
Automaticity II: Descriptional Complexity in the Unary

Case

Carl Pomerance

�

Department of Mathematics

University of Georgia

Athens, GA 30601-3024 USA

carl@math.uga.edu

John Michael Robson

Department of Computer Science

Australian National University

Canberra, ACT 0200 Australia

jmr@cs.anu.edu.au

Je�rey Shallit

y

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

shallit@graceland.uwaterloo.ca

November 30, 1995

Abstract

Let � and � be �nite alphabets, and let f be a map from �

�

to �. Then the

deterministic automaticity of f , A

f

(n), is de�ned to be the size of the minimum �nite-

state machine that correctly computes f on all inputs of size � n. A similar de�nition

applies to languages L. We denote the nondeterministic analogue (for languages L) of

automaticity by N

L

(n).

In a previous paper, J. Shallit and Y. Breitbart examined the properties of this

measure of descriptional complexity in the case j�j � 2. In this paper, we continue the

study of automaticity, focusing on the case where j�j = 1.

�

Research supported in part by DMS-9206784.

y

Research supported in part by a grant from NSERC. Partial support under NSF Grant DCR 920-8639

and the Wisconsin Alumni Research Foundation.

1



We prove that A

f

(n) � n + 1 � blog

`

nc, where ` = j�j. We also prove that

A

f

(n) > n� 2 log

`

n� 2 log

`

log

`

n for almost all functions f .

In the nondeterministic case, we show that there exists a c such that for almost all

unary languages L, we have N

L

(n) > cn= logn for all su�ciently large n. The proof is

based on a new enumeration method for languages accepted by unary q-state NFAs.

If L is not a regular language, then it follows from a result of R. Karp that

lim sup

n!1

A

L

(n)=n � 1=2. We conjecture that if L � 0

�

, then this bound can

be improved to (

p

5� 1)=2.

Finally, we give some lower bounds for nondeterministic automaticity for nonregular

languages.

1 Introduction.

In a previous paper [24], the third author and Y. Breitbart examined the notion of auto-

maticity, a measure of descriptional complexity for functions and languages de�ned over

�nite alphabets �. Their work covered the case k = j�j � 2. In this paper we will examine

the same notion, but concentrate on the unary case, when k = j�j = 1.

We will use the following notation: �

�n

= �+ �+ �

2

+ � � � + �

n

.

We will be concerned with �nite automata that can compute functions. A deterministic

�nite automaton with output (DFAO) is a sextuple M = (Q;�; �; q

0

;�; � ), where Q is a

�nite nonempty set of states, � (the input alphabet) and � (the output alphabet) are �nite

nonempty sets, � is the transition function mapping Q � � into Q, q

0

is the initial state,

and � is an output function mapping Q into �. We emphasize that � is complete; i.e., it is

de�ned for all members of Q��. The machine M computes a function g

M

from �

�

to � as

follows: g

M

(w) = � (�(q

0

; w)).

In the case where � = f0; 1g, this 
avor of automaton coincides with the ordinary

notion of automaton and acceptance/rejection. In this case we can associate a set of �nal

states F such that F = fq 2 Q : � (q) = 1g. The language accepted by M is then

L(M) = fw 2 �

�

: �(q

0

; w) 2 Fg.

By jM j we will mean the \size" of the automatonM , which we de�ne to be the cardinality

of the set Q of states in M .

Let � and � be �nite alphabets, and let f be a map from �

�

to �. Then the (determin-

istic) automaticity of f is a function A

f

(n) de�ned as follows:

A

f

(n) = min fjM j : M 2 DFAO and 8 w 2 �

�n

f(w) = g

M

(w)g:

Roughly speaking, A

f

(n) counts the minimum number of states in any DFAOM that simu-

lates f correctly on all strings of length � n; howM behaves on longer strings is unspeci�ed.

In general, there may be many di�erent automata for which the number of states is a mini-

mum.

If L � �

�

is a language, then we write A

L

(n) for the automaticity of the characteristic

function �

L

(w), de�ned as follows:

�

L

(w) =

�

1; if w 2 L;

0; otherwise.

2



In this case,

A

L

(n) = min fjM j : M 2 DFA and L(M) \ �

�n

= L \ �

�n

g:

There is also a nondeterministic analogue of automaticity N

L

(n), which we de�ne only

for languages L:

N

L

(n) = min fjM j : M 2 NFA and L(M) \ �

�n

= L \ �

�n

g:

We note that our model of nondeterministic �nite automaton is that de�ned in [12], and

allows transitions only on single letters and the empty string �.

We will sometimes use the following terminology. We say that a function f : �

�

! �

is an nth-order approximation to a function g : �

�

! � if f(w) = g(w) for all w with

jwj � n. Similarly, we say that a language L � �

�

is an nth{order approximation to a

language L

0

� �

�

if we have L \ �

�n

= L

0

\ �

�n

.

The implied constant in the big-O bounds in this paper may depend on k = j�j and

` = j�j, but not on n.

2 Properties of Automaticity

In this section we recall from [24] some of the properties of deterministic and nondeterministic

automaticity.

Theorem 1 Let � = f0g, f : �

�

! � and L � �

�

. Then

1. (Karp's Theorem) If L is not a regular language, then A

L

(n) � (n+3)=2 for in�nitely

many n.

2. For each w 2 �

�

with jwj � n, de�ne S

w

(n) = f(w)f(w0)f(w00) � � � f(0

n�jwj

). Let

S(n) be the collection fS

w

(n) : w 2 �

�n

g. For strings in S(n), de�ne the partial

order � as follows: x � y if x is a pre�x of y. Then A

f

(n) equals the cardinality of

the set of maximal elements (under �) of S(n).

3. If L � 0

�

, then there exists a constant c such that A

L

(n) � ce

p

N

L

(n) logN

L

(n)

.

Proof.

1. See [24, Thm. 3] or [14].

2. See [24, Thm. 7].

3. The inequality A

L

(n) � ce

p

N

L

(n) logN

L

(n)

for some constant c follows from results in

[8]. (See also [18, 19, 20, 21, 10].)

3



3 Bounds on Deterministic Automaticity: The Unary

Case

Some very interesting questions arise when one attempts to determine automaticity of func-

tions over a 1{letter alphabet, say � = f0g. Oddly enough, this case does not seem to have

been investigated previously.

In the unary case, the sequences S

0

(n); S

00

(n); etc. are nothing more than the su�xes of

the sequence S

�

(n). Thus there is a connection with string-matching.

Let us introduce some notation. We say that the string x is a factor of a string y if

there exist strings w; z such that y = wxz. If � = f0g, and f : �

�

! �, we de�ne

w = w(f) = f(�)f(0)f(0

2

)f(0

3

) � � �. We call w(f) the characteristic word of f .

Lemma 2 Let � = f0g, ` = j�j � 2, and let f : �

�

! � be any function. Let w = w(f) =

w

0

w

1

w

2

: : : be the characteristic word of f , so w

i

= f(0

i

). Then A

f

(n) = n + 1 � t, where

t is the length of the longest (possibly empty) su�x of w

0

w

1

: : : w

n

that is also a factor of

w

0

w

1

: : : w

n�1

.

Proof. If there is such a su�x of length t, then there exists m < n such that

w

m+1�t

� � �w

m

= w

n+1�t

� � �w

n

:

Hence S

0

n�k(n) is a pre�x of S

0

m�k(n) for 0 � k � t� 1. It follows that A

L

(n) � n+ 1 � t.

On the other hand, if A

L

(n) < n + 1 � t, then S

0

n�t

(n) would be a pre�x of S

0

i
(n) for

some i < n � t, contradicting the maximality of t.

It is easy to see that A

f

(n) � n+1; in fact, this bound can be attained for any particular

value of n by setting f(0

i

) = 0 for 0 � i < n, and f(0

n

) = 1. We have S

�

= 0

n

1, and none

of the successive su�xes are pre�xes of any other su�x.

A more interesting question is to ask about the behavior of A

f

(n) for any �xed f , as

n!1. We will prove the following:

Theorem 3 Let � = f0g and ` = j�j � 2. Then for any function f : �

�

! � the inequality

A

f

(n) � n+ 1� blog

`

nc holds for in�nitely many n.

Proof. De�ne n = n(m) = `

m

+m� 1. Note that m = blog

`

nc. Consider the string

S

�

= f(�)f(0)f(0

2

) � � � f(0

n

) = w

0

w

1

� � �w

n

:

Contained in the string S

�

are `

m

+ 1 (overlapping) factors of length m, where by factor we

mean a string of consecutive symbols. Hence there must be some factor x that appears at

least twice in S

�

. Choose x so that n

0

= n

0

(m), the position at which the second occurrence

(counting from the left) of x ends, is as small as possible.

Let the �rst occurrence of x be w

k

w

k+1

� � �w

k+m�1

, and let the second occurrence be

w

n

0

+1�m

� � �w

n

0

. Then, by Lemma 2,

A

f

(n

0

) � n

0

+ 1 �m � n+ 1�m = n+ 1� blog

`

nc:

To see that the inequality is true for in�nitely many n

0

, it remains to see that n

0

(m) is

strictly increasing. Suppose n

0

(m+ 1) � n

0

(m). Then there would be a factor of length m

whose second occurrence ends at a position � n

0

(m + 1) � 1, contradicting the minimality

of n

0

(m). This completes the proof.

4



Is it possible to explicitly construct an f for which n�A

f

(n) = O(log n)? The answer is

yes.

Looking at the proof of the previous theorem, we see that what we are trying to do is

construct an in�nite sequence such that the longest factor that occurs twice in any pre�x of

length n is O(log n). This can be done as follows. First, we provide a solution when ` = 3:

we write down all possible binary strings of length 0, 1, 2, etc., separated by 2's:

2202120020121021120002001201020112100210121102111200002 � � �

Suppose we consider a pre�x P of length n. Between any two occurrences of 2 in P ,

there is a string we have strings of 0's and 1's of length � log

2

n. Any factor of length at

least 2 + 2 log

2

n must contain two 2's. But then this can't possibly match an earlier factor.

It follows that all duplications must be of length < 2 + 2 log

2

n.

To make this work with a binary alphabet, we simply recode: we replace each 0 by 0, each

1 by 10 and each 2 by 11. The same argument as before works, and we have now expanded

the string by a factor of at most 2. Hence the longest duplication is of length < 4 + 4 log

2

n.

It follows that for this f we have n�A

f

(n) = O(log n).

A construction improving the 4 to 2 was given independently by Condon, Hellerstein,

Pottle, and Wigderson [9].

We now prove the following \almost all" result:

Theorem 4 Suppose � = f0g and j�j = ` � 2. Then for almost all functions f : �

�

! �

we have A

f

(n) > n� 2 log

`

n� 2 log

`

log

`

n for all su�ciently large n.

Proof. Let us �rst estimate the number of distinct unary automata with outputs in �

that have j states. It su�ces to consider only those automata whose transition diagram is

topologically connected. It is easy to see that the graph of such an automaton must consist

of j states connected consecutively, followed by the highest numbered state connected back

to some previous state. Thus, topologically speaking, there are j possibilities. Since each

state can have a di�erent output associated with it, there are `

j

di�erent possible output

functions. This gives us an upper bound of j`

j

for the number of distinct connected automata

with j states.

Since for any positive integer q we have

X

1�j�q

j`

j

=

`

q+1

(q`� q � 1) + `

(`� 1)

2

�

`

q+1

(q + 1)

` � 1

;

it follows that the number of functions from �

�n

to � that are given by DFAO's with � q

states is bounded above by `

q+1

(q + 1)=(` � 1). Now set q = c(n), where

c(n) = n� 2 log

`

n� 2 log

`

log

`

n:

Then, since the total number of functions from �

�n

to � is `

n+1

, the probability that a

randomly chosen function f satis�es A

f

(n) � c(n) is bounded above by

n+ 1 � 2 log

`

n� 2 log

`

log

`

n

(`� 1)n

2

(log

`

n)

2

= O

 

1

n(log n)

2

!

:

Since

P

n�2

1

n(logn)

2

converges, by the Borel-Cantelli lemma [11, p. 188], we must haveA

f

(n) >

c(n) for all su�ciently large n.

5



For languages, we immediately get the following corollary:

Corollary 5 For almost all languages L � 0

�

, we have

A

L

(n) > n� 2 log

2

n� 2 log

2

log

2

n

for all su�ciently large n.

4 An Upper Bound on the Number of Distinct Unary

NFA Languages

In this section, we digress brie
y to prove an upper bound on the number of distinct unary

languages accepted by NFAs with q states. This bound will be used in the next section.

Theorem 6 There are O(q= log q)

q

distinct unary languages accepted by NFAs with q states.

The basic idea of the proof is to �nd a decomposition for such languages that can be

completely described by a small number of parameters.

The proof depends on a number of lemmas. First, we introduce some notation borrowed

from the computer language APL. We assume that L � a

�

is a unary language. We say

that L is c-monotonic if, for all n � 0, we have a

n

2 L implies a

n+c

2 L. We also say that

L is c-periodic after N if, for all n � N , we have a

n

2 L i� a

n+c

2 L. Note that if L is

c-monotonic, then there exists a constant N such that L is c-periodic after N , but if L is

c-periodic after N , it may not necessarily be c-monotonic.

Lemma 7 (a) Let L

1

; L

2

be c-monotonic unary languages. Then so is L

1

[ L

2

.

(b) Let L

1

; L

2

be unary languages that are c-periodic after N . Then so is L

1

[ L

2

.

Proof. Clear.

LetM = (Q;�; �; q

0

; F ) be a unary NFA, i.e., an NFA where � = fag. We call a sequence

(p

0

; p

1

; : : : ; p

r

) of states of Q an accepting path for the string w = a

r

if p

0

= q

0

, p

r

2 F , and

p

i

2 �(p

i�1

; a) for 1 � i � r.

If M = (Q;�; �; q

0

; F ) is a unary NFA, then by G(M) we mean the underlying digraph

of M , given by (V;E), where V = Q and

E = f(p; p

0

) : p 2 Q; p

0

2 �(p; a)g:

Also de�ne L(M;s) to be the set of all strings w 2 L having an accepting path that contains

s.

Lemma 8 LetM be a unary NFA with q states such that G(M) has a directed cycle of length

c. Let s be any state contained in a directed cycle of length c. Then L(M;s) is c-monotonic.

Proof. Let w = a

n

be a string in L(M;s), let (p

0

; p

1

; : : : ; p

n

) be an accepting path for w,

and let p

i

= s, a state contained in a cycle C of length c. Then we can create an accepting

path for a

n+c

by arriving at p

i

, going around the states of C, returning to p

i

, and then

continuing to p

n

.

6



Lemma 9 Let M , s, and L(M;s) be as in Lemma 8. Then L(M;s) is c-periodic after

(c+ 1)(q � 1).

Proof. Suppose w = a

`

2 L = L(M), with ` � (c + 1)q � 1, and suppose there exists an

accepting path for w containing a state s, where s lies in a cycle of length c in G(M). We

will show how to produce an accepting path that contains s for a

`�kc

, for some integer k � 0.

The result will then follow from Lemma 8.

Let the accepting path for w be P = (p

0

; p

1

; : : : ; p

`

), and let i be the smallest index such

that p

i

= s. Divide the accepting path into the pre�x P = (p

0

; p

1

; : : : ; p

i

= s) and the su�x

S = (p

i

= s; p

i+1

; : : : ; p

`

). Note that P and S together contain i+1+`�i+1 = `+2 > (c+1)q

states. Let p

0

be any state that occurs most frequently in P , and s

0

be any state that occurs

most frequently in S. The total number of occurrences of both p

0

and s

0

in P and S is � c+2.

If any two of the occurrences of p

0

or two of the occurrences of s

0

in P are separated by a

subpath P

0

of length k � 0 (mod c), then we obtain an accepting path for a

`�kc

by simply

cutting out P

0

.

Otherwise, assume that no two occurrences of p

0

or s

0

are separated by a subpath of

length � 0 (mod c). Call this Assumption A. We will shorten the path as follows: we cut

out both the section between some occurrence of p

0

in P and the last occurrence of p

0

in P ,

shortening P by d, and the section between the �rst occurrence of s

0

in S, and some later

occurrence of s

0

in S, shortening P by e. Now consider the � c possible values d (mod c) and

�e (mod c). Since by Assumption A, no two of the possible choices for d are equal (mod c),

the choices for d must be distributed in the non-zero residue classes (mod c). The same thing

holds for �e. Since there are at least c choices for d and �e, by the pigeonhole principle,

there must be at least one pair (d;�e) for which d � �e (mod c); hence d+ e � 0 (mod c).

By cutting out both corresponding sections, we obtain an accepting path for a

`�kc

for some

k.

Next, we prove a lemma about directed graphs. We say that a graph G is of girth c if

every directed cycle is of length � c. If G is acyclic, its girth is de�ned to be in�nite.

Lemma 10 Let G be a digraph on q vertices of girth > 2q=3. Then there exists at least one

vertex v that lies in every cycle.

Proof. Any two directed cycles in G must have > 2q=3+2q=3�q = q=3 vertices in common.

Hence, any three directed cycles must have > 2q=3 + q=3� q > 0 vertices in common. The

result now follows from a theorem of Kosaraju [16]; also see [1, 26].

The next lemma introduces the decomposition we will use to count the number of lan-

guages accepted by a unary NFA with q states.

Lemma 11 Let M be a unary NFA with q states. Then there exists an integer r � 0, a

strictly increasing sequence c

1

< c

2

< � � � < c

r

, languages L

1

; L

2

; : : : ; L

r

, and an NFA M

r+1

such that

L(M) =

0

@

[

1�i�r

L

i

1

A

[ L(M

r+1

) (1)

7



and, for 1 � i � r, the language L

i

is c

i

-monotonic and c

i

-periodic after (c

r

+ 1)(q � 1).

Furthermore, if M

r+1

has q

0

states, then the girth of G(M

r+1

) is > 2q

0

=3, and if r � 1, then

q

0

� c

r

=2. Finally, q

0

= q � (c

1

+ c

2

+ � � �+ c

r

).

Proof. We describe a recursive procedure for computing the decomposition of L(M

i

). Let

M

i

have n

i

states, and let c

i

be the girth of G(M

i

). If c

i

> 2n

i

=3, we terminate the procedure.

Otherwise, we write

L(M

i

) = L

i

[ L(M

i+1

);

where L

i

= fw 2 L(M

i

) : there exists an accepting path for w that contains a state in

some cycle of length c

i

g, and M

i+1

is obtained from M

i

by removing all states in all cycles

of length c

i

. Note that we can take M

i+1

to have exactly n

i

� c

i

states, some of which may

be inaccessible. Clearly this procedure terminates, since at each step we remove a positive

number of states. It follows that q

0

= q � (c

1

+ c

2

+ � � �+ c

r

).

If we write M =M

1

, this gives us the decomposition

L(M

1

) = L

1

[ L

2

[ � � � [ L

r

[ L(M

r+1

)

where c

1

< c

2

< � � � < c

r

. The termination condition gives us c

r+1

> 2q

0

=3. Furthermore,

c

r

� 2n

r

=3. Since q

0

= n

r

� c

r

, we have q

0

� 3c

r

=2 � c

r

� c

r

=2. The fact that L

i

is

c

i

-monotonic and c

i

-periodic after (c

r

+ 1)(q � 1) follows from Lemmas 7{9.

We are now ready to prove Theorem 6. The idea is to count the number of languages

accepted by an NFA with q states by parameterizing the decomposition given in Lemma 11.

Proof. We can completely specify any language accepted by an NFA with q-states by

providing:

1. The integers c

1

; c

2

; : : : ; c

r

;

2. For each pair (i; j) with 1 � i � r and 0 � j < c

i

, whether or not there exists an n � 0

with n � j (mod c

i

) and a

n

2 L

i

;

3. For each pair (i; j), with 1 � i � r and 0 � j < c

i

, the cardinality of

L

i;j

= fa

n

2 L

i

� ([

1�t<i

L

t

) : n < (c

r

+ 1)(q � 1) and n � j (mod c

i

)g;

4. The residual language L(M

r+1

).

First, let us argue that these speci�cations su�ce. From Lemma 11, we know that in the

decomposition (1), each L

i

is c

i

-periodic after (c

r

+1)(q�1). It follows that L

i

is completely

determined by specifying c

i

, the congruence classes (mod c

i

) of lengths of strings that are

eventually covered by members of L

i

, and the strings of length < (c

r

+ 1)(q � 1). However,

since each L

i

is also c

i

-monotonic, it is not necessary to actually specify all the strings of

length < (c

r

+ 1)(q � 1) in L

i

. It su�ces to specify, for each j < c

i

, the shortest such string

with length congruent to j (mod c

i

). And if this string is contained in L

t

, for t < i, it need

not be mentioned; thus it actually su�ces to give the shortest such string s not contained

in [

1�t<i

L

t

. But then s is completely determined by the cardinality of L

i;j

.

We now bound the number of possibilities in each of these parts as follows:

8



1. Since c

1

< c

2

< � � � < c

r

� q, it su�ces to specify a subset of cardinality r of

f1; 2; : : : ; qg. Hence there are at most 2

q

possibilities.

2. The total number of possibilities is 2

c

1

+c

2

+���+c

r

= 2

q�q

0

.

3. The number of ways of choosing n non-negative integers whose sum is � m is

 

m+ n

n

!

< (m+ n)

n

=n!:

The number of possibilities here can be enumerated by counting the number of ways

of choosing c

1

+ c

2

+ � � � + c

r

= q � q

0

non-negative integers whose sum is at most

(c

r

+ 1)(q � 1). This gives us the upper bound

B = ((c

r

+ 1)(q � 1) + q � q

0

)

q�q

0

=(q � q

0

)!: (2)

Now we know from Lemma 11 that c

r

� 2q

0

, so, by Stirling's approximation,

B = O(qq

0

=(q � q

0

))

q�q

0

:

If q

0

> 2q=3, then B = O(q

2=3

)

q

= O(q= log q)

q

. If q

0

< 2q=3, then B = O(q

0

)

q�q

0

. Now,

by logarithmic di�erentiation with respect to q

0

, it is easy to see that B is maximized

by choosing q

0

= O(q= log q), giving the bound B = O(q= log q)

q

.

4. If G(M

r+1

) is acyclic, then L(M

r+1

) can be speci�ed completely by specifying all the

strings it accepts, and there are at most 2

q

0

possibilities.

Otherwise the girth of G(M

r+1

) is �nite and exceeds 2q

0

=3, so by Lemma 10, there is a

vertex v (i.e., a state of M

r+1

) that lies in every cycle. Now L(M

r+1

) can be speci�ed

completely by describing A = L \ �

<q

0

and B = L \ �

�q

0

. There are 2

q

0

possibilities

for A. Let w be a string in B, and consider the sequence of states encountered in an

accepting path (p

0

; : : : ; p

f

) for w in M

r+1

. By the pigeonhole principle, some state

p = p

i

must be repeated. This corresponds to a cycle in G(M

r+1

), which must contain

v. Now consider the portion P of the accepting path from v to p

f

. Either P is of

length < q

0

, or again, by the pigeonhole principle, some state must be repeated. Let p

0

be the �rst repeated state. Since v is in every cycle, we must have p

0

= v. Continuing

in this fashion, we see that every accepting path of length � q

0

can be split into three

parts: an (i) initial portion of length < q

0

, (ii) a concatenation of cycles (possibly 0)

beginning and ending at v, and (iii) a tail of length < q

0

. These accepting paths are

completely speci�ed by providing (i) the list of lengths of acyclic paths from p

0

to v,

which is a subset of [0; q

0

), (ii) the set of possible cycle lengths, which is a subset of

(2q

0

=3; q

0

], and (iii) the lengths of acyclic paths from v to any �nal state, which is a

subset of [0; q

0

). It follows that there are at most 2

q

0

� 2

q

0

=3

� 2

q

0

= 2

7q

0

=3

possibilities

for B. Multiplying this by the 2

q

0

possibilities for A gives a total of at most 2

10q

0

=3

languages accepted by an NFA with underlying graph having �nite girth � 2q

0

=3.

Thus the total number of possibilities for L(M

r+1

) is 2

10q

0

=3

+ 2

q

0

.

By multiplying all four of these bounds together, we see that the number of distinct

languages accepted by unary NFAs with q states is O(q= log q)

q

.

9



5 Bounds on Nondeterministic Automaticity: The Unary

Case

In this section we give upper and lower bounds on nondeterministic automaticity when

L � 0

�

.

Corollary 12 Suppose L � 0

�

. Then there exists a constant c such that for almost all L we

have N

L

(n) >

cn

logn

for all su�ciently large n.

Proof. The result follows immediately from the Borel-Cantelli lemma and Theorem 6 of

the previous section.

It is also easy to prove the following upper bound:

Theorem 13 Let L � 0

�

. Then N

L

(n) � n+ 1� blog

2

nc for in�nitely many n.

Proof. This follows immediately from Theorem 3 and Theorem 1, Part 3.

6 Lower Bounds for Nonregular Languages when k = 1

Recall that Karp's theorem (Theorem 1, Part 1) says that if L is not regular, then A

L

(n) �

(n + 3)=2 for in�nitely many n. The proof does not depend on k (the size of the input

alphabet), and hence is true if k = j�j = 1. It follows that if L � 0

�

is not regular, then

lim sup

n!1

A

L

(n)

n

�

1

2

:

However, the bound of 1=2 does not seem attainable in the unary case. We make the following

Conjecture 14 If L � 0

�

is not regular, then

lim sup

n!1

A

L

(n)

n

�

p

5� 1

2

:

= :61803:

Using Lemma 2, we can rephrase this conjecture in a purely combinatorial fashion:

Conjecture 14

0

Let w = w

0

w

1

w

2

: : : be an in�nite word over a �nite alphabet that is not

ultimately periodic. De�ne s

w

(n) to be the length of the longest su�x of w

0

w

1

: : :w

n

that

is also a factor of w

0

w

1

: : : w

n�1

. Then

lim inf

n!1

s

w

(n)

n

�

3 �

p

5

2

:

= :38197:

10



J.-P. Allouche has kindly informed us that Conjecture 14

0

is related to a similar one of

G. Rauzy [22, x5.2]. This paper also mentions that Rauzy's conjecture has been proved by

C. Rauzy in the case of the so-called Sturmian words.

We do not know how to prove Conjecture 14. However, we can prove that if the conjecture

is true, then the constant (

p

5� 1)=2 is best possible. In fact, this bound is achieved for an

L related to f , the famous Fibonacci word [5, 6].

One possible de�nition of f is as follows: de�ne h

1

= 1, h

2

= 0, and h

n

= h

n�1

h

n�2

.

Thus, for example, h

3

= 01, h

4

= 010, h

5

= 01001, etc. Clearly h

n

� h

n+1

for all n � 2,

and hence it is meaningful to de�ne f = lim

n!1

h

n

. We write the individual bits of f as

f

0

; f

1

; : : :, and we have

f = f

0

f

1

f

2

� � � = 0100101001001 � � � :

Notice that jh

i

j = F

i

, where F

i

is the i'th Fibonacci number, de�ned by F

0

= 0, F

1

= 1, and

F

i

= F

i�1

+ F

i�2

for i � 2.

There is a remarkable description of f in terms of Fibonacci representations. It is well

known (see, for example, [17, 28]) that every integer n � 0 can be expressed uniquely as

n =

X

i�1

a

i

(n)F

i+1

;

where a

i

= a

i

(n) 2 f0; 1g, and a

i

a

i+1

= 0 for all i � 1. We can think of the Fibonacci

representation of n as an in�nite string a

1

a

2

a

3

: : : where only �nitely many of the a

i

's are

equal to 1; we write n

(F )

= a

1

a

2

a

3

: : :. Also, we de�ne fval(a

1

a

2

: : : a

k

) =

P

1�i�k

a

k

F

k+1

.

We have the following well-known theorem [15, Ex. 1.2.8.36].

Theorem 15 Let n be a non-negative integer. Then f

n

= a

1

(n).

We de�ne the unary Fibonacci language, L

F

, as follows:

L

F

= f0

i

: f

i

= 0g = f�; 0

2

; 0

3

; 0

5

; 0

7

; 0

8

; : : :g:

It is known that f is not ultimately periodic (this follows, for example, from Karhum�aki's

result [13] that f is fourth-power-free), and hence L

F

is not regular. We will prove that

if L = L

F

, then lim sup

n!1

A

L

(n)=n = (

p

5 � 1)=2. The proof depends on a lemma of

independent interest, which gives the number of matches between two shifts of the Fibonacci

word.

First, we introduce some notation. If w = w

0

w

1

w

2

: : : is an in�nite word, then by

n#w we mean the in�nite word w

n

w

n+1

: : :. By w

a::b

we mean the word w

a

w

a+1

� � �w

b

. If

v = v

1

v

2

v

3

� � � and w = w

1

w

2

w

3

� � � are words (�nite or in�nite), then by d(v;w) we mean

the least index i for which v

i

6= w

i

. If no such index exists, then we write d(v;w) =1. We

de�ne m(v;w) = d(v;w)� 1; thus m(v;w) counts the length of the longest matching pre�x

of v and w.

Lemma 16 Let r; s be non-negative integers with r 6= s. Suppose d(r

(F )

; s

(F )

) = k. Then

m(r#f; s#f) = F

k+2

� (t+ 2), where t = fval(a

1

(r)a

2

(r) � � � a

k�1

(r)).

11



Proof.

Notice that the formula is actually symmetric in r and s, since by de�nition a

i

(r) = a

i

(s)

for 1 � i � k � 1.

Without loss of generality, let us assume that a

k

(r) = 1 and a

k

(s) = 0. If k = 1, then

t = 0, and hence m(r#f; s#f) = F

3

� 2 = 0. Hence, let us assume k � 2. As r and s are

successively incremented, their Fibonacci representations coincide on bits 1 through k�1, up

to and including r+F

k

� (t+1) and s+F

k

� (t+1). Then, at r

0

= r+F

k

� t, s

0

= s+F

k

� t,

we have a

1::k�1

(r) = 0

k�1

, a

1::k�1

(s) = 0

k�2

1, and d(r

0

(F )

; s

0

(F )

) = k � 1.

Now, as r

0

and s

0

are successively incremented, their Fibonacci representations coincide

on bits 1 through k � 2, up to and including r

0

+ F

k�1

� 1 and s

0

+ F

k�1

� 1. Then,

at r

00

= r

0

+ F

k�1

, s

00

= s

0

+ F

k�1

, we have a

1::k�2

(r

00

) = 0

k�3

1, a

1::k�2

(s

00

) = 0

k�2

, and

d(r

00

(F )

; s

00

(F )

) = k � 2.

In the same manner as the previous paragraph, as r

00

and s

00

are successively incremented,

their Fibonacci representations coincide on bits 1 through k � 3, up to and including r

00

+

F

k�2

�1 and s

00

+F

k�2

�1. Then, at r

000

= r

00

+F

k�2

, s

000

= s

00

+F

k�2

, we have a

1::k�3

(r

000

) = 0

k�3

and a

1::k�3

(s

000

) = 0

k�4

(1).

This continues until the pair (r

(k�2)

; s

(k�2)

), for which d(r

(k�2)

(F )

; s

(k�2)

(F )

) = 2. Finally, we

see that if r

(k�1)

= r

(k�2)

+ 1 and s

(k�1)

= s

(k�1)

+ 1, then d(r

(k�1)

(F )

; s

(k�1)

(F )

) = 1, and hence

a

1

(r

(k�1)

) 6= a

1

(s

(k�1)

). We see that

r

00

� r

0

= F

k�1

r

000

� r

00

= F

k�2

.

.

.

r

(k�1)

� r

(k�2)

= F

2

= 1;

and so r

(k�1)

� r

0

=

P

2�j�k�1

F

j

= F

k+1

� 2.

Adding this to r

0

� r = F

k

� t, we see that the strings r#f and s#f di�er for the �rst

time at position F

k

� t+F

k+1

� 2 = F

k+2

� (t+2). This completes the proof of the Lemma.

Corollary 17 Let d(r

(F )

; s

(F )

) = k. Then

F

k+1

� 1 � m(r#f; s#f) � F

k+2

� 2;

F

k+1

� d(r#f; s#f) � F

k+2

� 1:

Theorem 18 Let L = L

F

, the unary Fibonacci language. Suppose F

n

� 2 � k � F

n+1

� 3.

Then A

L

(k) = F

n�1

.

Proof. First we show that A

L

(k) � F

n�1

. Since A

L

(k) is an increasing function of k, it

su�ces to prove this for k = F

n

� 2.

12



For this language L, and this value of k, we have S

�

= f

0::F

n

�2

, and S

0

i
= f

i::F

n

�2

for

0 � i � F

n

� 2. De�ne x

i

= f

i::F

n

�2

. We then partition the collection fS

0

i
: 0 � i < F

n�1

g

as follows:

D

1

= fx

i

: 0 � i � F

n�2

g

D

2

= fx

i

: F

n�2

< i < F

n�1

g

We will show that D

1

[D

2

consists of F

n�1

pairwise incomparable strings under the pre�x

ordering. From this the result will follow.

First, we show that all the elements of D

1

are mutually incomparable under the �

ordering. This follows because each string in D

1

is as long or longer than x

F

n�2

, which is of

length (F

n

�2)�F

n�2

+1 = F

n�1

�1. But according to Corollary 17, d(i#f; j#f) � F

`+2

�1,

where ` = d(i

(F )

; j

(F )

). Since i; j � F

n�2

, it follows that ` � n � 3. Hence we have

d(i#f; j#f) � F

n�1

� 1, which means that the two strings x

i

and x

j

di�er in a position

which is, at worst, their rightmost position. Thus, x

i

and x

j

are incomparable.

Next, we show that all the elements of D

2

are mutually incomparable under �. Let i; j be

distinct integers such that F

n�2

< i; j < F

n�1

. Then i and j both have a 1-bit corresponding

to the summand F

n�2

in their Fibonacci representation. Thus a

n�3

(i) = a

n�3

(j) = 1. Since

Fibonacci representations do not contain consecutive 1's, it follows that a

n�4

(i) = a

n�4

(j) =

0. Hence d(i

(F )

; j

(F )

) � n � 5. It follows from Corollary 17 that d(i#f; j#f) � F

n�3

� 1.

But jx

i

j; jx

j

j � (F

n

� 2)� (F

n�1

� 1)+1 = F

n�2

. Hence the two strings x

i

and x

j

di�er, and

so are incomparable.

Finally, we show that all the elements of D

2

are not comparable to elements of D

1

.

Let 0 � i � F

n�2

, and F

n�2

< j < F

n�1

. If d(i#f; j#f) � n � 4, then this follows

as in the previous paragraph. Since d(i

(F )

; j

(F )

) < n � 2, the remaining case is when

d(i

(F )

; j

(F )

) = n � 3. This can only occur when i = a and j = a + F

n�2

. In this case,

Lemma 16 shows that d(i#f; j#f) = F

n�1

� (a + 1). On the other hand, the length of x

j

(the shorter of the two strings) is (F

n

� 2)� (a+F

n�2

)+ 1 = F

n�1

� (a+1), exactly as long

as is necessary to distinguish x

i

from x

j

.

Thus we have shown A

L

(k) � F

n�1

.

It remains to show that for F

n

� 2 � k � F

n+1

� 3, we have A

L

(k) � F

n�1

. Again, since

A

L

(k) is increasing, it su�ces to show this for k = F

n+1

� 3. Let y

i

= f

i::F

n+1

�3

. As above,

we partition the collection fS

0

i : 0 � i � F

n+1

� 3g as follows:

D = fy

i

: 0 � i < F

n�1

g

N = fy

i

: F

n�1

� i � F

n+1

� 3g

We will show that every string in N is a pre�x of some longer string in D [ N . Actually, it

su�ces to show that y

F

n�1

is a pre�x of y

0

, for it would then follow that y

F

n�1

+i

is a pre�x

of y

i

for 1 � i � F

n

� 3. But from Lemma 16, we know that m(0#f; F

n�1

#f) = F

n

� 2. But

the length of y

F

n�1

is F

n

� 2, so y

F

n�1

is a pre�x of y

0

.

Corollary 19 We have

lim sup

k!1

A

L

(k)

k

= (

p

5 � 1)=2:

13



Proof. Let F

n

� 2 � k � F

n+1

� 3. Then

A

L

(k)

k

�

F

n�1

F

n

� 2

:

Hence

lim sup

k!1

A

L

(k)

k

� lim

n!1

F

n�1

F

n

� 2

=

p

5 � 1

2

:

On the other hand, when k = F

n

� 2, then

A

L

(k)

k

=

F

n�1

F

n

� 2

;

and so

lim sup

k!1

A

L

(k)

k

=

p

5� 1

2

:

In the last theorem of this section, we prove a somewhat stronger result than Conjec-

ture 14 under a somewhat stronger hypothesis.

Theorem 20 Let a

1

< a

2

< a

3

< � � � be a strictly increasing sequence of non-negative

integers, and de�ne

L = f0

a

1

; 0

a

1

+a

2

; 0

a

1

+a

2

+a

3

; : : :g:

Then

lim sup

n!1

A

L

(n)

n

�

3

4

:

The constant 3=4 cannot be replaced by any larger number.

Proof. It is readily veri�ed using Lemma 2 that for w = w(L) we have s

w

(

P

1�i�k

a

i

) = a

k�1

.

It follows that

lim sup

n!1

A

L

(n)

n

� 1� lim inf

n!1

a

n�1

P

1�i�n

a

i

:

Now it can be shown (see [7]) that for all sequences of positive real numbers a

1

; a

2

; : : : we

have

lim inf

n!1

a

n�1

P

1�i�n

a

i

�

1

4

:

From this, the �rst result follows.

To see that the constant 3=4 is best possible, consider L = f0

2

i

: i � 0g. For this L we

have A

L

(2

n

) = 1 + 3 � 2

n�2

for n � 3.

14



7 Lower Bounds for Nondeterministic Automaticity for

Nonregular Languages

In this section we are interested in obtaining lower bounds, similar to that given in Karp's

theorem, for the nondeterministic automaticity of nonregular languages.

Theorem 21 There exists a constant c

0

(which does not depend on L) such that if L � 0

�

is not regular, then N

L

(n) � c

0

(log n)

2

=(log log n) in�nitely often.

Proof. Suppose, to the contrary, that L is nonregular and N

L

(n) < c

0

(log n)

2

=(log log n)

for all n su�ciently large. Then from Theorem 1, Part 3, we have A

L

(n) < cn

p

c

0

=2

for all n

su�ciently large. (Here c is the constant in Theorem 1, Part 3.) By choosing c

0

su�ciently

small, we get a contradiction with Theorem 1, Part 1.

We now give a \natural" unary language with nondeterministic automaticity close to the

lower bound in Theorem 21.

Theorem 22 Let L

1

= f0

n

2

: n odd;� 1g. Then L

2

= L

1

= 0

�

� L

1

is not a regular lan-

guage. Assuming Conjecture 23 below, we have N

L

2

(n) = O((log n)

2

(log log n)). Assuming

the Extended Riemann Hypothesis (ERH), we have N

L

2

(n) = O((log n)

4

=(log log n)).

The proof depends on the observation that if a number congruent to 1 (mod 8) \looks

like a square" modulo all \small" primes, then it is in fact a square.

More precisely, for r a positive integer � 1 (mod 8) that is not a square, de�ne h(r) to

be the least odd prime p such that the Jacobi symbol

�

r

p

�

= �1. Also de�ne

J(m) = max

1<r�m

r not a square

r�1 (mod 8)

h(r):

Then the ERH implies that J(m) < 3(logm)

2

; see [3, 27].

The \reasonable conjecture" is the following:

Conjecture 23 We have J(m) = O((logm)(log logm)).

A simple probabilistic model gives this better bound (and more), and it is also supported

by the available numerical evidence; see, for example, [4].

Proof of Theorem 22.

We construct an NFA M such that L(M) \ �

�n

= L

2

\ �

�n

as follows: we \guess" an

odd prime p and on input 0

j

, compute j (mod p) with a cyclic counter. If

�

j

p

�

= �1 (which

depends only on j (mod p)), then j cannot be a square, and so we accept. We do this for

all odd primes p < J(n). We also have a nondeterministic transition from the initial state

to a counter (mod 8), and accept if j 6� 1 (mod 8).

The number of states needed is therefore 9 +

P

2<p�J(n)

p, which is O((log n)

2

(log log n))

assuming Conjecture 23, or O((log n)

4

=(log log n)) assuming ERH.

15



We can also give an example of a nonregular unary language with poly-logarithmic non-

deterministic automaticity where the bound does not depend on unproved hypotheses. First,

we prove a simple lemma:

Lemma 24 De�ne �(x) =

P

p�x

log p. Then �(x) > :23x for x � 2.

Proof. Rosser and Schoenfeld [23, Thm. 10] proved that �(x) > :84x for x � 101. The

stated inequality can now easily be veri�ed for 2 � x < 101.

Theorem 25 De�ne L

3

= f0

n

: n � 1 and the least positive integer not dividing n is not

a power of 2g. Then N

L

3

(n) = O((log n)

3

=(log log n)).

Proof. The language L

3

is not regular, since it is proved in [2] that L

3

is not regular.

Let n be a �xed integer > 0; we show how to construct an NFA accepting an nth-order

approximation to the language L

3

. The construction of our NFA is based on the following

two observations:

(i) if 0

n

2 L

3

, then there exists a prime power p

k

, with p � 3, k � 1 and p

k

� 4:4 log n

such that n 6� 0 (mod p

k

) and n � 0 (mod 2

s

) where s � 0 is an integer with 2

s

< p

k

< 2

s+1

;

(ii) if there exists a prime power p

k

(p � 3, k � 1) such that n 6� 0 (mod p

k

) and

n � 0 (mod 2

s

) with s � 1 and 2

s

< p

k

< 2

s+1

, then 0

n

2 L

3

.

Proof of (i): let 0

n

2 L

3

, and let t be the least integer not dividing n. Then t is not a

power of 2. Clearly t is a prime power. Furthermore, we claim that t � 4:4 log n. Suppose

not; then n is divisible by all the integers � 4:4 log n. Hence

n � lcm

1�k�4:4 logn

k = e

 (4:4 logn)

� e

�(4:4 logn)

> n;

a contradiction. (Here  (x) =

P

p

k

�x

log p, and we have used Lemma 24.)

We have n 6� 0 (mod t). Also n � 0 (mod 2

s

) for 2

s

< t; for otherwise the least integer

not dividing n would be a power of 2.

Proof of (ii): suppose n 6� 0 (mod p

k

) (p � 3, k � 1) and n � 0 (mod 2

s

) for s � 1

with 2

s

< p

k

< 2

s+1

. Let t be the least integer not dividing n. Then t � p

k

. However, since

n � 0 (mod 2

s

) for all s with 2

s

� t, t is not a power of 2. Hence 0

n

2 L

3

.

Now an NFA can be constructed using these two observations, as follows: we nondeter-

ministically \guess" an odd prime power p

k

� 4:4 log n, and then, on input 0

r

(with r � n),

compute r (mod p

k

2

s

) for s satisfying 2

s

< p

k

< 2

s+1

. We accept if r 6� 0 (mod p

k

) and

r � 0 (mod 2

s

). This requires 1+

P

p

k

�4:4 logn

O((p

k

)

2

) states, which is O((log n)

3

=(log log n)).

Our last result is the following: de�ne

S(q; k) = fr 2 ZZ

�0

: r 6� 0 (mod q) and r � 0 (mod 2

k

)g:

De�ne

B = f3; 5; 7; 9; 11; 13; 17; 19; 23; 25; : : :g;

the set of odd prime powers. Given a function f : ZZ

�3

! IR

�1

, de�ne the set A

f

as follows:

A

f

=

[

q2B

S(q; blog

2

f(q)c):

Then we have

16



Theorem 26 Let f : ZZ

�3

! IR

�1

be any (not necessarily strictly) increasing unbounded

function such that blog

2

f(p

e

)c takes on all positive integer values, as p ranges over all odd

primes and e � 1. De�ne L

f

= f0

n

: n 2 A

f

g. Then L

f

is not a regular language, and we

have N

L

f

= f(5 log n)O((log n)

2

=(log log n)):

Before giving the proof, we remark that the function f(x) = x satis�es the hypotheses.

In this case, we obtain the language L

3

above.

Furthermore, suppose we de�ne lg

(i)

x as follows: lg x = 1, if x � 2, and lg x = log

2

x

if x > 2. Also, lg

(1)

x = lg x, and lg

(i)

= lg lg

(i�1)

x for i � 2. Then the function lg

(i)

x

satis�es the hypotheses. Thus, using the series of functions lg

(1)

x; lg

(2)

x; lg

(3)

x; : : :, we

can obtain a language with nondeterministic automaticity arbitrarily close to the bound

O((log n)

2

=(log log n)).

Proof. First we show that L

f

is not regular. We do so by assuming that the complement

L

f

is in fact regular, and obtaining a contradiction.

For each positive integer k, let q

k

be the largest odd prime power p

e

for which k =

blog

2

f(p

e

)c. (Such a q

k

exists by our hypothesis on the function f .) Clearly blog

2

f(q)c > k

for all prime powers q > q

k

.

Now de�ne, for each integer k � 1,

m

k

= 2

blog

2

f(q

k

)c

lcm

q�q

k

q2B

q:

Then 2

k

jjm

k

. Note that 0

m

k

2 L

f

, since m

k

� 0 (mod q) for q � q

k

, and m

k

6� 0 (mod 2

k+1

).

Since L

f

is regular, we may write

L

f

=

[

j2A

(0

t

j

)

�

0

s

j

for some �nite set A and non-negative integers s

j

; t

j

. If t

j

= 0, then L

f

is �nite, and the

result follows immediately. Otherwise, assume t

j

� 1. Since 0

m

k

2 L

f

, we may write

m

k

= s

j

+ nt

j

for some j 2 A and integer n � 0. We may assume that k is su�ciently

large such that every non-zero t

j

divides m

k

. De�ne n

0

= n+m

k

=t

j

. Then 2m

k

= s

j

+ n

0

t

j

.

Hence 0

2m

k

2 L

f

. Let r be the least odd prime power > q

k

. Note that, by our hypothesis

on the range of blog

2

f(p

e

)c, we have blog

2

f(r)c = k + 1. Then 2m

k

6� 0 (mod r) and

2m

k

� 0 (mod 2

blog

2

f(r)c

). Thus 0

2m

k

2 L

f

. This contradiction proves that L

f

is not regular.

It remains to give an upper bound on the size of the smallest NFA accepting some nth-

order approximation to L

f

. First we prove the following lemma:

Lemma 27 Let n be an integer � 3. Then the least odd prime power nondivisor of n is

� 5 log n.

Proof. From the proof of Lemma 24, we know that

 

0

(x) =

X

p

k

�x

p�3

log p � :84x� log x > :75x

17



for x � 101. For 3 � x � 101, it can be veri�ed by a short computation that  

0

(x) � :21x.

Now if n has no odd prime power nondivisor � 5 log n, it must be the case that n is divisible

by all the odd prime powers � 5 log n. Hence n � e

 

0

(5 logn)

� e

1:05logn

> n, a contradiction.

Now if n 2 A

f

, and n � 2, then n 2 S(q; k) for some odd prime power q. We claim that

in fact there exists an odd prime power q � 5 log n for which n 2 S(q; k). For by Lemma 27,

the least odd prime power q

0

which is a nondivisor of n is � 5 log n. Let k

0

= blog

2

f(q

0

)c.

If 2

k

0

j=n, then n 62 S(q; k) for all k � k

0

, and hence for all q � q

0

. But q jn for all odd

prime powers q < q

0

, so n 62 S(q; k) for all odd prime powers q < q

0

. Therefore n 62 A

f

, a

contradiction. Hence 2

k

0

jn, and so n 2 S(q

0

; k

0

).

The total number of states needed to accept an nth-order approximation to L

f

is therefore

1 +

X

q�5 logn

k=blog

2

f(q)c

q � 2

k

< f(5 log n)

X

q�5 logn

q2B

q

= f(5 log n)O((log n)

2

=(log log n)):

This completes the proof of Theorem 26.

8 Acknowledgments

We would like to acknowledge with thanks conversations with Eric Bach and Lisa Hellerstein.

Some of the results in this paper were presented at the STACS 94 conference in Caen, France

[25]. Drew Vandeth read the manuscript with great care.

References

[1] E. W. Allender. On the number of cycles possible in digraphs with large girth. Disc. Appl.

Math. 10 (1985), 211{225.

[2] H. Alt and K. Mehlhorn. A language over a one symbol alphabet requiring only o(log logn)

space. SIGACT News 7(4) (1975), 31{33.

[3] E. Bach. Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990),

355{380.

[4] E. Bach and L. Huelsbergen. Statistical evidence for small generating sets. Math. Comp. 61

(1993), 69{82.

[5] J. Berstel. Mots de Fibonacci. In S�eminaire d'Informatique Th�eorique, pages 57{78. Labora-

toire Informatique Th�eorique, Institut Henri Poincar�e, 1980/81.

[6] J. Berstel. Fibonacci words|a survey. In G. Rozenberg and A. Salomaa, editors, The Book

of L, pages 13{27. Springer-Verlag, 1986.

[7] D. Brown, K. Davidson, and J. Shallit. Elementary problem proposal 10433. Amer. Math.

Monthly, problem section, to appear, February 1995.

18



[8] M. Chrobak. Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986), 149{158.

[9] A. Condon, L. Hellerstein, S. Pottle, and A. Wigderson. On the power of �nite automata with

both nondeterministic and probabilistic states. Manuscript in preparation, 1993.

[10] J. D�enes, K. H. Kim, and F. W. Roush. Automata on one symbol. In Studies in Pure

Mathematics: To the Memory of Paul Tur�an, pages 127{134. Birkh�auser Verlag, Basel, 1983.

[11] W. Feller. An Introduction to Probability Theory and its Applications, Vol. I. John Wiley &

Sons, New York, 1957.

[12] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

[13] J. Karhum�aki. On cube-free !-words generated by binary morphisms. Disc. Appl. Math. 5

(1983), 279{297.

[14] R. M. Karp. Some bounds on the storage requirements of sequential machines and Turing

machines. J. Assoc. Comput. Mach. 14 (1967), 478{489.

[15] D. E. Knuth. Fundamental Algorithms, Vol. I of The Art of Computer Programming. Addison-

Wesley, Reading, Mass., 1973.

[16] S. R. Kosaraju. On independent circuits of a digraph. J. Graph Theory 1 (1977), 379{382.

[17] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van

Fibonacci. Simon Stevin 29 (1952), 190{195.

[18] Ju. I. Lyubich. Estimates of the number of states that arise in the determinization of a

nondeterministic autonomous automaton. Dokl. Akad. Nauk SSSR 155 (1964), 41{43. In

Russian. English translation in Soviet Mathematics 5 (1964), 345{348.

[19] Ju. I. Lyubich. Estimates for optimal determinization of nondeterministic autonomous au-

tomata. Sibirski�� Matematicheski�� Zhurnal 5 (1964), 337{355. In Russian.

[20] Ju. I. Lyubich and E. M. Livshits. Estimates for the weight of a regular event over a 1-letter

alphabet. Sibirski�� Matematicheski�� Zhurnal 6 (1965), 122{126. In Russian.

[21] R. Mandl. Precise bounds associated with the subset construction on various classes of non-

deterministic �nite automata. In Proc. 7th Princeton Conference on Information and System

Sciences, pages 263{267. 1973.

[22] G. Rauzy. Suites �a termes dans un alphabet �ni. S�em. de Th�eorie des Nombres de Bordeaux

(1982-1983), 25{01{25{16.

[23] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.

Ill. J. Math. 6 (1962), 64{94.

[24] J. Shallit and Y. Breitbart. Automaticity I: Properties of a measure of descriptional complexity.

Submitted, 1994.

19



[25] J. Shallit and Y. Breitbart. Automaticity: Properties of a measure of descriptional complexity.

In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors, STACS 94: 11th Annual Symposium

on Theoretical Aspects of Computer Science, Vol. 775 of Lecture Notes in Computer Science,

pages 619{630. Springer-Verlag, 1994.

[26] C. Thomassen. On digraphs with no two disjoint cycles. Combinatorica 7 (1987), 145{150.

[27] H. C. Williams and J. O. Shallit. Factoring integers before computers. Mathematics of Compu-

tation, 1943{1993: A half-century of computation on mathematics, Proc. Symp. Appl. Math.,

to appear.

[28] E. Zeckendorf. Repr�esentation des nombres naturels par une somme de nombres de Fibonacci

ou de nombres de Lucas. Bull. Soc. Royale des Sciences de Li�ege 41(3{4) (1972), 179{182.

20


