
reate a matrixM = (a

i;j

)

1�i;j�n

where a

i;j

= Cardfb 2 � : Æ(q

i

; b) =

q

j

g. Then an easy indu
tion gives that if M

k

= (


i;j;k

)

1�i;j�n

, then 


i;j;k

=

Cardfx 2 �

k

: Æ(q

i

; x) = q

j

g. Now 
ompute

P

j:q

j

2F




1;j;jxj

. This sum is 1 i�

M uniquely a

epts x.

2

But if not, there are some alternatives that also may be of interest. For example, we


ould de�ne B(x) to be the smallest number of states in any DFA M su
h that x is

the lexi
ographi
ally least string of length jxj a

epted by M .
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Thus it suÆ
es to 
ompute M

k

eÆ
iently. To do so we 
an use the familiar

\binary method" of exponentiation; see, for example, [3℄. Furthermore, during

the 
omputation of M

k

, we 
an always redu
e an entry that is � 2 to 2. The

result is a matrix M

0

with entries in f0; 1; 2g with the property that if an entry

of M

k

is 0 or 1, so is the 
orresponding entry of M

0

, and if an entry of M

k

is 2

or more, the 
orresponding entry in M

0

is 2. Sin
e the sizes of the entries of M

0

are bounded by 2, it follows that this 
omputation 
an be done in O(r

3

logn)

bit operations.

Our last theorem of this se
tion is the following:

Theorem 4. We have A(xx) � A(x) for all strings x.

The following simple proof was shown to us at the DCAGRS 2000 workshop

in London, Ontario, by Kai Salomaa:

Proof. Consider the DFAM = (Q;�; Æ; q

0

; F ) minimizingA(xx). Then we know

there is only one path of length jxxj from q

0

to a state of F , and this path is

labeled xx. Let q = Æ(q

0

; x). Constru
t a new DFA M

0

= (Q;�; Æ; q

0

; fqg). Then

we 
laim M

0

uniquely a

epts x. For if not, there exists another string w 6= x,

jwj = jxj, su
h that Æ(q

0

; w) = q. Then Æ(q

0

; wx) 2 F , and so M a

epts wx,

another string of length jxxj, and wx 6= xx. This 
ontradi
tion proves that

A(x) � A(xx), as desired.

In Theorem 13 below we show that in fa
t A(xx) > A(x) for in�nitely many

strings x.

3 Upper bounds

In this se
tion we prove some upper bounds on A(x).

Theorem 5. Let x 2 �

�

with j�j = k � 2 and jxj = n. Suppose n > k

t

+ t� 1.

Then A(x) � n+ 2� t.

Proof. If n > k

t

+ t � 1, then x = a

1

a

2

� � �a

n

has at least k

t

+ 1 subwords of

length t. Hen
e some subword of length t appears at least twi
e in x. Let y be

a longest repeated subword, and let the �rst two o

urren
es of y be denoted y

0

and y

00

(they may overlap).

Then we have the two fa
torizations shown in Figure 3.

u y

00

w

w

y

0

x =

v

u

v

0

Fig. 3. Two fa
torizations of x.
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where y = y

0

= y

00

. Furthermore, sin
e y is a longest repeated subword, we know

that either w = � or the �rst letter of v di�ers from the �rst letter of w.

By a 
lassi
 theorem of Lyndon & S
h�utzenberger [12℄, the equality yv = v

0

y

implies that there exist strings r; s and an integer e � 0 su
h that

y = (rs)

e

r

v = sr

v

0

= rs:

Thus x = u(rs)

e+1

rw. It follows that the �rst letter of s di�ers from the �rst

letter of w, so we 
an a

ept x uniquely with a DFA as in Figure 4.

u

r

s

w

Fig. 4. DFA uniquely a

epting x = u(rs)

e+1

rw.

The total number of states is jurswj+ 2 = n + 2� jyj.

Theorem 6. Let x 2 f0; 1g

n

. Then

A(x) �

3

4

n+ (logn)

r

n

8

for almost all strings x.

Proof. (Sket
h.) The idea is to write x = x

0

ax

00

where jx

0

j = jx

00

j = b

n

2


 and

a 2 f�; 0; 1g. Then the expe
ted number of mismat
hes between x

0

and x

00

R

is

n

4

+O(1), with standard deviation

p

n

8

+O(1). We 
an now build a DFA for x

0

,

and attempt to reuse states 
orresponding to the mismat
hes between x

0

and

x

00

R

, as in Figure 2.

4 Lower bounds

First, we show by a simple 
ounting argument the existen
e of a 
onstant C su
h

that almost all strings x of length n satisfy A(x) > C

n

logn

.

More pre
isely, we prove
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Theorem 7. Suppose j�j = k � 2, and let 0 < "; Æ < 1 be �xed. If n is

suÆ
iently large, then

A(x) � (1� Æ)"

log k

k

n

logn

for all strings x 2 �

n

, with at most k

"n

ex
eptions.

Proof. It is easy to see there are at most q

qk+1

essentially distin
t automata with

� q states and exa
tly one �nal state. (The fa
tor q

qk


omes from the transition

fun
tion, and the fa
tor q 
omes from the assignment of �nal states. Note we 
an

simulate a DFA with � q states by one with exa
tly q states, by simply adding

non-
onne
ted states, if ne
essary.) Ea
h of these automata uniquely a

epts at

most one string of length n. Thus if

q

qk+1

< k

"n

; (1)

then at most k

"n

di�erent strings of length n 
an be represented. Now a routine


al
ulation shows that if q < (1� Æ)"

log k

k

n

logn

, then the inequality (1) holds.

It is possible to improve this bound as follows:

Theorem 8. We have A(x) � n=13 for almost all strings x 2 f0; 1g

n

.

Proof. Suppose M is a DFA with A(x) states that uniquely a

epts x. Let n =

jxj. Consider the transition diagram D of M , whi
h is a labeled dire
ted graph

whose verti
es are the states of M and whose (labeled) edges 
orrespond to

transitions. We de�ne the a

epting path P for x to be the sequen
e of n + 1

edges traversed in this graph. Note that the �rst element of P is an edge labeled

� that enters the initial state q

0

of M . We de�ne the abbreviated a

epting path

P

0

to be the sequen
e of edges obtained from P by 
onsidering ea
h edge in

order and deleting it if it has previously been traversed. The idea is to en
ode

P

0

in a spa
e-eÆ
ient manner so that x 
an be re
overed.

The outdegree of ea
h vertex en
ountered along P

0

is � 2, sin
e M is a DFA.

We 
laim the indegree of ea
h vertex is � 2. If not, then let v be a vertex with

indegree � 3. Then there are at least three distin
t edges entering v, say g

1

; g

2

; g

3

.

Let x

1

be a pre�x of x su
h that the edge g

1

is used in the last transition when

the DFA pro
esses x

1

. (If v = q

0

, the initial state, we may have x

1

= �.) Let x

1

x

2

be a pre�x of x su
h that g

2

is used in the last transition when pro
essing x

1

x

2

,

x

2

6= �. Let x

1

x

2

x

3

be a pre�x of x su
h that g

3

is used in the last transition

when pro
essing x

1

x

2

x

3

, x

3

6= �. Finally, let x

4

be su
h that x = x

1

x

2

x

3

x

4

.

Then x

0

:= x

1

x

3

x

2

x

4

is also a

epted by M , and jxj = jx

0

j. If x = x

0

, then

x

2

x

3

= x

3

x

2

. Then, by a theorem of Lyndon & S
h�utzenberger [12℄, there exist

a string z 6= � and integers i; j � 1 su
h that x

2

= z

i

, x

3

= z

j

. Now if there is a

path labeled z

i

going from v to v, and a path labeled z

j

from v to v, then there

is a path labeled z

g
d(i;j)

from v to v. But then g

2

= g

3

, a 
ontradi
tion. Hen
e

x 6= x

0

, 
ontradi
ting the hypothesis that x is a

epted uniquely.
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Now 
onsider the verti
es visited by P

0

= (e

0

; e

1

; : : : ; e

t

), the abbbreviated

a

epting path for x. Ea
h vertex v is of exa
tly one of the following types:

Type 1. There is exa
tly one edge e

i

of P

0

entering v and there is exa
tly one

edge e

i+1

leaving v.

Type 2. There are exa
tly two edges, e

i

and e

j

, i < j, entering v, and exa
tly

one edge e

i+1

leaving v.

Type 3. There is one edge, e

i

, entering v, and exa
tly two edges, e

i+1

and

e

j

, i < j, leaving v.

Type 4. There are exa
tly two edges, e

i

and e

j

, entering v, with i < j, and

there are exa
tly two edges, e

i+1

and e

j+1

, leaving v.

We now des
ribe a spa
e-eÆ
ient en
oding E of P

0

whi
h will avoid re
ording

the state numbers. Instead, we re
ord the labels of the edges along with some

additional information that tells us what type ea
h vertex is, and allows us to

re
over how these verti
es are 
onne
ted.

If P

0

= (e

0

; e

1

; : : : ; e

t

), then we de�ne E(i; n) to be a 
ertain en
oding, over

the alphabet f0; 1; [; ℄

0

; ℄

1

; �;+g of the edges (e

i

; : : : ; e

n

). We also de�ne a

i

to

be the label of the edge e

i


orresponding to the symbol 
ausing the transition.

The meaning of the symbols is as follows: 0 and 1 represent the labels on the

edges of P

0

. A left bra
ket [ represents a vertex that is the target of a ba
kedge.

A right bra
ket (℄

0

or ℄

1

) represents a ba
kedge labeled with its subs
ript. The

symbol + represents a vertex of outdegree 2, and the symbol � (introdu
ed later)

represents a �nal state.

The base 
ase is when i > n, in whi
h 
ase we de�ne E(i; n) = �. For the

indu
tive de�nition there are four 
ases, depending on the type of the vertex

rea
hed by the dire
ted edge e

i

, given in Figures 5{8.

e ei i+1

Fig. 5. Vertex of type 1: E(i; n) := a

i

E(i + 1; n)

e e

e

i i+1

j

Fig. 6. Vertex of type 2: E(i; n) = a

i

[E(i+ 1; j � 1) ℄

a

j

E(j + 1; n)

8



e e

e

i i

j

+1

Fig. 7. Vertex of type 3: E(i; n) = a

i

+ E(i+ 1; n)

e e

e

i i+1

j

ej+1

Fig. 8. Vertex of type 4: E(i; n) = a

i

[ +E(i+ 1; j � 1) ℄

a

j

E(j + 1; n)

Finally, if P

0

= (e

0

; e

1

; : : : ; e

t

), we de�ne E(x) to be E(0; t) with a symbol

� inserted after the symbol leading to the (unique) a

epting state, followed by

the symbol #, followed by the base-2 representation of n = jxj, followed by

##. Thus E(x) is a self-delimiting en
oding of x over the 8-symbol alphabet

f0; 1;+; �; [; ℄

0

; ℄

1

;#g. We 
onsider some examples of this en
oding.

Figure String En
oding

Figure 1 0

9

1

8

[+00℄

0

1[111�℄

1

#10001##

Figure 10 0110100110 [+0[+1[+10℄

1

℄

0

℄

0

110 �#1010##

Figure 11 01101001100101 0[1 � 101[001+℄

1

℄

0

#1110##

We leave it to the reader to verify that P

0


an be re
onstru
ted from E(0; t)

and x 
an be re
onstru
ted from E(x). It is easy to prove by indu
tion that

jE(a; b)j � 2(b� a+ 1). Now P

0

has at most 2A(x) edges with nonempty labels,

so we �nd jE(0; t)j � 4A(x) + 2. It follows that jE(x)j � 4A(x) + 6 + log

2

jxj.

Sin
e E is over an 8-letter alphabet, it 
an be re
oded over f0; 1g using three

bits for ea
h symbol. It follows that C(x) � 12A(x)+18+3 log

2

jxj. On the other

hand, it is known that C(x) � jxj� log

2

jxj for almost all x. Hen
e A(x) � jxj=13

for almost all x.

9



Remark. We have not tried to optimize the 
onstant 13 in Theorem 8. H.

Petersen informs us (personal 
ommuni
ation) that 13 
an be redu
ed to 7.

We 
an improve the lower bound for 
ertain kinds of strings, as follows:

Theorem 9. Suppose w 2 �

�

is kth-power-free for some integer k � 2, i.e., w


ontains no subword of the form x

k

with x 6= �. Then A(w) �

jwj+1

k

.

Proof. Let w = a

1

a

2

� � �a

n

be uniquely a

epted by some DFAM = (Q;�; Æ; q

0

; A),

and de�ne p

i

:= Æ(q

0

; a

1

a

2

� � �a

i

) for 0 � i � n.

Suppose some state is visited at least k+1 times on the a

eptan
e path for

w. Then there exist indi
es i

1

; i

2

; : : : ; i

k+1

su
h that

p

i

1

= p

i

2

= � � � = p

i

k+1

:

De�ne

w

0

= a

1

a

2

� � �a

i

1

w

1

= a

i

1

+1

� � �a

i

2

w

2

= a

i

2

+1

� � �a

i

3

.

.

.

w

k

= a

i

k

+1

� � �a

i

k+1

w

k+1

= a

i

k+1

� � �a

n

:

Then M uniquely a

epts w = w

0

w

1

w

2

w

3

� � �w

k+1

. However, it also a

epts,

for example, w

0

= w

0

w

2

w

1

w

3

� � �w

k+1

. But jw

0

j = jwj. If w

1

6= w

2

, this gives

a 
ontradi
tion. Hen
e w

1

= w

2

. By a similar argument we �nd w

i

= w

j

for

1 � i; j � k. It follows that w = w

0

w

k

1

w

k+1

, and so w 
ontains a k'th power, a


ontradi
tion.

Thus we have shown that no state 
an be visited k+1 times on the a

eptan
e

path for w. Now for 0 � i < jQj let b

i

be the number of times state q

i

is visited

on the a

eptan
e path for w. Then we have

X

0�i<jQj

b

i

q

i

= n+ 1:

But by the argument above 0 � b

i

� k. Thus

n+ 1 =

X

0�i<jQj

b

i

q

i

�

X

0�i<jQj

kq

i

= kjQj:

It follows that jQj � (n+ 1)=k, and so A(w) = jQj � (n+ 1)=k, as desired.

Remark. If j�j � 2 then there are in�nitely many 
ube-free strings. For exam-

ple, if t = 01101001 � � � denotes the in�nite Thue-Morse word, then every pre�x

is 
ube-free. If j�j � 3 then there are in�nitely many square-free strings [5℄.
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5 Some spe
i�
 examples

In this se
tion we determine the automati
 
omplexity for some parti
ular ex-

amples. There are interesting 
onne
tions to number theory.

Theorem 10. We have A(0

n

1

n

) = O(

p

n).

Proof. Assume n � 1. Let r = b

p

n
, so r

2

� n < (r + 1)

2

. Write n = r

2

+ a.

Then 0 � a � 2r and r � 1. Then we 
an a

ept 0

n

1

n

with a DFA of the form

given in Figure 9. (Unspe
i�ed transitions go to a \dead state" whi
h is not

shown.)

0 0 0 0 0 loop of 
size 
on input 0

rq q q0 1 a-1 aq

p

p

p

1

2

a+1

loop of
size 
on input 1

r+1

1

1

1

1

. . .

..

.

Fig. 9. Automaton uniquely a

epting 0

n

1

n

, where n = r

2

+ a.

This DFA does indeed a

ept 0

n

1

n

be
ause

1. We go from state q

0

to state q

a

on 0

a

;

2. We then go around the loop at q

a

r times;

3. Next on 1

a

we go from q

a

to p

a+1

;

4. Finally, we go around the loop at p

a+1

r � 1 times.

11



This path a

epts 0

a

(0

r

)

r

11

a

(1

r+1

)

r�1

= 0

r

2

+a

1

r

2

+a

.

On the other hand, we 
laim that this DFA a

epts no other string of length

2n. Suppose it did. Then any a

epting path must go around the loop on q

a

b

times and the loop on p

a+1


 times. Then

2n = a+ br + a + 1 + 
(r + 1):

Sin
e n = r

2

+ a, it follows that 2r

2

� 1 = br+ 
(r+ 1). Redu
ing modulo r, we

get 
 � �1 (mod r). Thus 
 2 fr�1; 2r�1; : : :g. But if 
 � 2r�1 then the string

would be of length � (2r�1)(r+1)+2a+1= 2r

2

+r�1+2a+1� 2n+r > 2n,

a 
ontradi
tion.

Finally, our DFA uses a+1+r�1+a+1+r = 2r+2a+1 � 6r+1 � 6

p

n+1

states.

We now show that the bound of O(

p

n) is tight. First we state the following

lemma:

Lemma 11. Let 
; d be integers � 1. Suppose the linear diophantine equation

N = x
+yd is solvable in integers, i.e., suppose g
d(
; d) jN . If N > 2
d�
�d,

then the linear diophantine equation N = x
 + yd has at least two solutions in

non-negative integers x; y.

The proof is easy and left to the reader. This result (in a more general form)

has re
ently been proved independently by Be
k & Robins [4℄.

We now prove

Theorem 12. Any DFA that uniquely a

epts 0

n

1

n

must have at least

p

n� 1

states.

Proof. Suppose M is a DFA with <

p

n � 1 states that uniquely a

epts 0

n

1

n

.

De�ne p

i

= Æ(q

0

; 0

i

) for 0 � i � n. Sin
e M has < n states, some state must

be repeated, and thus there must be a \loop" of r � 1 states that is repeated j

times, for some integer j � 0. There may also be a \tail" at the beginning, and

at the end we may not go around the \loop" an integral number of times. Let

s = n� rj. Then r; s <

p

n� 1.

Similarly, de�ne r

i

= Æ(p

n

; 1

i

) for 0 � i � n. By the same argument there

must be a \loop" of u � 1 states that is repeated k times, for some integer k � 0.

Let t = n� ku. Then t; u <

p

n � 1.

Sin
e M a

epts 0

n

1

n

uniquely, it must be the 
ase that the equation ra +

ub = 2n� s� t has exa
tly one solution (a; b) = (j; k). Then, by Lemma 11, we

have 2n� s� t � 2ru� r�u. Thus 2n� 2(

p

n� 1) � 2n� s� t � 2ru� r�u �

2(

p

n� 1)(

p

n� 1)� 2. But then 2

p

n+ 2 � 0, a 
ontradi
tion.

We 
an now exhibit in�nitely many strings for whi
h A(xx) > A(x).

Theorem 13. Let x = 0

n

1. Then A(xx) = 
(

p

n), but A(x) = O(1).

Proof. It is 
lear that A(x) = O(1), sin
e we 
an a

ept 0

n

1 uniquely with a

3-state DFA. However, mimi
king the lower bound proof of Theorem 12 above,

it is easy to see that A(0

n

10

n

1) = 
(

p

n).

12



It is possible to generalize Theorem 10. We need some te
hni
al lemmas. The

�rst 
on
erns solvability of 
ertain linear diophantine equations.

Lemma 14. Let k � 1, and let n

1

; n

2

; : : : ; n

k

be positive integers, relatively

prime in pairs. Let r � 0 be an integer. De�ne P := n

1

n

2

� � �n

k

. If r = 0, the

linear diophantine equation

a

1

P

n

1

+ a

2

P

n

2

+ � � �+ a

k

P

n

k

= (n

1

� 1)

P

n

1

+ (n

2

� 1)

P

n

2

+ � � �+ (n

k

� 1)

P

n

k

� rP

(2)

has a unique solution

(a

1

; a

2

; : : : ; a

k

) = (n

1

� 1; n

2

� 1; : : : ; n

k

� 1)

in non-negative integers. If r � 1, then (2) has no solutions in non-negative

integers.

Proof. By indu
tion on k. If k = 1 Eq. (2) be
omes a

1

= n

1

� 1� rn

1

. If r = 0

this equation has the unique solution a

1

= n

1

�1, but if r � 1 then 
learly there

are no solutions in non-negative integers.

Now assume the result is true for 1; 2; : : : ; k� 1. We prove it for k. Consider

Eq. (2) mod n

k

. We get

a

k

P

n

k

� �

P

n

k

(mod n

k

):

Sin
e the n

i

are pairwise relatively prime, it follows that a

k

� �1 (mod n

k

).

Sin
e a

k

is a non-negative integer, we 
an therefore write a

k

= jn

k

� 1 for some

integer j � 1.

Now substitute a

k

= jn

k

� 1 in Eq. (2). After a little easy algebra, we get

a

1

P

n

1

+ a

2

P

n

2

+ � � �+ a

k�1

P

n

k�1

=

(n

1

� 1)

P

n

1

+ (n

2

� 1)

P

n

2

+ � � �+ (n

k�1

� 1)

P

n

k�1

� (j + r � 1)P (3)

By indu
tion Eq. (3) has a solution i� j+ r�1 = 0. But j � 1. Hen
e j = 1 and

a

k

= n

k

� 1, and hen
e Eq. (3) has a solution i� r = 0. If r = 0, by indu
tion

the solution is (a

1

; a

2

; : : : ; a

k�1

) = (n

1

� 1; n

2

� 1; : : : ; n

k�1

� 1).

Lemma 15. (a) If M

1=k

> 2B, then

M

M

1=k

� B

< M

k�1

k

+ 2BM

k�2

k

:

(b) If 0 < B < A and k � 1, then

(A �B)

k

� A

k

� kA

k�1

B:

13



Proof. (a) We have

(M

1=k

�B)(M

k�1

k

+ 2BM

k�2

k

) = M +BM

k�2

k

(M

1=k

� 2B) > M:

(b) An easy indu
tion on k proves that if 0 < x < 1 and k � 1 then (1� x)

k

�

1� kx. Now let x = B=A and multiply by A

k

.

For our last lemma, we will need a 
ertain number-theoreti
 fun
tion. For

t � 1, de�ne f(t) to be the least integer n su
h that every set of n 
onse
utive

positive integers 
ontains a subset of size t that is pairwise relatively prime.

Then, for example, f(4) = 6, sin
e the set f2; 3; 4; 5; 6g 
ontains no subset of 4

relatively prime integers, while it is easy to 
he
k that every set of 6 
onse
utive

positive integers does.

It seems quite diÆ
ult to estimate f pre
isely. However, the following lemma

follows easily from results of Erd}os and Selfridge [9℄:

Lemma 16. For all Æ > 0 and t suÆ
iently large we have f(t) < t

2+Æ

.

Proof. Erd}os and Selfridge de�ned F (n; k) to be the largest subset of pair-

wise relatively prime integers in fn + 1; n + 2; : : : ; n + kg, and proved that

min

n�0

F (n; k) > k

1=2��

. Now let k = t

2+5�

for some � < 1=10. We �nd

min

n�0

F (n; t

2+5�

) > (t

2+5�

)

1=2��

> t

1+�=2�5�

2

> t;

sin
e � < 1=10. Hen
e for all 0 < � < 1=10 and all t suÆ
iently large, any t

2+5�


onse
utive integers 
ontains a pairwise relatively prime subset of 
ardinality

> t. In other words, f(t) < t

2+Æ

where Æ = 5�.

We are now ready to prove

Theorem 17. Let a

1

; a

2

; : : : ; a

k

be k distin
t symbols. Then A(a

n

1

a

n

2

� � �a

n

k

) =

O(n

1�1=k

), where the 
onstant in the big-O may depend on k.

Proof. The idea is as follows: we 
hoose k pairwise relatively prime integers, ea
h

� n

1=k

, say n

1

; n

2

; : : : ; n

k

. Let P = n

1

n

2

� � �n

k

. We then form a DFA similar to

that in Figure 9, with k loops, one on ea
h a

i

, 1 � i � k, of size P=n

i

. Ea
h

loop is pre
eded by a \tail" of length n � (P=n

i

)(n

i

� 1) = n � P + P=n

i

. By

Lemma 14, this DFA uniquely a

epts a

n

1

a

n

2

� � �a

n

k

.

The total number of states is � N , where

N := 1 + k(n � P ) + 2

X

1�i�k

P

n

i

: (4)

By Lemma 5 we 
an 
hoose the pairwise relatively prime numbers n

i

su
h that

n

1=k

� k

2+Æ

< n

i

< n

1=k

. Setting A = n

1=k

and B = k

2+Æ

in Lemma 15 (b) we

obtain

P = n

1

n

2

� � �n

k

� n� k

3+Æ

n

k�1

k

:

14



Hen
e

k(n� P ) < k

4+Æ

n

k�1

k

: (5)

On the other hand, setting M = P and B = k

2+Æ

in Lemma 15 (a) we obtain

P

n

i

< P

k�1

k

+ 2k

2+Æ

P

k�2

k

(6)

for all n suÆ
iently large. Combining Eqs. (4){(6), we obtain N = O(k

4+Æ

n

k�1

k

),

as desired.

6 In�nite words

Up to now we have been dealing with �nite words. However, it is also interesting

to 
onsider the 
ase of in�nite words. In this paper, by an in�nite word we will

mean a one-sided, right-in�nite word, i.e., a map from N to �. For an in�nite

word x we are interested in 
omputing

I(x) = lim inf

x is a pre�x of x

A(x)

jxj

and

S(x) = lim sup

x is a pre�x of x

A(x)

jxj

:

for \interesting" in�nite words x.

We start with the Thue-Morse word t. Let � be a morphism de�ned by

�(0) = 01, �(1) = 10. Then t = t

0

t

1

t

2

� � � = lim

n!1

�

n

(0). We de�ne T (r) =

t

0

t

1

� � � t

r�1

, the pre�x of t of length r.

Theorem 18. We have

I(t) �

1

3

and

S(t) �

2

3

:

Proof. The lower bound for I(t) follows immediately from Theorem 9, sin
e, as

is well-known, the Thue-Morse word is 
ube-free.

For the upper bound, we break the argument up as follows. We 
laim that

we 
an a

ept T (m) using h(m) states, where h is given in the table below.

m h(m)

2 � 2

2n

� m � 3 � 2

2n

m+ 3� 2

2n

3 � 2

2n

< m < 4 � 2

2n

2 � 2

2n

+ 2

4 � 2

2n

� m < 5 � 2

2n

m + 2� 2 � 2

2n

5 � 2

2n

� m � 6 � 2

2n

m + 1� 2 � 2

2n

6 � 2

2n

< m < 8 � 2

2n

4 � 2

2n

+ 2

15



For 2 � 2

2n

� m � 3 � 2

2n

, we use the fa
t that T (2 � 2

2n

) = T (2

2n

)T (2

2n

)

R

,

whi
h allows us to reuse 2

2n

� 1 states, as illustrated in Figure 10.

For 3�2

2n

� m < 4�2

2n

, we use the fa
t that T (4�2

2n

) = T (2

2n

)(T (2

2n

))

2

T (2

2n

),

whi
h allows us to reuse 2

2n

states in an inner loop and m� 3 � 2

2n

states in an

outer loop, as illustrated in Figure 11.

For 4�2

2n

� m < 5�2

2n

, it is easiest to give the en
oding of the 
orresponding

ma
hine, as introdu
ed in Se
tion 4:

t

0

[t

1

� � � t

m�3�2

2n

�1

�t

m�3�2

2n [t

m�3�2

2n

+1

� � � t

2

2n+1

�1

+t

2

2n+1 � � � t

m�2

2n+1

�1

℄

t

m�2

2n+1

℄

t

3�2

2n

This is illustrated in Figure 12.

For 5�2

2n

� m � 6�2

2n

, we use the fa
t that T (5�2

2n

) = (T (2

2n

)T (2

2n

)T (2

2n

))

5=3

,

as illustrated in Figure 13.

For 6 � 2

2n

� m � 8 � 2

2n

, we use the fa
t that T (m) = T (2

2n+3

� m)xx

R

,

where x = t

2

2n+3

�m

� � � t

2

2n+2
, as illustrated in Figure 14.

In the �gures that follow, unspe
i�ed transitions go to a \dead state" whi
h

is not shown.

0 1

1

0
1

001

1

0

Fig. 10. Automaton uniquely a

epting t

10
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0 1 1 0 1 0 0

1

1

0

Fig. 11. Automaton uniquely a

epting t

14

0 1 1 0 1 0 0 1

1

0

0

0

Fig. 12. Automaton uniquely a

epting t

18

0 1 1 0 1 0 0 1 1 0 0

0

1

1

Fig. 13. Automaton uniquely a

epting t

22
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0 1 1 0

1

0 0 1 1 0 0 1 0 1 1

0
1

001011001

Fig. 14. Automaton uniquely a

epting t

26

If we 
onsider the Thue-Morse word on three symbols [5℄, we 
an get a sharper

result.

Theorem 19. Let u = 102120102012 � � � be the in�nite Thue-Morse word on

three symbols, generated by 1! 102, 0! 12, 2! 0. Then

I(u) =

1

2

:

Proof. The lower bound 
omes from Theorem 9. For the upper bound, we 
laim

that if we let rs be a pre�x of u with jrj = jsj = 2

2k

for some k � 0, then r

di�ers in every single position from s

R

. Hen
e we may reuse states in analogy

with Figure 2.

To prove the 
laim, let u = u

0

u

1

u

2

� � � . Let r = u

0

u

1

� � �u

2

2k

�1

and s =

u

2

2k � � �u

2

2k+1

�1

. It is known that u

i

= (2t

i

+ t

i+1

) mod 3, where t = t

0

t

1

t

2

� � �

is the Thue-Morse word. For 0 � i < 2

2k+1

we have t

i

= 1 � t

2

2k+1

�i�1

. Now t

is 
ube-free, so t

i�1

t

i

t

i+1

62 f000; 111g. Hen
e t

i

+ t

i+1

6= 2t

i�1

, and t

j

2 f0; 1g

for j � 0, so t

i

+ t

i+1

6� 2t

i�1

(mod 3). Adding t

i

to this last in
ongruen
e, we

have

u

i

� 2t

i

+ t

i+1

6� t

i

+ 2t

i�1

� 2(1� t

i

) + (1� t

i�1

)

� 2t

2

2k+1

�i�1

+ t

2

2k+1

�i

� u

2

2k+1

�i�1

(mod 3):

This proves that r di�ers in every position from s

R

.

One might wonder if S(x) = 0 implies that x is ultimately periodi
. The

answer is no, as the following example shows:

Theorem 20. Let v = 0

2

1 0

4

1 0

16

1 0

256

10

65536

1 � � � . Then S(v) = 0.

Proof. First, we need the following lemma.
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Lemma 21. Let y 2 f0; 1g

�

. Then for all r; s � 1 we have A(y10

r

10

s

) � jyj+

6

p

m, where m = max(r; s).

Proof. Suppose r � s. (The proof for r < s is similar and is left to the reader.)

De�ne t := b

p

r
 and u = min(bs=t
; t). Now 
onstru
t the following DFA:

y

0

t+1

0

t

0

s�tu

1

1

0

r�t

2

+1

Fig. 15. DFA uniquely a

epting y10

r

10

s

We 
laim this DFA uniquely a

epts y10

r

10

s

. It 
learly a

epts this string,

by going around the �rst loop t � 1 times and the se
ond loop u times. To see

that a

eptan
e is unique, 
onsider going around the �rst loop k � 0 times and

the se
ond loop j � 0 times. This gives a string of length jyj+1+r�t

2

+1+k(t+

1)+1+ s� tu+ jt. Setting this equal to the desired length of jyj+1+ r+1+ s,

we get the linear diophantine equation

r � t

2

+ 1 + k(t + 1) + s � tu+ jt = r + s;

in other words, k(t+1)+ jt = t

2

� 1+ tu. Now 
onsider this equation modulo t.

We �nd k � �1 (mod t). Suppose k � 2t� 1. Then t

2

� 1+ tu = k(t+1) + jt �

(2t� 1)(t+1)+ jt. Simplifying, we obtain u � t+1+ j. But j � 0, so u � t+1,


ontradi
ting the de�nition of u. It follows that k = t � 1, and hen
e j = u, as

desired.

Our DFA has N := jyj + 1 + r � t

2

+ 1 + t + 1 + s � tu + t � 1 + 1 states.

Sin
e

p

r � 1 � t �

p

r, it follows that r � t

2

� 2

p

r � 1 and

s � tu � s � tmin(bs=t
; t) = max(s � tbs=t
; s � t

2

) = max(s mod t; s� t

2

)

� max(t; r� t

2

) � max(

p

r; 2

p

r � 1) � 2

p

r � 1:

Hen
e N < jyj+ 6

p

r.

Now we 
an 
omplete the proof of Theorem 20. Every suÆ
iently long pre�x

of v is of the form

x = 0

2

1 0

2

2

1 0

2

2

2

1 0

2

2

3

1 � � � 1 0

2

2

n

1 0

a

where 0 � a � 2

2

n+1

. Let y = 0

2

1 0

2

2

1 0

2

2

2

1 0

2

2

3

1 � � � 1 0

2

2

n�1

, r = 2

2

n

, and

s = a. Then jxj = 2

2

n

+ a + O(2

2

n�1

), while Lemma 21 states that A(x) �

6

p

2

2

n

+ a+O(2

2

n�1

). It follows that A(x)=jxj = O(1=

p

x), and so S(v) = 0.
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7 Open Problems

There are many open problems related to this work. For example, is A(x) 
om-

putable in polynomial time?
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