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Abstract

This paper studies the descriptional complexity of (i) sequences over a �nite alpha-

bet; and (ii) subsets of N (the natural numbers).

If (s(i))

i�0

is a sequence over a �nite alphabet �, then we de�ne the k-automaticity

of s, A

k

s

(n), to be the smallest possible number of states in any deterministic �nite

automaton that, for all i with 0 � i � n, takes i expressed in base-k as input and

computes s(i). We give examples of sequences that have high automaticity in all

bases k; for example, we show that the characteristic sequence of the primes has k-

automaticity A

k

s

(n) = 
(n

1=43

) for all k � 2, thus making quantitative the classical

theorem of Minsky and Papert that the set of primes expressed in base-2 is not regular.

We give examples of sequences with low automaticity in all bases k, and low auto-

maticity in some bases and high in others. We also obtain bounds on the automaticity

of certain sequences that are �xed points of homomorphisms, such as the Fibonacci

and Thue-Morse in�nite words.

Finally, we de�ne a related concept called diversity and give examples of sequences

with high diversity.

1 Introduction and De�nitions

In this paper, I study the descriptional complexity of (i) sequences over a �nite alphabet;

and (ii) subsets of N (the natural numbers).

In 1972, Cobham [5] introduced the notion of what is now called a k-automatic sequence.

(In the literature, one can also �nd the terms k-recognizable sequence and uniform tag

sequence.) Roughly speaking, a sequence (s(i))

i�0

over a �nite alphabet is k-automatic if

and only if s(i) is a �nite-state function of the base-k representation of i.

However, most sequences are not k-automatic for any k. Instead of simply saying that

a sequence is not k-automatic, we can measure quantitatively how \close" a sequence is to

�
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being k-automatic using the concept of automaticity studied in previous papers of the author

and co-authors [26, 27, 20, 10]. In addition to its evident intrinsic interest, automaticity has

proved useful in obtaining nontrivial lower bounds in computational complexity theory; see

[7, 8, 16, 17].

More formally, de�ne a deterministic �nite automaton with output (DFAO) M to be a

6-tuple, (Q;�; �; q

0

;�; � ), where Q is a �nite set of states, � is a �nite input alphabet, q

0

is the start state, and � is a �nite output alphabet. The map � : Q� � ! Q is called the

transition function, and is extended in the obvious way to a map � : Q��

�

! Q. The map

� : Q ! � is the output function. On input w 2 �

�

, the machine M outputs the single

symbol � (�(q

0

; w)). For more on these concepts, see, for example, [15].

Let k be an integer � 2 and de�ne �

k

= f0; 1; : : : ; k�1g. If w 2 �

�

k

, then by [w]

k

I mean

w evaluated as a base-k integer, that is, if w = w

1

w

2

� � �w

r

, then [w]

k

=

P

1�i�r

w

r�i+1

k

i�1

.

If n � 0 is an integer, then by (n)

k

I mean the default base-k representation of n | that is,

one not containing leading zeroes. Note that (0)

k

= �, the empty string.

Suppose (s(i))

i�0

is a sequence over the �nite alphabet �. If there exists a DFAO M

such that for all i � 0, we have s(i) = � (�(q

0

; w

R

)) for all w 2 �

�

k

such that [w]

k

= i,

then the sequence (s(i))

i�0

is said to be k-automatic. (Here w

R

is the reverse of the string

w.) Note that the slightly awkward de�nition results from the problem of \leading zeroes"

input, and our convention that the machine M reads the input number starting with the

least signi�cant digit.

Here is one alternate de�nition of k-automatic sequences. De�ne the k-�ber of the se-

quence (s(i))

i�0

at a to be

F

k

(s; a) = f(n)

k

: s(n) = ag:

Then F

k

(s; a) is a regular set for all a 2 � if and only if the sequence (s(i))

i�0

is k-automatic.

Another alternate de�nition of k-automatic sequences can be given in terms of a set called

the k-kernel. Let (s(n))

n�0

be a sequence over a �nite alphabet. The k-kernel of (s(n))

n�0

,

which we denote by K

k

s

, is de�ned as follows:

K

k

s

= f(s(k

i

m+ a))

m�0

: i � 0; 0 � a < k

i

g: (1)

Eilenberg [9, Proposition 3.3, p. 107] proved that a sequence is k-automatic if and only if its

k-kernel is �nite.

Given a sequence (s(i))

i�0

, we can de�ne its k-automaticity A

k

s

(n) as follows: A

k

s

(n) is

the smallest possible number of states in any DFAO M = (Q;�; �; q

0

;�; � ) such that for all

i with 0 � i � n, we have s(i) = � (�(q

0

; w

R

)) for all w 2 �

�

k

with [w]

k

= i. We emphasize

that the automaton is fed with the digits of i, starting with the least signi�cant digit. This

convention is actually important to specify, since it is known that there are languages of low

automaticity whose reversal has high automaticity; see [10].

There is another way to de�ne k-automaticity. Suppose we de�ne the n-truncated k-

kernel of the sequence s, as follows:

K

k

s

(n) = f(s(k

i

m+ a))

0�m�(n�a)=k

i : i � 0; 0 � a < k

i

g:

The n-truncated k-kernel consists of �nite sequences. Call two such sequences v;w 2 K

k

s

(n)

n-dissimilar if there exists a position j for which both v(j) and w(j) are de�ned and v(j) 6=

2



w(j). (Note that under this de�nition, if v is a pre�x of w, then v and w are similar.) Then

A

k

s

(n) is de�ned to be the maximum number of pairwise n-dissimilar sequences in K

k

s

(n). It

is not hard to see that this de�nition is identical to the previous one; see [27]. Note that the

condition m � (n� a)=k

i

is equivalent to k

i

m+ a � n; in other words, the variable that is

bounded by n is not m but the \true" variable k

i

m+ a.

The following basic results on automaticity are easy to prove [27]:

Proposition 1 Let (s(i))

i�0

be a sequence over a �nite alphabet �. Then

(a) A

k

s

(n) � A

k

s

(n+ 1) for all n � 0;

(b) A

k

s

(n) = O(1) if and only if s is k-automatic;

(c) There exists an absolute constant c such that if s is not k-automatic, then A

k

s

(n) �

c log

k

n for in�nitely many n.

(d) For any sequence s we have A

k

s

(n) = O(n= log

k

n).

As parts (b) and (c) of this theorem show, if a sequence is not k-automatic, then its k-

automaticity must be greater than c log

k

n in�nitely often. This suggests studying sequences

that are not k-automatic, but which are \as close as possible" to k-automatic. We say that

a sequence (s(i))

i�0

is k-quasiautomatic if A

k

s

(n) = O(log n). We then have the following

theorem, whose proof is easy and is omitted:

Proposition 2 A sequence (s(i))

i�0

is k-quasiautomatic if and only if it is k

e

-quasiautomatic

for all e � 1.

So far we have discussed the k-automaticity of sequences, but the same terminology

can be used for sets of non-negative integers. We say a set S � N is k-automatic if its

characteristic sequence (�

S

(n))

n�0

is k-automatic. Similarly, if S is a set, then by A

k

S

(n) we

mean A

k

�

S

(n).

2 Classical sets with high automaticity in all bases

In this section, we examine two classical sets (the primes, the squarefree numbers) and

show that their characteristic sequences have high k-automaticity (that is, 
(n

�

) for some

� > 0) in all bases k � 2. (By f = 
(g) we mean there exist positive constants c; n

0

such

that f(n) � cg(n) for all n � n

0

.) For the primes, our results can be viewed as making

quantitative the classical result of Minsky and Papert [19] that the primes expressed in base

2 cannot be accepted by a �nite automaton.

Our method is based on the following useful lemma:

Lemma 3 Let (s(i))

i�0

be a sequence over a �nite alphabet �, and suppose that there exists a

constant d such that for all r; a; b with r � 2, 1 � a; b < r, a 6= b, and gcd(r; a) = gcd(r; b) =

1, there exists a non-negative integer m = O(r

d

) such that s(rm + a) 6= s(rm + b). Then

A

k

s

(n) = 
(n

1=(d+1)

=(k log log n)) for all k � 2, where the implied constant in the big-
 does

not depend on k.
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Proof. Since m = O(r

d

), there exists a constant c such that m � cr

d

� 1 for all r � 2. Let

i = b(log

k

n� log

k

c)=(d+ 1)c. Then

1

k

�

n

c

�

1=(d+1)

< k

i

�

�

n

c

�

1=(d+1)

:

Put r = k

i

. It follows that there exists m � ck

id

� 1 such that s(k

i

m + a) 6= s(k

i

m + b).

However, k

i

m+ a < (ck

id

� 1)k

i

+ k

i

= ck

i(d+1)

� c � (n=c) = n, and the same bound holds

for k

i

m + b. It follows that the two subsequences (s(k

i

t + a))

t�0

and (s(k

i

t + b))

t�0

are

n-dissimilar. Since a; b were arbitrary integers relatively prime to r, we know that there are

at least '(k

i

) pairwise n-dissimilar sequences, where ' is Euler's phi-function.

By [21, Theorem 15], we know that '(n) � n=(5 log log n) for n � 3. Hence

'(k

i

) �

k

i

5 log log k

i

�

(1=k)(n=c)

1=(d+1)

5 log log(n=c)

1=(d+1)

:

Thus A

k

s

(n) = 
(n

1=(d+1)

=(k log log n)).

We �rst examine the automaticity of the characteristic sequence of the primes. We need

the following lemmas.

Lemma 4 For all x � 1 we have

Q

x<p�2x

p > e

x=3

, where the product is over primes only.

Proof. Let #(x) =

P

p�x

log p, where the sum is over primes only. We know that #(x) <

1:000081x for x > 0 [22, p. 360], and #(x) � :84x for x � 101 [21, Theorem 10]. It follows

that

P

x<p�2x

log p > 1:68x � 1:000081x > x=3 for x � 101=2. Now it is easily veri�ed by

computer or hand calculation that

P

x<p�2x

log p > x=3 for 1 � x < 101=2.

It follows that

Q

x<p�2x

p > e

x=3

for all x � 1.

Lemma 5 Given integers k; l � 1 with gcd(k; l) = 1, there exists a prime p = km+ l with

m = O(max(k; l)

11=2

). The constant in the big-O is independent of k and l.

Proof. Choose x = max(1; l=k; 3 log l). Then from the previous lemma we have

Q

x<p�2x

p >

l, so there exists a prime qj=l with x < q � 2x. Now q > l=k, so kq > l, and gcd(kq; l) =

1. Hence by Heath-Brown's version of Linnik's theorem [14], there exists a prime p �

l (mod kq) with p = O((kq)

11=2

). Since q � 2x = 2max(1; l=k; 3 log l), we have p =

O(max(l

11=2

; (k log l)

11=2

; k

11=2

)). Hencem = (p�l)=k = O(max(l

11=2

k

�1

; k

9=2

(log l)

11=2

); k

9=2

),

and the result follows.

Lemma 6 Given integers r; a; b with r � 2, gcd(r; a) = gcd(r; b) = 1, 1 � a; b < r, and

a 6= b, there exists m = O(r

165=4

) such that rm+ a is prime and rm+ b is composite.
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Proof. We use a trick suggested by papers of Hartmanis and Shank [12] and Allen [1].

By Heath-Brown's version of Linnik's theorem [14], there exists m

0

= O(r

9=2

) such that

p = rm

0

+ a is a prime. De�ne q = rm

0

+ b. Then q = O(r

11=2

). If q is composite,

we're done, and m

0

= O(r

9=2

). Otherwise, assume q is prime. Now, in Lemma 5, take

k = qr and l = qr + p. Then there exists m

1

= O((qr + p)

11=2

) = O(r

143=4

) such that

(qr)m

1

+(qr+p) is prime. However, t = (qr)m

1

+(qr+ q) is composite, since q j t and q < t.

Take m = qm

1

+ q +m

0

. Then m = O(r

165=4

).

Theorem 7 The set P of prime numbers has k-automaticity A

k

P

(n) = 
(n

1=43

) for all

integers k � 2.

Proof. Combine Lemmas 3 and 6.

We note that the constant 1=43 in Theorem 7 is not optimal. Indeed, the constant 11=2

in Lemma 5 is almost certainly not optimal. Wagsta� [31] has provided a heuristic model

that predicts that the least prime congruent to l (mod k) is O('(k)(log k)(log '(k))). If this

prediction were true, it would improve the constant 1=43 in Theorem 7 to 1=(2 + �).

We now turn to providing a lower bound on the k-automaticity of the squarefree numbers.

Recall that a number n is said to be squarefree if t

2

j=n for all integers t > 1.

Lemma 8 Let (s

i

)

i�0

be de�ned as follows:

s

i

=

�

1; if i is squarefree;

0; otherwise.

Then for all � > 0, and r; a; b such that r � 2, 1 � a < r, and 0 � b < r with gcd(a; r)

squarefree and a 6= b, there exists an m = O(r

13=9+�

) such that rm + a is squarefree and

rm+ b is not squarefree.

Proof. Let q be the least prime not dividing rjb � aj. Since rjb � aj < r

2

, by the prime

number theorem we have q = O(log r

2

) = O(log r). Now rk + b � 0 (mod q

2

) if and only if

k = �br

�1

(mod q

2

). Let c be such that 0 � c < q

2

and c � �br

�1

(mod q

2

). Consider the

arithmetic progression

((rq

2

)m+ (rc+ a))

m�0

:

We have gcd(rq

2

; rc+ a) is squarefree, because any prime divisor of rq

2

and rc+ a must be

a divisor of r or q

2

. But t j r and t j rc + a implies t j a, and we know gcd(r; a) is squarefree

by hypothesis. On the other hand, rc + a � 0 (mod q) implies that rc � �a (mod q). But

rc � �b (mod q), so a � b (mod q), a contradiction since qj=a� b. Hence q

2

j= gcd(rq

2

; rc+ a).

Then, by a result of Heath-Brown [13], there exists an m

0

= O(r

13=9+�

) such that

(rq

2

)m

0

+ (rc + a) is squarefree. Take m = q

2

m

0

+ c. Then rm + a is squarefree, but

rm+ b is divisible by q

2

.

Theorem 9 The set S of squarefree numbers has k-automaticity A

k

S

(n) = 
(n

2=5

) for all

k � 2.

Proof. Apply Lemma 3 with d = 13=9 + �.

Again, the constant 2=5 in Theorem 9 is not optimal.
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3 A set with low automaticity in all bases

In this section I give an example of a sequence that is k-quasiautomatic for all k � 2.

Theorem 10 De�ne a(1) = 1, and a(i + 1) = a(i) +

Q

2�b�i+2

b

1+blog

b

a(i)c

for i � 1. Then

the set A = fa(i) : i � 1g is not k-automatic, but is k-quasiautomatic for all k � 2.

The sequence (a(i)) begins

1; 3; 39; 331815; 114126085737676800331815; : : :

Proof. First, we note the following observation. Suppose there exists an in�nite string

w = w

0

w

1

w

2

� � � over �

k

= f0; 1; : : : ; k � 1g such that all but �nitely many members s of

a set S have the \pre�x property", that is, (s)

R

k

is a pre�x of w. Then A

k

S

(n) = O(log n).

To see this, note that in this case we can write S = S

1

[ S

2

, where S

1

is �nite and S

2

has

the pre�x property. To build an automaton that accepts all the base-k representations of

elements of S

2

\ [0; n], we simply create a linear chain of nodes, with transitions between

them labeled with the symbols of w. The accepting states correspond to the members of S

2

,

and of course we need a single dead state in addition to handle the other transitions. The

resulting automaton has log

2

n +O(1) states.

Since S

1

is �nite, we can accept it with a �nite automaton. The result now follows

because we can accept S

1

[ S

2

using a direct product construction.

The construction of the sequence (a(i))

i�1

should now be clear. For bases k � 2, the

sequence has the property that (a(i))

R

k

is a pre�x of (a(i+1))

R

k

provided i � k�1. Hence the

observation of the previous two paragraphs applies, and the automaticity of A is O(log n)

for all k � 2. Note, however, that the constant in the big-O depends on k.

To show that A is not k-automatic for any k, it su�ces to show that lim

i!1

a(i)=k

i

=1.

But this follows, since from the recurrence we have a(i) � i!.

4 Automaticity of �xed points of homomorphisms

Let ' be a homomorphism from �

�

to �

�

. If there is a symbol a 2 � such that '(a) = ax

for some x 2 �

�

, then

y = ax'(x)'

2

(x)'

3

(x) � � � = lim

j!1

'

j

(a)

is a �xed point of '; that is, '(y) = y. If further ' is nonerasing (i.e., '(b) 6= � for all b 2 �),

then y is in�nite. If j'(b)j = k for all b 2 �, then ' is said to be k-uniform. A 1-uniform

homomorphism is called a coding. A well-known theorem of Cobham [5] states that (s(i))

i�0

is the image (under a coding) of a �xed point of a k-uniform homomorphism if and only if

(s(i))

i�0

is k-automatic.

A natural problem is to determine the automaticity of �xed points of non-uniform ho-

momorphisms. In particular, are there �xed points of homomorphisms which are quasi-

automatic, but not automatic? This question was raised by the author in 1992 in the context
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of the �xed point (t

n

)

n�0

of the homomorphism 1 ! 121; 2 ! 12221. The sequence (t

n

)

and its relationship to the classical Thue-Morse sequence was studied by Allouche et al. [2].

Computation strongly suggests that (t

n

) is 2-quasiautomatic. For example, t

16n+1

= t

64n+1

for 0 � n � 1864134, but not for n = 1864135. Although we are not yet able to prove

the 2-quasiautomaticity of (t

n

), it is possible to prove that it is not 2-automatic [24]. (This

last result was, according to J.-P. Allouche (personal communication), also proved by M.

Mkaouar.)

We now give three examples. First, we exhibit a homomorphism whose �xed point

is 2-quasiautomatic, but not 2-automatic. Next, we give a homomorphism whose �xed

point is 2-automatic, but not k-quasiautomatic for any odd k. Finally, we use some simple

theorems of Diophantine approximation to exhibit a homomorphism whose �xed point is not

k-quasiautomatic for any k � 2.

Theorem 11 Let '(c) = cba, '(a) = aa, and '(b) = b. Let (s

i

)

i�0

be the �xed point of '

beginning with c. Let X = f2

j

+ j : j � 0g. Then

(a) s

0

= c and s

i

= b if and only if i 2 X;

(b) (s

i

)

i�0

is not 2-automatic.

(c) (s

i

)

i�0

is 2-quasiautomatic.

Proof. Part (a) follows easily from the observation that '

r

(c) = cbaba

2

ba

4

ba

8

� � � ba

2

r�1

:

For part (b), it su�ces to show that L = F

2

(s; b) is not a regular set. It is easy to see

that

L = f1 0

n�blog

2

nc�1

(n)

2

: n � 1g [ f1g:

Now a routine argument using the pumping lemma [15] completes the proof.

Finally, for part (c), it su�ces to construct an automaton with output with O(log n)

states that generates the terms of the sequence (s

i

) correctly for all i � n. We sketch the

construction of such an automaton, leaving the details to the reader. Let �

�n

= [

0�i�n

�

i

.

If L is a language, we say that L

0

is an nth-order approximation to L if L\�

�n

= L

0

\�

�n

.

The basic idea of our construction is that it su�ces to concentrate on L

R

= F

2

(s; b)

R

and

create an automaton accepting a (1 + blog

2

nc)th order approximation to L

R

. This is easy,

since strings in L

R

begin with a short sequence of bits which are followed by many zeroes

and then a 1.

The state set consists of four parts. The �rst part is A = fq

w

: w 2 (0+1)

�blog

2

log

2

nc+1

g.

This part of the automaton forms a binary tree that can handle all possible strings of length

blog

2

log

2

nc+ 1. The transitions between states in the �rst part are given by �(q

w

; e) = q

we

for jwj � blog

2

log

2

nc and e 2 f0; 1g. The output function for the states in A is given by

� (q

�

) = c, � (q

w

) = b if [w

R

]

2

2 X, and � (q

w

) = a for all other w.

The second part of the automaton consists of a linear chain of states, B = fp

i

: 0 �

i < blog

2

ncg. The transitions between states in the second part are given by �(p

i

; 0) = p

i�1

for 2 � i < blog

2

nc, �(p

1

; 1) = p

0

, and �(p

0

; 0) = p

0

. The output function for these states is

� (p

i

) = a for i 6= 0, and � (p

0

) = b.
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The third part of the state set is C = fp

0

i

: 0 � i < blog

2

ncg, a copy of B. The output

function for these states is � (p

0

i

) = b for all i.

The fourth and �nal part consists of a single dead state d. We set �(d; e) = d for

e 2 f0; 1g, and � (d) = a.

The start state is q

�

. We leave to the reader the task of specifying the connections between

the di�erent groups of states, observing that transitions �(q

w

; 0) for jwj = blog

2

log

2

nc + 1

that are not self-loops go to a state in C if [w

R

]

2

2 X, and otherwise go to a state in B.

As an example, the machine in Figure 1 computes (s

i

) correctly for all i < 2

8

. The total

number of states needed is jAj+ jBj+ jCj+ 1 � 6 log

2

n.

q  /c

q  /c

q   /c

q    /c

q    /a

q    /a

q    /b

q   /b

q   /a

q  /b

q   /b

q    /b

q    /a

q    /b

q    /a

p  /a   p  /a p  /a p  /a p  /b

p’  /b p’  /b p’  /b p’  /b p’  /b

d/a
ε

0

1

01

10

11

110

111

101

100

011

00

000

001

010

4 3

3

2

2

1

1

0

04

0

0

1

0

1

0

1

0

1

0

1

0

0 0 0 1
1

1

0,1

0 0 0 1

0

0

1

0

0

0

0

0

0

0

1
0

1

Figure 1: Automaton computing s(i) for 0 � i < 256.

The input is the base-2 expansion of i, starting with the least signi�cant bit. The output is

s(i). The states are labeled with the name of the state, followed by a slash, followed by the

output associated with that state. All unmarked transitions go to the dead state, labeled

d=a.

Next, we exhibit a homomorphism whose �xed point is 2-automatic, but has high k-

automaticity for all odd k.

De�ne '(0) = 01; '(1) = 00, and consider the �xed point (p(i))

i�0

starting with 0. It is

easy to see that p(i) = �

2

(i+ 1) mod 2, where �

2

(n) is the exponent of the highest power of

2 which divides n.
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We �rst give two simple lemmas:

Lemma 12 Let (s(i))

i�0

be a sequence over a �nite alphabet �, and suppose that there exists

a constant d such that for all r; a; b with r � 2, 0 � a; b < r, and a 6= b, there exists a non-

negative integer m = O(r

d

) such that s(rm + a) 6= s(rm + b). Then A

k

s

(n) = 
(n

1=(d+1)

=k)

for all k � 2, where the implied constant in the big-
 does not depend on k.

Proof. Exactly the same as the proof of Lemma 3.

Lemma 13 Suppose r is odd and 1 � a < b � r. Then there exists m such that 0 � m < 4r

and �

2

(rm+ a) 6= �

2

(rm+ b).

Proof. Let b� a = 2

c

� t, where t is odd. Let m � (2

c+1

� b)r

�1

(mod 2

c+2

); the de�nition

is meaningful since r is odd. Then rm+ b � 2

c+1

(mod 2

c+2

), so �

2

(rm+ b) = c+1. On the

other hand,

rm+ a � 2

c+1

+ a� b (mod 2

c+2

)

� 2

c+1

� 2

c

� t (mod 2

c+2

)

� 2

c

(2� t) (mod 2

c+2

):

Since t is odd, we have �

2

(rm+ a) = c. Now 2

c

< r, so 2

c+2

< 4r, and 0 � m < 2

c+2

.

Now we can state and prove our theorem on the k-automaticity of (p(i))

i�0

.

Theorem 14 If p(i) = �

2

(i + 1), then (p(i))

i�0

is 2-automatic. If k � 3 is odd, then

A

k

p

(n) = 
(n

1=2

=k).

Proof. The fact that p is 2-automatic follows from the fact that the de�ning homomorphism

' is 2-uniform; see [5].

To get the automaticity bound for odd k, simply combine Lemmas 12 and 13.

As a corollary, we can obtain a lower bound for the automaticity of the Thue-Morse

sequence in all odd bases. Let s

k

(i) denote the sum of the digits of i when expressed in base

k. Then the Thue-Morse sequence (t(i))

i�0

is de�ned as follows: t(i) = s

2

(i) mod 2.

It is easy to see that the Thue-Morse sequence is 2-automatic. However, we have the

following

Theorem 15 Let k � 3 be an odd integer. Then A

k

t

(n) = 
(n

1=4

=k

1=2

).

Proof. Our proof is based on the following identity, which is well-known and easily proved

by considering the base-2 expansion of i+ 1:

s

2

(i+ 1)� s

2

(i) = 1� �

2

(i+ 1):

Taking this modulo 2, we obtain

t(i+ 1) + t(i) + 1 � p(i); (2)

9



where p is the function de�ned in Theorem 14.

Let M

n

= (Q;�

k

; �; q

0

;�; � ) be a DFAO computing t(i) for all i with 0 � i � n, and

assume that M

n

has A

k

t

(n) states. Now consider M

n+1

, and create a slightly modi�ed

automaton M

0

= (Q

0

;�

k

; �

0

; q

0

0

;�; �

0

) such that on input w with [w

R

]

k

= i, M

0

computes

the shifted sequence t(i + 1) for 0 � i � n. This can be achieved as follows: de�ne Q

0

=

Q � f0; 1g, where the second component of every state denotes a carry to be propagated,

and let q

0

0

= [q

0

; 1]. De�ne

�

0

([q; 1]; a) =

�

[�(q; a+ 1); 0]; if 0 � a < k � 1

[�(q; 0); 1]; if a = k � 1.

Also de�ne �

0

([q; 0]) = � (q) and �

0

([q; 1]) = � (�(q; 1)). We leave it to the reader to verify

that the construction does indeed compute the shifted sequence. Clearly jQ

0

j = 2jQj.

We now implement equation (2) by forming the direct product of the automata M

n

and

M

0

, and using an output function that computes the function p(i) correctly for all i with

0 � i � n. It follows that

A

k

p

(n) � 2A

k

t

(n)A

k

t

(n+ 1) � 2(A

k

t

(n+ 1))

2

:

Since A

k

p

(n) = 
(n

1=2

=k), the desired result follows.

We now turn to the third problem: �nding a �xed point of a homomorphism of high au-

tomaticity in all bases. Our methods are based on the theory of Diophantine approximation

[4] and Sturmian words (also called characteristic words or Christo�el words). For a survey

on Sturmian words, see [3]. First, we introduce some notation.

If � is a real irrational number, we can expand it uniquely as an in�nite continued fraction,

� = [a

0

; a

1

; a

2

; : : :]. The a

i

are called the partial quotients of �. We say the partial quotients

of � are bounded by B if a

i

� B for all i � 1. (For a survey on bounded partial quotients,

see [25].) We de�ne p

n

=q

n

= [a

0

; a

1

; : : : ; a

n

], and call p

n

=q

n

the nth convergent to �. We

de�ne a

0

n

, the nth complete quotient, to be [a

n

; a

n+1

; : : :]. We de�ne f�g = � � b�c, the

fractional part of �, and k�k = min(� � b�c; d�e � �), the distance to the nearest integer.

We then have

Lemma 16 Let � be an irrational real number, 0 < � < 1, with partial quotients bounded

by B. Let the numbers 0; f�g; f2�g; : : : ; ft�g; 1 be arranged in ascending order and let them

be labeled p

0

; p

1

; p

2

; : : : ; p

t+1

. Then

min

0�i�t

(p

i+1

� p

i

) �

1

(B + 2)t

:

Proof. Let (p

k

=q

k

)

k�0

be the convergents to �. It is a consequence of the three-distance

theorem (also called Steinhaus' conjecture) that

min

0�i�t

(p

i+1

� p

i

) � kq

k�1

�k;

10



where q

k�1

� t < q

k

. See, for example, [18, Exercise 6.4.8]. (Also see, for example, [29, 30,

28].) Now we know

kq

k�1

�k = jq

k�1

�� p

k�1

j

=

1

a

0

k

q

k�1

+ q

k�2

by [11;p: 140]

�

1

(a

k

+ 1)q

k�1

+ q

k�2

=

1

q

k

+ q

k�1

=

1

a

k

q

k�1

+ q

k�2

+ q

k�1

�

1

(B + 2)q

k�1

�

1

(B + 2)t

;

and the result follows.

Our next lemma is a version of the inhomogeneous approximation theorem. Unlike the

traditional versions of this theorem, the requirement that � has bounded partial quotients

allows us to bound the size of the integers that e�ect the desired approximation.

Lemma 17 Let � be an irrational real number, 0 < � < 1, with partial quotients bounded

by B. Let 0 � � < 1 be a real number. Then for all N � 1 there exist integers p; q with

0 � p; jqj � (B + 2)N

2

such that jp� � � � qj �

1

N

.

Proof. By Dirichlet's theorem (see, e.g., [4, Theorem I]), there exist integers n; r with

1 � n � N and 0 � r � N , such that jn�� rj < 1=N . Choose k such that q

k�1

� N < q

k

,

where (p

k

=q

k

)

k�0

are the convergents to �. Then, as in the previous theorem,

jn�� rj � jq

k�1

�� p

k�1

j (by [4;p: 2;Eq: (4)])

�

1

(B + 2)N

:

Without loss of generality, assume n� � r > 0, and set p

0

= b�=(n� � r)c. Then 0 � p

0

�

(B + 2)N , and 0 � � � (n�� r)p

0

� 1=N . Hence jp

0

n�� p

0

r � �j � 1=N . Now set p = p

0

n,

q = p

0

r; then p; jqj � (B + 2)N

2

.

The next lemma shows that Sturmian sequences corresponding to real numbers with

bounded partial quotients have the property that for all pairs of subsequences of the form

(s

ri+c

)

i�0

, (s

ri+d

)

i�0

with c 6= d, there is a small witness i = m that shows that these

subsequences are di�erent.

Lemma 18 Let 0 < � < 1 be an irrational real number with partial quotients bounded by

B. De�ne the Sturmian word s

1

s

2

s

3

� � � by s

i

= b(i + 1)�c � bi�c for i � 1. Let r � 2 be

an integer. Then for all integers c; d with 0 � c; d < r, c 6= d, there exists an integer m with

0 � m � 4(B + 2)

3

r

3

such that s

rm+c

6= s

rm+d

.

11



Proof. We use the \circular representation" for intervals in [0; 1), identifying the point 0

with the point 1, and considering each point modulo 1. Thus, for example, the interval we

write as [2=3; 1=3) is really [2=3; 1) [ [0; 1=3). See, for example, [11, x3.8, x23.2].

It is easy to see that s

i

= 1() fi�g 2 [1� �; 1). Hence if we could �nd m such that

f(rm+ c)�g 2 [1� �; 1);

f(rm+ d)�g 2 [0; 1� �);

it would follow that s

rm+c

6= s

rm+d

.

Now

f(rm+ c)�g 2 [1� �; 1) () frm�g 2 I

c

:= [�(c+ 1)�;�c�);

f(rm+ d)�g 2 [0; 1� �) () frm�g 2 I

d

:= [�d�;�(d+ 1)�):

We have �(I

c

)+�(I

d

) = 1, where � is Lebesgue measure; hence these intervals have nontrivial

intersection whenever c 6= d. In fact, the endpoints of these intervals are precisely of the

form f�i�g for some i with 0 � i � r. Let p

0

; p

1

; : : : ; p

m+1

denote the points 0, f�g, f2�g,

: : : ; fr�g, 1 arranged in increasing order. It follows that �(I

c

\ I

d

) � min

0�i�r

(p

i+1

� p

i

),

and by Theorem 16, we know this quantity is bounded below by

1

(B+2)r

.

Now let m

0

be the midpoint of the interval I

c

\ I

d

. To �nd m with s

rm+c

6= s

rm+d

, it

su�ces to �nd integers m; t with

jrm��m

0

� tj <

�(I

c

\ I

d

)

2

<

1

2(B + 2)r

:

By a folklore result (see, e.g., [23]), since � has partial quotients bounded by B, we know

that r� has partial quotients bounded by r(B + 2). By Theorem 17, it follows that such an

m exists with m � r(B + 2)(2(B + 2)r)

2

= 4(B + 2)

3

r

3

.

Theorem 19 Let 0 < � < 1 be an irrational real number with bounded partial quotients.

Let s

i

= b(i+ 1)�c � bi�c for i � 1. Then for all k � 2, the k-automaticity of the sequence

(s

i

)

i�1

is 
(n

1=4

=k).

Proof. Combine Lemmas 12 and 18.

It now follows from this result, for example, that the �xed point of the homomorphism

1! 10, 0! 1 is not k-quasiautomatic. This follows because this �xed point can be obtained

as a Sturmian sequence by setting � = (

p

5�1)=2. It is known for which � the corresponding

Sturmian sequence (s

i

(�))

i�1

is the �xed point of a homomorphism; see [6].

5 Diversity

As we have seen in Section 1, a sequence is k-automatic if and only if its k-kernel (de�ned

in Eq. (1)) is �nite. The most spectacular way a sequence can fail to be k-automatic is for

12



all the sequences in the k-kernel to be distinct ; we call such a sequence strongly k-diverse.

Results of the previous sections suggest that the property of strong diversity and related

properties deserve further study.

We make the following de�nitions:

De�nitions 20 A sequence (s(i))

i�0

is weakly k-diverse if the '(k) subsequences f(s(ki+

a))

i�0

: gcd(a; k) = 1; 1 � a < kg are all distinct. A sequence is weakly diverse if it is

weakly k-diverse for all k � 2.

A sequence (s(i))

i�0

is k-diverse if the k subsequences f(s(ki+ a))

i�0

: 0 � a < kg are

all distinct. A sequence is diverse if it is k-diverse for all k � 2.

A sequence (s(i))

i�0

is strongly k-diverse if the subsequences f(s(k

i

� j + a))

i�0

: 0 �

a < k

i

; i � 0g are all distinct. A sequence is strongly diverse if it is strongly k-diverse for

all k � 2.

A sequence is maximally diverse if the subsequences f(s(ki+ a))

i�0

: 0 � a < k; k � 1g

are all distinct.

The results of previous sections can now be rephrased in the language of diversity. In

Section 2 we showed that the characteristic sequences of the primes and squarefree numbers

are weakly diverse. In Section 4 we showed that the sequence (�

2

(i+ 1))

i�0

is k-diverse for

all odd k, and we also showed that if � is a real number with bounded partial quotients,

then (s

i

(�))

i�0

is diverse.

We now give an example of a sequence that is strongly k-diverse for k = 2. Consider the

set X = f2

j

+ j : j � 0g introduced in Theorem 11, and let (c(i))

i�0

be the characteristic

sequence of this set. Then we have the following theorem:

Theorem 21 The sequence (c(i))

i�0

is strongly 2-diverse.

Proof. We must show that, given any four integers j; k; a; b with j; k � 0, 0 � a < 2

j

,

0 � b < 2

k

, and (j; a) 6= (k; b), there exists n � 0 with c

2

j

n+a

6= c

2

k

n+b

. Without loss of

generality, assume j � k and if j = k, then a < b. Let n

0

= 2

k+1

and set n = 2

n

0

�2

j

�j+a

+n

0

.

Then 2

j

n+ a = 2

n

0

�2

j

+a

+ n

0

� 2

j

+ a = 2

i

+ i for i = n

0

� 2

j

+ a. Hence c

2

j

n+a

= 1.

It remains to show c

2

k

n+b

= 0. To see this, it su�ces to show that

2

i

+ i < 2

k

n+ b < 2

i+1

+ i+ 1

for i = n

0

� 2

j

+ k � j + a.

To prove the �rst inequality, it su�ces to show that

n

0

� 2

j

+ k � j + a < n

0

� 2

k

+ b:

There are three cases to examine.

(i) If k = j, then this inequality follows from the assumption that a < b.

(ii) If k = j+1, then we must show a�b+1 < n

0

(2

k

�2

k�1

) = n

0

2

k�1

. Since a < 2

j

= 2

k�1

,

it su�ces to show 2

k�1

< n

0

(2

k

� 2

k�1

) = n

0

2

k�1

, which is true since n

0

� 2.

(iii) If k � j+2, then we must show k�j+2

j

< n

0

(2

k

�2

j

). Now k�j < 2

k�j

< 2

k

, and

2

j

< 2

k

� 2 � 2

j

provided 2

k

> 3 � 2

j

, which is true since k � j +2. Adding these inequalities,

we �nd k � j + 2

j

< 2(2

k

� 2

j

) � n

0

(2

k

� 2

j

), as desired.

13



To prove the second inequality, we must show

n

0

(2

k

� 2

j

) + j � k + b� a < 2

n

0

�2

j

+k�j+a

+ 1:

There are two cases to consider.

(i) If k = j, we must show b�a < 2

n

0

�2

j

+a

+1. Since b < 2

k

, it su�ces to show 2

k

< 2

n

0

+1

and for this it su�ces to take n

0

� k.

(ii) If k > j, then n

0

(2

k

� 2

j

) + j � k + b � a < n

0

(2

k

� 2

j

) + 2

k

< (n

0

+ 1)2

k

. Thus it

su�ces to show (n

0

+ 1)2

k

< 2

n

0

. Choose n

0

� 2

k+1

. Then (n

0

+ 1)2

k

� (n

0

+ 1)n

0

=2 < 2

n

0

provided n

0

� 2, which it is, since n

0

� 2

k+1

.

We now show the following:

Theorem 22 Almost all sequences over f0; 1g are maximally diverse.

Proof. Since the set of pairs f(k; a) : 0 � a < k; k � 1g is countably in�nite, it su�ces to

show that if (k; a) 6= (l; b), then the set of sequences (s(i))

i�0

for which s(ki+ a) = s(li+ b)

for all i � 0 is of measure zero.

Let g = gcd(k; l). If gj=b � a, or if k = l and and a 6= b, then the linear progressions

(ki+ a)

i�0

and (lj + b)

j�0

contain no terms at all in common. Therefore the subsequences

(s(ki + a))

i�0

and (s(lj + b))

j�0

are independent and hence the probability that they are

identical is 0.

Otherwise, assume k 6= l and g j b� a. In order that (k=g)i� (l=g)j = (b� a)=g, we must

have i = (l=g)i

0

+ i

0

, and j = (k=g)i

0

+ j

0

, for some constants i

0

; j

0

. Since k 6= l, at least one

of l=g; k=g must be di�erent from 1. Without loss of generality, assume it is l=g. Choose a

constant i

1

6= i

0

; then the set

fk((l=g)i

0

+ i

0

) + a : i

0

� 0g

contains no terms in common with

flj + b : j � 0g:

Hence the subsequences (s(k((l=g)i

0

+ i

0

) + a))

i

0

�0

and (s(l((l=g)i

0

+ i

0

) + b))

i

0

�0

are inde-

pendent, and so the probability that they are identical is zero.

Although almost all 0; 1-sequences are maximally diverse, it is not so easy to prove that

any individual sequence has the maximally diverse property. We now give some examples of

maximally diverse sequences.

Let � be a real irrational number with 0 < � < 1. Recall the de�nition of the Sturmian

in�nite word (s

i

)

i�0

from Section 4:

s

i

= b(i+ 1)�c � bi�c:

Theorem 23 All Sturmian sequences are maximally diverse.
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Proof. We must show that given j; k � 1, 0 � a < j, 0 � b < k, and (j; a) 6= (k; b), there

exists an n � 0 such that s

jn+a

6= s

kn+b

.

It is easy to see that s

n

= 1 () fn�g 2 [1 � �; 1). Hence it su�ces to exhibit n such

that

f(jn+ a)�g 2 [1� �; 1)

f(kn+ b)�g 2 [0; 1� �)

Now

f(jn + a)�g 2 [1� �; 1) () fjn�g 2 I

a

:= [�(a+ 1)�;�a�);

f(kn+ b)�g 2 [0; 1� �) () fkn�g 2 I

b

:= [�b�;�(b+ 1)�):

First, let us consider the case j = k. We have a 6= b. In this case, we have �(I

a

)+�(I

b

) =

1, and since a 6= b, these intervals must have nontrivial intersection. De�ne I = I

a

\ I

b

; then

�(I) > 0. It now su�ces to choose n such that fjn�g 2 I. Such an n exists by Kronecker's

theorem (e.g., [11, Theorem 438]).

Second, let us consider the case j 6= k. Without loss of generality, let us assume j < k.

De�ne p(I), the projection of an ordinary interval I, to be p(I) = ffxg : x 2 Ig. Thus, for

example, p([e; �)) = [e� 2; � � 3).

Consider I

a

, and let its left and right endpoints be t and u respectively. If I

a

\wraps

around" 0, then choose u 2 [1; 2) so that p([t; u)) = I

a

. De�ne I

0

= p([t=j; u=j)), and

I

1

= p([kt=j; ku=j).

I claim that �(I

1

) > �(I

a

). For if I

a

contained a subinterval of measure � j=k, then

I

1

= [0; 1), and so �(I

1

) = 1 > �(I

a

). Otherwise, I

a

contains no subinterval of measure

� j=k, so �(I

a

) < j=k. In this case, �(I

1

) = k=j�(I

a

) > �(I

a

).

Now �(I

a

) + �(I

b

) = 1. Hence �(I

1

) + �(I

b

) > 1 and so I

1

and I

b

have nontrivial

intersection. Let I

2

= I

1

\ I

b

; then �(I

2

) > 0. By our de�nition of I

0

and I

1

, there is an

interval I

3

� I

0

such that if I

3

= [v;w], then [kv; kw] � I

2

. Also, since I

3

� I

0

, it is clear

that [jv; jw] � I

a

. Again, by Kronecker's theorem, we can �nd n such that fn�g 2 I

3

. For

this n we have fjn�g 2 I

a

and fkn�g 2 I

2

� I

b

, as desired.

If a sequence (d(i))

i�0

is diverse, then we know that for all r; a; b with 0 � a; b < r and

a 6= b, there exists an m such that d(rm + a) 6= d(rm + b). If there is a function f such

that m = O(f(n)), then f(n) is said to be a diversity measure for d. In a previous section

we showed, for example, that the diversity measure for Sturmian sequences corresponding

to real numbers with bounded partial quotients is O(r

3

).

We now show that the diversity measure for almost all sequences is low:

Theorem 24 Almost all binary sequences have the property that for all r � 1, and for all

a; b with 0 � a; b < r and a 6= b, there exists m = O(log r) such that s

rm+a

6= s

rm+b

.

Proof. By Theorem 22, we may restrict our attention to sequences that are diverse.

We have

Pr[s

rm+a

= s

rm+b

for 0 � m < f(r)] = 2

�f(r)

:
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It follows that

Pr[9 at least one pair (a; b) such that s

rm+a

= s

rm+b

for 0 � n < f(r)] =

r(r � 1)

2

2

�f(r)

:

(3)

Choose f(r) = d4 log

2

re; then

r(r�1)

2

2

�f(r)

= �(r

�2

). (Here f = �(g) means f = O(g)

and g = O(f).) Then

P

r�1

r(r�1)

2

2

�f(r)

converges. Hence by the Borel-Cantelli lemma,

with probability 1 at most �nitely many of the events of the form (3) occur. That is, with

probability 1, the event

8 pairs (a; b) 9m < d4 log

2

re such that s

rm+a

6= s

rm+b

occurs all but �nitely many times. Hence with probability 1 we have m = O(log r).

Interestingly enough, I do not know a single explicit example of a diverse sequence with

diversity measure O(log n).
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