Automatic Complexity of Strings

Jeffrey Shallit* and Ming-wei Wang

Department of Computer Science
University of Waterloo
Waterloo, N2L 3G1 Canada
shallit@graceland.uwaterloo.ca
m2wang@math.uwaterloo.ca

Abstract. We define a new measure of complexity for finite strings,
called automatic complexity and denoted A(z). Although A(z) is anal-
ogous to Kolmogorov-Chaitin complexity, it has the advantage of being
computable. We give upper and lower bounds for A(x), and estimate it
for some specific strings.

1 Introduction

We are interested in a computable measure of complexity for finite strings =
over a finite alphabet, typically {0, 1}. Any such measure should reflect, in some
sense, how “complicated” the string x is.

Of course, any such discussion must start with Kolmogorov-Chaitin complex-
ity [11] C(z), which (roughly speaking) measures the complexity of a string
as the size of the shortest pair

(T, y) = (Turing machine description, input)

such that 7" on input y outputs . Not only does C'(x) measure the complexity
of 2, but also the pair (T, y) can be viewed as the optimal way to compress the
string .

However it has three major deficiencies (the first two are equivalent):

1. Tt is uncomputable! Tt is known that “C'(z) < n” is computably enumerable,
but “C'(z) > n” is not computably enumerable.

2. There is no effective procedure for finding a compression pair (7, y).

3. K depends somewhat on the particular model of universal Turing machine
chosen, and is defined in a machine-independent way only up to an additive
constant.

One consequence of deficiency (3) above is that since C'(zx) = C(z) + O(1),
with the constant depending on the particular model of universal Turing machine
chosen, it doesn’t make sense to ask if C'(xz) > C(x) for any, most, or all strings
z. We will see below, however, that in the measure of complexity proposed in

* Supported in part by a grant from NSERC

this paper, we have A(zx) > A(x) for all strings #, and in fact there are infinitely
many strings z for which this inequality is strict; see Theorems 4 and 13. !

It would be nice to find a measure without these deficiencies. Turing machines
are extremely powerful, and this suggests that we could replace the Turing ma-
chine with a less powerful model and hope to find a computable measure.

For example, we could consider replacing the Turing machine with a context-
free grammar (CFG). We choose, perhaps arbitrarily, some measure of the com-
plexity of a context-free grammar, and then ask for the smallest grammar &
such that L(G) = {«}.

If we demand that the context-free grammar be in Chomsky normal form
(i.e., all productions are of the form 4 — BC or A — a where A, B,C are
variables and a is a terminal), and use the number of variables as the measure of a
grammar’s size, then then we get a well-known measure of complexity associated
with “word chains”. Diwan [8] was apparently the first to study this measure;
for other papers see [6,15,2,1,7].

In this paper we consider replacing the Turing machine with a deterministic
finite automaton, or DFA.

Given a string z, in analogy with the word chain problem mentioned above,
we might seek to find a smallest DFA M such that L(M) = {z}. But this is
clearly uninteresting, since if |#| = n, a smallest such DFA always has exactly
n + 2 states. Hence we consider relaxing the requirement somewhat.

If a DFA M has the property that it accepts a string x, but no other strings
of length |z|, we say M accepts & uniquely. In this paper, we examine the con-
sequences of the following definition. We define A(xz), the automatic complexity
of z, to be the smallest number of states in any DFA M that accepts x uniquely.
Of course, there may be many such DFA’s with the smallest number of states.
We do not care how M behaves on strings that are shorter or longer than z.
More formally,

Definition 1. Let ¥ = {0,1} and ® € X* with |x| = n. Define A(x) to be the
smallest number of states in any DFA M such that L(M) N X" = {z}.

An earlier paper of the first author and Y. Breitbart [16] explored a similar
notion of descriptional complexity for languages. However, that measure turns
out to be uninteresting for the case of a single string.

There is a connection between the measure studied in this paper and the
so-called “separating words” problem, which, given two strings w and z, both

! The question whether C'(zx) > C(z) is relevant to questions raised by “scientific”
creationists putting forth a theory of “intelligent design”. It has been claimed, for
example, that “...there is no more information in two copies of Shakespeare’s Hamlet
than in a single copy. This is of course patently obvious, and any formal account
of information had better agree.” (Willilam Dembski, Intelligent Design: The Bridge
Between Science and Theology, Intervarsity Press, 1999, Chapter 6, p. 158. I am
grateful to Wesley Elsberry for pointing this out.) But in fact all that the Kolmogorov
theory can claim is that C(zz) = C(z) 4+ O(1), which is not the same as C(zz) =
C(z). By Dembski’s reasoning we would also have C(2™) = C/(z) for all n, and this
is clearly untrue; in fact it is easy to see that C(z™) — C(z) is unbounded as n — co.

of length < n, asks for the number B(w, z) of states in the smallest DFA M
such that M separates w from x, i.e., M accepts exactly one of {w,z}. It is
known that B(w,z) = O(logn) if |w| # |z|, and B(w,z) = O(n*/>(logn)3/%)
if |w| = |z|; see, for example, [10,13, 14]. Given w, the function A(w) can be
viewed as measuring the size of the smallest DFA M such that M separates w
from XUl — {w}.

2 Basic results

Clearly A(x) < |z| 4+ 1, since we can uniquely accept any string of length ||
with a chain of |z| states that loops back to the start state, plus one additional
“dead” state. It follows that A is computable, since we can simply examine all
finite automata with || 4+ 1 or fewer states, and test each DFA by brute force
to see if x is accepted uniquely. As we will see below, it is possible to improve
this algorithm somewhat, but we still do not know if A(z) is computable in time
polynomial in |z|.

It is possible, however, that A(x) is significantly smaller than |z|+1. Roughly
speaking, there are two ways to save states. The first is to use a loop. For example,
the DFA in Figure 1 shows that A4(0°1%) < 8. (Unspecified transitions go to a
“dead state” which is not shown.)

RN
U

(OO0

1

Fig.1. Automaton uniquely accepting 0913.

The second way to save states is through reuse. For example, you can reuse
states, if the string is of the form zyz %" w, as shown in Figure 2. (By ¥ we
mean the string obtained by changing 0 to 1 and vice versa.)

2

o r 0o 1
/\/\/\/\1
- (L L O
~ . T — . T — = —
1olOO 2

Fig. 2. Automaton uniquely accepting 010112200101

Hopefully the reader is already convinced that this definition is somewhat
natural and worthy of study.? Let us first see if the definition is useful; for
example, can we use the measure as a data compression technique?

The answer is yes, in the following sense.

Theorem 2. Given a description of a DFA M which uniquely accepts z, and
the length n = |a|, we can efficiently recover x.

Proof. By “efficiently”, we mean polynomial in the description size of M and n,
the length of .

Let M = (Q, X, 6, ¢1, F) be a DFA uniquely accepting «. Let @ = {q1,92,--- ,4r},
with » = |@]. Create a directed graph G' = (V, E) with vertex set V defined as
follows:

V=Api; : 1<i<nr 0<j<n}

Place a directed edge (p;,;,px,i) labeled a if 6(¢;,a) = ¢, and [= j + 1. Note
that G is acyclic.

Since M uniquely accepts z, there exists a single index ¢ with ¢; € F such
that there is exactly one path from pio to pyn41, and for all u # ¢, there is
no path from p1o to punti. We can now find this path using, for example,

depth-first search, in O(|V|+ |E]) = O((n + 1)|Q]|¥]) time. M

Given a DFA, we can also efficiently decide if it uniquely accepts a given z.

Theorem 3. Given a DFA M with r stales and a string x of length n > 1, we
can determine in O(n + r3logn) steps whether M uniquely accepts x.

Proof. Let M = (Q, X,0,q1, F), where Q@ = {q1,42,-..,49-}. We can determine
if M accepts @ by simply simulating it on #, which can be done in O(n) time.
Now create a matrix M = (a;,;)1<i,j<n Where a; ; = Card{b € X : §(¢;,b) =
¢;+. Then an easy induction gives that if Mk = (€ jk)1<ij<n, then ¢ ;5 =
Card{z € X¥* : §(¢;,r) = q;}. Now compute) _|x|._This sum is 1 iff

x jiq;€EF clvjv
M uniquely accepts .

2 But if not, there are some alternatives that also may be of interest. For example, we
could define B(x) to be the smallest number of states in any DFA M such that z is
the lexicographically least string of length |#| accepted by M.

Thus it suffices to compute M* efficiently. To do so we can use the familiar
“binary method” of exponentiation; see, for example, [3]. Furthermore, during
the computation of M*, we can always reduce an entry that is > 2 to 2. The
result is a matrix M’ with entries in {0, 1,2} with the property that if an entry
of M* is 0 or 1, so is the corresponding entry of M’, and if an entry of M* is 2
or more, the corresponding entry in M’ is 2. Since the sizes of the entries of M’
are bounded by 2, it follows that this computation can be done in O(r3logn)
bit operations. W

Our last theorem of this section is the following:
Theorem 4. We have A(xx) > A(x) for all strings x.

The following simple proof was shown to us at the DCAGRS 2000 workshop
in London, Ontario, by Kai Salomaa:

Proof. Consider the DFA M = (Q, ¥, 4, g0, F) minimizing A(zz). Then we know
there is only one path of length |za| from ¢o to a state of F, and this path is
labeled zx. Let ¢ = d(qo, #). Construct a new DFA M’ = (@, X, 6, g0, {¢}). Then
we claim M’ uniquely accepts z. For if not, there exists another string w # =,
|w] = |x|, such that §(go,w) = ¢. Then §(go, wz) € F, and so M accepts wxz,
another string of length |zz|, and wa # xz. This contradiction proves that

A(x) < A(zx), as desired. W

In Theorem 13 below we show that in fact A(zz) > A(z) for infinitely many
strings x.

3 Upper bounds

In this section we prove some upper bounds on A(z).

Theorem 5. Let x € ¥* with |X| =k > 2 and |z| = n. Suppose n > k' +t— 1.
Then A(z) <n+2—t.

Proof. If n > k* +¢ — 1, then © = ajay---a, has at least k! + 1 subwords of
length ¢. Hence some subword of length ¢ appears at least twice in . Let y be
a longest repeated subword, and let the first two occurrences of y be denoted y’
and ¥’ (they may overlap).

Then we have the two factorizations shown in Figure 3.

u v y// w

Fig. 3. Two factorizations of x.

where y = ¢ = /. Furthermore, since y is a longest repeated subword, we know
that either w = € or the first letter of v differs from the first letter of w.

By a classic theorem of Lyndon & Schiitzenberger [12], the equality yv = v’y
implies that there exist strings r, s and an integer e > 0 such that

y=(rs)r
v =sr
v = rs.

Thus = = u(rs)*Ttrw. It follows that the first letter of s differs from the first
letter of w, so we can accept & uniquely with a DFA as in Figure 4.

@@iﬁ@w

Fig. 4. DFA uniquely accepting = = u(rs)*T' rw.
The total number of states is |ursw|+2=n+2—|y|. B

Theorem 6. Let x € {0,1}". Then

3
Ale) < T+ (logn)y/ 5
for almost all strings .
Proof. (Sketch.) The idea is to write x = x’az” where |¢'| = || = |5] and

a € {¢,0,1}. Then the expected number of mismatches between 2’ and 2" s
24 0(1), with standard deviation \/g—l— O(1). We can now build a DFA for #/,
and attempt to reuse states corresponding to the mismatches between z’ and

R . . .
""", as in Figure 2. W

4 Lower bounds

First, we show by a simple counting argument the existence of a constant C' such
that almost a}l strings x of length n satisfy A(z) > Cﬁ.
More precisely, we prove

Theorem 7. Suppose |X| = k > 2, and let 0 < €,8 < 1 be fized. If n is
sufficiently large, then

for all strings x € X", with at most k*" exceptions.

Proof. Tt is easy to see there are at most g7+ essentially distinct automata with
< ¢ states and exactly one final state. (The factor ¢?* comes from the transition
function, and the factor ¢ comes from the assignment of final states. Note we can
simulate a DFA with < ¢ states by one with exactly ¢ states, by simply adding
non-connected states, if necessary.) Each of these automata uniquely accepts at
most one string of length n. Thus if

qqk+1 < ksn’ (1)

then at most k°" different strings of length n can be represented. Now a routine
calculation shows that if ¢ < (1 — (S)EIO—E—k 2 then the inequality (1) holds. W

logn?

It is possible to improve this bound as follows:
Theorem 8. We have A(x) > n/13 for almost all strings x € {0,1}".

Proof. Suppose M is a DFA with A(z) states that uniquely accepts z. Let n =
|#]. Consider the transition diagram D of M, which is a labeled directed graph
whose vertices are the states of M and whose (labeled) edges correspond to
transitions. We define the accepting path P for x to be the sequence of n + 1
edges traversed in this graph. Note that the first element of P is an edge labeled
€ that enters the initial state go of M. We define the abbreviated accepting path
P’ to be the sequence of edges obtained from P by considering each edge in
order and deleting it if it has previously been traversed. The idea is to encode
P’ in a space-efficient manner so that z can be recovered.

The outdegree of each vertex encountered along P’ is < 2, since M is a DFA.
We claim the indegree of each vertex is < 2. If not, then let v be a vertex with
indegree > 3. Then there are at least three distinct edges entering v, say ¢1, g2, ¢3.
Let 21 be a prefix of « such that the edge g7 is used in the last transition when
the DFA processes z1. (If v = qo, the initial state, we may have 1 = €.) Let zq25
be a prefix of « such that g, is used in the last transition when processing x5,
zo # €. Let z1x323 be a prefix of 2 such that ¢gs is used in the last transition
when processing zizo23, £3 # €. Finally, let z4 be such that = ziz22324.
Then &' := xqwszaa4 is also accepted by M, and |z| = |2'|. If « = &', then
z223 = x329. Then, by a theorem of Lyndon & Schiitzenberger [12], there exist
a string z # € and integers i, j > 1 such that zy = 2%, x3 = z7. Now if there is a
path labeled z* going from v to v, and a path labeled 2/ from v to v, then there
is a path labeled 28429 from v to v. But then g, = g3, a contradiction. Hence
x # 2', contradicting the hypothesis that « is accepted uniquely.

Now consider the vertices visited by P’ = (eg, €1, ... ,¢€t), the abbbreviated
accepting path for z. Each vertex v is of exactly one of the following types:

Type 1. There is exactly one edge e; of P’ entering v and there is exactly one
edge e;41 leaving v.

Type 2. There are exactly two edges, e; and €, ¢ < j, entering v, and exactly
one edge e; 1 leaving v.

Type 3. There is one edge, e;, entering v, and exactly two edges, e;1 and
e, 1 < J, leaving v.

Type 4. There are exactly two edges, e; and e;, entering v, with ¢ < j, and
there are exactly two edges, e;41 and e;41, leaving v.

We now describe a space-efficient encoding E of P’ which will avoid recording
the state numbers. Instead, we record the labels of the edges along with some
additional information that tells us what type each vertex is, and allows us to
recover how these vertices are connected.

If P! = (eo,e1,...,¢€t), then we define F(i,n) to be a certain encoding, over
the alphabet {0,1,[,]o,]1,*, +} of the edges (e;,...,e,). We also define a; to
be the label of the edge e; corresponding to the symbol causing the transition.
The meaning of the symbols is as follows: 0 and 1 represent the labels on the
edges of P’. A left bracket [represents a vertex that is the target of a backedge.
A right bracket (Jo or]1) represents a backedge labeled with its subscript. The
symbol + represents a vertex of outdegree 2, and the symbol * (introduced later)
represents a final state.

The base case is when ¢ > n, in which case we define E(é,n) = e. For the
inductive definition there are four cases, depending on the type of the vertex
reached by the directed edge e;, given in Figures 5-8.

Fig.5. Vertex of type 1: E(é,n) :=a; F(i + 1,n)

Fig. 6. Vertex of type 2: E(i,n) =a; [E(i+ 1,7 —1)]a;, E(j+ 1,n)

Fig. 7. Vertex of type 3: E(i,n) = a; + F(i + 1,n)

®
)

+1

Fig. 8. Vertex of type 4: E(i,n) =a; [+ E(i+1,j—1) 1. E(+ 1,n)

J

Finally, if P’ = (eo,e€1,...,¢€t), we define E(z) to be FE(0,t) with a symbol
* inserted after the symbol leading to the (unique) accepting state, followed by
the symbol #, followed by the base-2 representation of n = |z|, followed by
#+#. Thus E(z) is a self-delimiting encoding of # over the 8-symbol alphabet
{0, 1,4, %, [,]o,]1, #}- We consider some examples of this encoding.

| Figure | String |Enc0ding |
Figure 1 0918 [4+00]o1[111]1#10001# 4
Figure 10| 0110100110 [+0[+1[+10]1]0]o1 10 * #£10104#
Figure 11| 01101001100101 | O[1 * 101[001+]1]o# 111044

We leave it to the reader to verify that P’ can be reconstructed from F(0,1)
and z can be reconstructed from FE(z). It is easy to prove by induction that
|E(a,b)] <2(b—a+1). Now P’ has at most 24(z) edges with nonempty labels,
so we find |E(0,t)| < 4A(x) + 2. Tt follows that |E(z)| < 4A(x) + 6 + log, |z
Since E is over an 8-letter alphabet, it can be recoded over {0,1} using three
bits for each symbol. It follows that C'(z) < 12A(x)+ 1843 log, |#]. On the other
hand, it is known that C(x) > |z|—log, |#| for almost all x. Hence A(x) > |«|/13
for almost all z. W

Remark. We have not tried to optimize the constant 13 in Theorem 8. H.
Petersen informs us (personal communication) that 13 can be reduced to 7.

We can improve the lower bound for certain kinds of strings, as follows:

Theorem 9. Suppose w € X* is kth-power-free for some inleger k > 2, i.e., w
contains no subword of the form z* with x # €. Then A(w) > MT-H

Proof. Let w = ajag - - -a, be uniquely accepted by some DFA M = (Q, ¥, 4, g0, 4),
and define p; := d(qo, a1az - --a;) for 0 < i < n.

Suppose some state is visited at least &+ 1 times on the acceptance path for
w. Then there exist indices ¢1, ?2,..., {41 such that

Piy = Piy = = Pipye-
Define

wo = a14a2 a4,
Wy = aiy 41774

W2 = Qjy41 A

W = aik+1 ° 'aik+1

wk+1 = aik+1 sy,

Then M uniquely accepts w = wowijwaws -+ wiy1. However, it also accepts,
for example, w' = wowawiws - wry1. But |w'| = |w|. If wy # wey, this gives
a contradiction. Hence w; = wy. By a similar argument we find w; = w; for
1 < i,j < k. It follows that w = wowfwy 11, and so w contains a k’th power, a
contradiction.

Thus we have shown that no state can be visited k+1 times on the acceptance
path for w. Now for 0 < ¢ < |@] let b; be the number of times state ¢; is visited
on the acceptance path for w. Then we have

Z b;g; = n+ 1.
0<i<|Q
But by the argument above 0 < b; < k. Thus
n+l= > bgi< Y kg =kQ
0<i<|Q 0<i<|Q]

It follows that |Q| > (n + 1)/k, and so A(w) = |Q| > (n+ 1)/k, as desired. W

Remark. If | Y| > 2 then there are infinitely many cube-free strings. For exam-
ple, if t = 01101001 - - - denotes the infinite Thue-Morse word, then every prefix
is cube-free. If | X| > 3 then there are infinitely many square-free strings [5].

10

5 Some specific examples

In this section we determine the automatic complexity for some particular ex-
amples. There are interesting connections to number theory.

Theorem 10. We have A(0"1") = O(y/n).
Proof. Assume n > 1. Let » = [/n], so r? < n < (r + 1)%. Write n = 7? + a.
Then 0 < a < 2r and r > 1. Then we can accept 071" with a DFA of the form

given in Figure 9. (Unspecified transitions go to a “dead state” which is not
shown.)

- ~

0 0 0 Ioop of ‘\
— A sizer 1
onlnputO /

1

l \

\

Ioop of

szer+l
oninput 1 /’
Fig. 9. Automaton uniquely accepting 0”17, where n = r? + a.

This DFA does indeed accept 071" because

We go from state g¢ to state ¢, on 0%;
We then go around the loop at ¢, r times;
Next on 1% we go from ¢, t0 pat1;

[N

Finally, we go around the loop at ps41 7 — 1 times.

11

This path accepts 09(07)"114(17+1)" =1 = gritarrita,

On the other hand, we claim that this DFA accepts no other string of length
2n. Suppose it did. Then any accepting path must go around the loop on ¢, b
times and the loop on pg41 ¢ times. Then

n=a+br+a+1l+c(r+1).

Since n = r? + a, it follows that 2r? — 1 = br + ¢(r + 1). Reducing modulo r, we
get ¢ = —1 (mod r). Thusc € {r—1,2r—1,...}. But if ¢ > 2r—1 then the string
would be of length > (2r —1)(r+1)+2a+1=2r2+r—1+2a+1> 2n+r > 2n,
a contradiction.

Finally, our DFA uses a+14+7r—1+a+1+7r=2r4+2a+1 < 6r+1 < 6+4/n+1
states. W

We now show that the bound of O(/n) is tight. First we state the following
lemma:

Lemma 11. Let ¢,d be integers > 1. Suppose the linear diophantine equation
N = xc+yd is solvable in integers, i.e., suppose ged(c,d) | N. If N > 2¢d—c—d,
then the linear diophantine equation N = xc + yd has at least two solutions in
non-negative integers x,y.

The proof is easy and left to the reader. This result (in a more general form)
has recently been proved independently by Beck & Robins [4].
We now prove

Theorem 12. Any DFA that uniquely accepts 0"1" must have at least /n — 1
states.

Proof. Suppose M is a DFA with < \/n — 1 states that uniquely accepts 0717,
Define p; = 6(go,0?) for 0 < i < n. Since M has < n states, some state must
be repeated, and thus there must be a “loop” of » > 1 states that is repeated j
times, for some integer j > 0. There may also be a “tail” at the beginning, and
at the end we may not go around the “loop” an integral number of times. Let
s=n—rj. Then r;s < /n—1.

Similarly, define r; = &(pn, 1%) for 0 < i < n. By the same argument there
must be a “loop” of u > 1 states that is repeated k times, for some integer k& > 0.
Let t = n — ku. Then ¢, u < y/n — 1.

Since M accepts 071" uniquely, it must be the case that the equation ra +
ub = 2n — s — t has exactly one solution (a,) = (4, k). Then, by Lemma 11, we
have 2n—s—t < 2ru—r—wu. Thus 2n —2(y/n—1) <2n—s—t < 2ru—r—u <
2(y/n — 1)(y/n — 1) — 2. But then 24/n + 2 < 0, a contradiction. W

We can now exhibit infinitely many strings for which A(zz) > A(z).
Theorem 13. Let « = 0"1. Then A(xx) = 2(/n), but A(z) = O(1).

Proof. Tt is clear that A(x) = O(1), since we can accept 0™1 uniquely with a
3-state DFA. However, mimicking the lower bound proof of Theorem 12 above,

it is easy to see that A(0710"1) = 2(y/n). N

12

It is possible to generalize Theorem 10. We need some technical lemmas. The
first concerns solvability of certain linear diophantine equations.

Lemma 14. Let k > 1, and let nq1,ny,...,n, be positive integers, relatively
prime in pairs. Lel r > 0 be an integer. Define P := ning - ng. If r = 0, the
linear diophantine equation

P P P P P P
ai—+ay—+-tap—=m—-1)—+ny—-1)—+---+(np—1)——7rP
ni no Nk ni n9 ng

(2)
has a unique solution
(a1,az,...,a5) =(n1—1,ng—1,...,n5— 1)

in non-negative integers. If r > 1, then (2) has no solutions in non-negative
integers.

Proof. By induction on k. If k = 1 Eq. (2) becomes ay = ny— 1 —rng. If r =10
this equation has the unique solution a; = ny — 1, but if » > 1 then clearly there
are no solutions in non-negative integers.

Now assume the result is true for 1,2,...,k— 1. We prove it for k. Consider
Eq. (2) mod ng. We get

P P
ar — = —— (mod ny).
Nk Nk
Since the n; are pairwise relatively prime, it follows that ay = —1 (mod ny).

Since a; is a non-negative integer, we can therefore write ag = jng — 1 for some
integer j > 1.
Now substitute a; = jng — 1 in Eq. (2). After a little easy algebra, we get

ap—+ay—+ -+ ag =
ni n2 NEk—-1

(nl—1)%—1—(712—1)%—1—----1-(711«—1—1) -(+r-1)FP (3)

ng—1

By induction Eq. (3) has a solution iff j +7—1 = 0. But j > 1. Hence j = 1 and
ar = ni — 1, and hence Eq. (3) has a solution iff » = 0. If » = 0, by induction
the solution is (a1,a2,...,a5-1) = (R — Ling— 1,... ,ng_1 — 1).

Lemma 15. (a) If M'/* > 2B, then

M
MYk — B

(b) If0< B< A andk > 1, then

< MF £2BMT.

(A= B)* > A" — kA*-1B.

13

Proof. (a) We have
(MY* — BY(M*F +2BM**) = M + BM " (MY* —2B) > M.

(b) An easy induction on k proves that if 0 < < 1 and k > 1 then (1 — z)* >
1 — kx. Now let x = B/A and multiply by A*.

For our last lemma, we will need a certain number-theoretic function. For
t > 1, define f(t) to be the least integer n such that every set of n consecutive
positive integers contains a subset of size ¢ that is pairwise relatively prime.
Then, for example, f(4) = 6, since the set {2,3,4,5,6} contains no subset of 4
relatively prime integers, while it is easy to check that every set of 6 consecutive
positive integers does.

It seems quite difficult to estimate f precisely. However, the following lemma
follows easily from results of Erdds and Selfridge [9]:

Lemma 16. For all § > 0 and t sufficiently large we have f(t) < t?%9.

Proof. Erdés and Selfridge defined F(n, k) to be the largest subset of pair-
wise relatively prime integers in {n + 1,n + 2,...,n + k}, and proved that
ming,>o F(n, k) > k1/2=¢ Now let k = t275¢ for some € < 1/10. We find

T;gF(n’tHSE) > (t2+5e)1/2—e > t1+e/2—5e2 > 1,

since ¢ < 1/10. Hence for all 0 < ¢ < 1/10 and all ¢ sufficiently large, any ¢2%5¢
consecutive integers contains a pairwise relatively prime subset of cardinality
> t. In other words, f(t) < t?*% where § = 5e. W

We are now ready to prove

Theorem 17. Let ay,as, ... ,ax be k distinct symbols. Then A(alal---a}}) =
O(n'=Y*), where the constant in the big-O may depend on k.

Proof. The idea is as follows: we choose k pairwise relatively prime integers, each
< nl/k, say ni,No,...,Ng. Let P = nyng---ng. We then form a DFA similar to
that in Figure 9, with k loops, one on each a;, 1 < i < k, of size P/n;. Each
loop is preceded by a “tail” of length n — (P/n;)(n; — 1) = n— P 4+ P/n;. By
Lemma 14, this DFA uniquely accepts ataj ---af.

The total number of states is < N, where

P
N:=1 — —.
+k(n—P)+2 E " (4)
1<i<k

By Lemma 5 we can choose the pairwise relatively prime numbers n; such that
nt/k — k20 < ny < n'/F, Setting A = n'/* and B = k** in Lemma 15 (b) we
obtain

k—1
P=ning--np>n-— B3 .

14

Hence
k(n— P) < k*n" 5. (5)

On the other hand, setting M = P and B = k**% in Lemma 15 (a) we obtain

P -1 -2
— < P 2P (6)
n;
for all n sufficiently large. Combining Eqgs. (4)—(6), we obtain N = O(k’4+5nkk;l),
as desired. W

6 Infinite words

Up to now we have been dealing with finite words. However, it is also interesting
to consider the case of infinite words. In this paper, by an infinite word we will
mean a one-sided, right-infinite word, i.e., a map from N to X. For an infinite
word x we are interested in computing

I(x)= lminf AW

z is a prefix of x |l‘|

and 4
S(x) = lim sup ﬂ
x is a prefix of x |$|
for “interesting” infinite words x.
We start with the Thue-Morse word t. Let p be a morphism defined by
#(0) = 01, p(1) = 10. Then t = totitz -+ = limp o0 #™(0). We define T(r) =
toty - - -1p_1, the prefix of t of length 7.

Theorem 18. We have

and

Proof. The lower bound for I(t) follows immediately from Theorem 9, since, as
is well-known, the Thue-Morse word is cube-free.

For the upper bound, we break the argument up as follows. We claim that
we can accept T'(m) using h(m) states, where h is given in the table below.

< m < 3.2 m 327"
22 cm < 4-277 2.277 42
2 < m <52 m 42 -2.2%
< m<6-2m+1—2-22"
‘22n<m<8‘22n 422n+2

O OV | 2| DO

15

For 2 - 22" < m < 32?7 we use the fact that T(2-2%") = T(22”)T(22”)R,
which allows us to reuse 22" — 1 states, as illustrated in Figure 10.

For 322" < m < 4-22" we use the fact that T'(4-227) = T(2%)(T(22"))2T(2%"),
which allows us to reuse 227 states in an inner loop and m — 3 - 227 states in an
outer loop, as illustrated in Figure 11.

For 4-22" < m < 5-22", it is easiest to give the encoding of the corresponding
machine, as introduced in Section 4:

to[tl st —3.92n_ 1%l _3.02n [tm_3.22n+1 o 't22n+1_1+t22n+1 t 'tm—22"+1—1]tm_22n+1]t3,22n

This is illustrated in Figure 12.

For 5-227 < m < 6-22", we use the fact that T(5-227) = (T(22")T(227)T(227))5/3,
as illustrated in Figure 13.

For 6 - 22" < m < 8-2?" we use the fact that T(m) = T(22"*3 — m)a7",
where © = to2n4s_py, - - - f92n+2, as illustrated in Figure 14.

In the figures that follow, unspecified transitions go to a “dead state” which
is not shown. M

Fig. 10. Automaton uniquely accepting 10

16

0

Fig. 11. Automaton uniquely accepting ¢4

OV e e O) a5
\/0\/1\/1\/0\/1\/0 o o/
0
Fig. 12. Automaton uniquely accepting 15
l
NN NN A N N N NN/

O—O—0

Fig.13. Automaton uniquely accepting t29

17

*»QOQJ-Q]-QOQ

1
0 0
Fig.14. Automaton uniquely accepting a6

If we consider the Thue-Morse word on three symbols [5], we can get a sharper
result.

Theorem 19. Let u = 102120102012 --- be the infinite Thue-Morse word on
three symbols, generated by 1 — 102, 0 — 12, 2 = 0. Then

1
I(u) = 5
Proof. The lower bound comes from Theorem 9. For the upper bound, we claim
that if we let s be a prefix of u with |r| = |s| = 22* for some k > 0, then r
differs in every single position from sf. Hence we may reuse states in analogy
with Figure 2.

To prove the claim, let u = woujug---. Let r = wouy - ug2r_; and s =
Ugzk * » - Ugzk+1_1. It 18 known that u; = (2¢; + t;41) mod 3, where t = totqty- -+
is the Thue-Morse word. For 0 < i < 22+ we have t; = 1 — ty2x4+1_;_1. Now t
is cube-free, so t;_1t;t;41 ¢ {000,111}, Hence t; +t;41 # 2t;_1, and ¢; € {0,1}
for j > 0, 80 t; + t;41 Z 2t;—1 (mod 3). Adding ¢; to this last incongruence, we

have
U =20+t b+ 2t
=2(1—t;)+ (1 —tiz1)
= 2t22k+1_i_1 + fo2kt1_;
= Ug2k41_;_1 (HlOd 3)
This proves that r differs in every position from s%. B

One might wonder if S(x) = 0 implies that x is ultimately periodic. The
answer is no, as the following example shows:

Theorem 20. Let v =0210%1016102561055%3¢1.... Then S(v) = 0.

Proof. First, we need the following lemma.

18

o

Lemma 21. Let y € {0,1}*. Then for all r,s > 1 we have A(y10710°) < |y| +
6+/m, where m = max(r, s).

Proof. Suppose r > s. (The proof for r < s is similar and is left to the reader.)
Define ¢ := [+/7] and v = min(|s/t],?). Now construct the following DFA:

ott1 ot

2

Fig.15. DFA uniquely accepting y10"10°

We claim this DFA uniquely accepts y10710°. It clearly accepts this string,
by going around the first loop ¢ — 1 times and the second loop u times. To see
that acceptance is unique, consider going around the first loop & > 0 times and
the second loop j > 0 times. This gives a string of length |y|+1+r—t2+1+k(t+
1) + 1+ s —tu—+ jt. Setting this equal to the desired length of |y|+1+7r+ 143,
we get the linear diophantine equation

F— 1k 1)+ s —tutjt=r+s;

in other words, k(¢ + 1) + jt = ¢ — 1 +{u. Now consider this equation modulo ¢.
We find k = —1 (mod t). Suppose k > 2t — 1. Then ¢? — 1 +tu = k(t + 1) + jt >
(2t = 1)(t + 1) + jt. Simplifying, we obtain u > ¢+ 14 j. But j > 0,80 u > ¢+ 1,
contradicting the definition of u. It follows that ¥ = ¢ — 1, and hence j = u, as
desired.

Our DFA has N := |y|+ 1+ r—t2+ 14+t +1+s—tu+t—1+1 states.
Since /r — 1 <t < /r, it follows that » — ¢? < 2,/r — 1 and

s —tu < s —tmin(|s/t],t) = max(s —t|s/t],s —t*) = max(s mod t, s — t?)
< max(t,r — t?) < max(v/r, 2¢/r — 1) < 2¢/r — 1.
Hence N < |y| + 64/r. B

Now we can complete the proof of Theorem 20. Every sufficiently long prefix
of v is of the form

2=02102102 10% 1...10%" 10°

where 0 < a < 22" Let y = 02102° 102" 102" 110", r = 22", and
s = a. Then |z| = 22" + a + O(22"7), while Lemma 21 states that A(z) <
622" + a—|—0(22n_1). It follows that A(z)/|z| = O(1/+/z), and so S(v) =0. B

19

7

Open Problems

There are many open problems related to this work. For example, is A(z) com-
putable in polynomial time?

8

Acknowledgments

We thank Holger Petersen, Kai Salomaa, and particularly the anonymous refer-
ees for their helpful criticism and suggestions.

References

1.

2.

@

10.

11.

12.

13.

14.

15.

16.

I. Althéfer. Tight lower bounds for the length of word chains. Inform. Process.
Lett. 34 (1990), 275-276.

A. Arnold and S. Brlek. Optimal word chains for the Thue-Morse word. Inform.
Comput. 83 (1989), 140-151.

E. Bach and J. Shallit. Algorithmic Number Theory. The MIT Press, 1996.

M. Beck and S. Robins. A formula related to the Frobenius problem in two dimen-
sions. Unpublished manuscript, January, 2000.

J. Berstel. Sur la construction de mots sans carré. Séminaire de Théorie des
Nombres (1978-1979), 18.01-18.15.

J. Berstel and S. Brlek. On the length of word chains. Inform. Process. Lett. 26
(1987/88), 23-28.

M. Bousquet-Mélou. The number of minimal word chains computing the Thue-
Morse word. Inform. Process. Lett. 44 (1992), 57-64.

A. A. Diwan. A new combinatorial complexity measure for languages. Technical
report, Computer Science Group, Tata Institute, Bombay, 1986.

P. Erd6s and J. L. Selfridge. Complete prime subsets of consecutive integers.
In R. S. D. Thomas and H. C. Williams, editors, Proceedings of the Manitoba
Conference on Numerical Mathematics, pp. 1-14. 1971.

P. Goraléik and V. Koubek. On discerning words by automata. In L. Kott, editor,
Proc. 13th Int’l Conf. on Automata, Languages, and Programming (ICALP), Vol.
226 of Lecture Notes in Computer Science, pp. 116-122. Springer-Verlag, 1986.
M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer-Verlag, 1997.

R. C. Lyndon and M. P. Schiitzenberger. The equation a™ = b™¢F in a free group.
Michigan Math. J. 9 (1962), 289-298.

J. M. Robson. Separating strings with small automata. Inform. Process. Lett. 30
(1989), 209-214.

J. M. Robson. Separating words with machines and groups. RAIRO Inform. Théor.
App. 30 (1996), 81-86.

P. Roth. A note on word chains and regular languages. Inform. Process. Lett. 30
(1989), 15-18.

J. Shallit and Y. Breitbart. Automaticity I: Properties of a measure of descriptional
complexity. J. Comput. System Sci. 53 (1996), 10-25.

20

