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Abstrat.

The automati sequene is the entral onept at the intersetion of formal language

theory and number theory. It was introdued by Cobham, and has been extensively studied

by Christol, Kamae, Mend�es Frane and Rauzy, and other writers. Sine the range of

automati sequenes is �nite, however, their desriptive power is severely limited.

In this paper, we generalize the onept of automati sequene to the ase where the

sequene an take its values in a (possibly in�nite) ring R; we all suh sequenes k{regular.

(When R is �nite, we obtain automati sequenes as a speial ase.) We argue that k{

regular sequenes provide a good framework for disussing many \naturally{ourring"

sequenes, and we support this ontention by exhibiting many examples of k{regular

sequenes from numerial analysis, topology, number theory, ombinatoris, analysis of

algorithms, and the theory of fratals.

We investigate the losure properties of k{regular sequenes. We prove that the set

of k{regular sequenes forms a ring under the operations of term-by-term addition and

onvolution. Hene the set of assoiated formal power series in R[[X℄℄ also forms a ring.

We show how k{regular sequenes are related to ZZ{rational formal series. We give a

mahine model for the k{regular sequenes. We prove that all k{regular sequenes an be

omputed quikly.

Let the pattern sequene e

P

(n) ount the number of ourrenes of the pattern P in

the base{k expansion of n. Morton and Mourant showed that every sequene over ZZ has a

unique expansion as a sum of pattern sequenes. We prove that this \Fourier" expansion

maps k{regular sequenes to k{regular sequenes. (This an be viewed as a generalization

of results of Cho�rut and Sh�utzenberger, and previous results of Allouhe, Morton, and

Shallit.) In partiular, the oeÆients in the expansion of e

P

(an + b) form a k{automati

sequene.

Many natural examples and some open problems are given.
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x Researh supported in part by NSF Grant CCR-8817400, the Wisonsin Alumni Researh

Foundation, and a Walter Burke award from Dartmouth College.
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I. Introdution.

Let fS(n)g

n�0

be a sequene with values hosen from a �nite set �. Then fS(n)g

n�0

is said to be k{automati if, informally speaking, S(n) is a �nite-state funtion of the

base{k expansion of n.

Automati sequenes have been studied by Cobham [Cob℄, Christol, Kamae, Mend�es

Frane and Rauzy [CKMR℄, and others. (For example, see [DMFP℄, [Mau℄, and the survey

paper of Allouhe [A1℄.) There are many other ways to haraterize automati sequenes.

For example, onsider the following

De�nition 1.1.

The k{kernel of a sequene is the set of all subsequenes of the form fS(k

e

n+a)g

n�0

,

where e � 0 and 0 � a < k

e

.

Cobham [Cob℄ proved the following

Theorem 1.2.

A sequene is k{automati if and only if its k{kernel is �nite.

Unfortunately, the range of automati sequenes is neessarily �nite, and this restrits

their desriptive power.

In this paper, we are onerned with a natural generalization of automatiity to the

ase where the sequene fS(n)g

n�0

takes its values in a (possibly in�nite) ring; we all

suh sequenes k{regular. (Another generalization of automati sequenes was already

given by Allouhe [A4℄.) We use an analogue of Theorem 1.2 as our de�nition. We show

that k{regular sequenes provide an exellent framework for desribing many \naturally

ourring" sequenes, suh as the numerators of the left endpoints of the Cantor set, the

sequene f�

p

(n!)g

n�0

, whih ounts the number of times a prime p divides a fatorial, bi-

nary Gray ode, numerators of entries of the Stern-Broot tree, multipliative-ost addition

hains, et.

We prove that k{regular sequenes have nie losure properties. By assoiating a

formal power series with eah sequene, we prove that the set of k{regular sequenes forms

a ring, but not a �eld, under the usual power series operations.

We explore the onnetion with a mahine model of Sh�utzenberger [Sh℄, whih in-

ludes �nite automata with ounters as a speial ase. This allows us to prove that the

n-th term of a k{regular sequene an be omputed in time polynomial in log n.

We introdue the pattern sequenes e

P

(n), whih ount the number of ourrenes

of the string P in the base{k expansion of n. Morton and Mourant [MM℄ showed that

every sequene fS(n)g

n�0

over ZZ has a unique expansion as a sum of pattern sequenes.

In analogy with the Fourier transform, we all this sequene of oeÆients f

^

S(n)g

n�0

the

pattern transform of fS(n)g

n�0

. We show that a sequene is k{regular if and only if its

pattern transform is k{regular. This an be viewed as a generalization of results of Cho�rut

and Sh�utzenberger [CS℄ and previous results of the authors and P. Morton [AMS℄.

Finally, we give many examples and some open problems.
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II. k{regular sequenes: de�nition and properties.

Let R

0

be a ommutative Noetherian ring, i. e. a ring in whih every ideal is �nitely

generated. (Examples of suh rings inlude all �nite rings, ZZ, all �elds K, and the poly-

nomial rings K[X℄.) Let R be a ring ontaining R

0

.

Let S(R) denote the set of sequenes with values in R. Let fS(n)g

n�0

be a sequene

with values in R, and let k be an integer � 2.

De�nition 2.1.

We say fS(n)g

n�0

is (R

0

; k){regular if there exist a �nite number of sequenes S

1

; S

2

; : : : ; S

j

with values in R, suh that eah sequene in the k{kernel of fS(n)g

n�0

is an R

0

{linear

ombination of the S

i

.

Let K denote the k{kernel of fS(n)g

n�0

. Then fS(n)g

n�0

is (R

0

; k){regular means

that

hKi � hS

1

; S

2

; : : : S

n

i;

i. e. hKi is a sub-module of a �nitely generated R

0

{module. By a well-known theorem

(see, e. g., [Lan, pp. 142{144℄), it follows that hKi itself is �nitely generated.

Thus De�nition 2.1 an be restated as follows: a sequene fS(n)g

n�0

with values

in R is (R

0

; k){regular if the R

0

{module generated by its k{kernel is a �nitely generated

R

0

{submodule of S(R).

If the ontext is lear, we usually write just k{regular.

Note that if R

0

is a �nite ring, then we reover the ase of k{automati sequenes. For

if every subsequene in the k{kernel an be written as an R

0

{linear ombination of a �nite

set of sequenes, then there are only a �nite number of distint elements of the k{kernel.

In fat, the same holds for sequenes that take on only �nitely many values (see Theorem

2.3 below).

The reader may now wish to look at Setion VII for some examples of k{regular

sequenes.

Our �rst theorem gives several alternative haraterizations of k{regular sequenes:

Theorem 2.2.

The following are equivalent:

(a) fS(n)g

n�0

is (R

0

; k){regular;

(b) The R

0

{module generated by the k{kernel of fS(n)g

n�0

is generated by a �nite

number of its subsequenes of the form S(k

f

i

n+ b

i

) where 0 � b

i

< k

f

i

;

() There exists an integer E suh that for all e

j

> E, eah subsequene S(k

e

j

n+ a

j

)

with 0 � a

j

< k

e

j

an be expressed as an R

0

{linear ombination

S(k

e

j

n+ a

j

) =

X

i



ij

S(k

f

ij

n+ b

ij

);

where f

ij

� E and 0 � b

ij

< k

f

ij

;

(d) There exist an integer r and r sequenes S = S

1

; S

2

; : : : ; S

r

, suh that for 1 � i � r,

the k sequenes fS

i

(kn+ a)g

n�0

, 0 � a < k, are R

0

{linear ombinations of the S

i

;
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(e) There exist an integer r, r sequenes S = S

1

; S

2

; : : : ; S

r

, and k matriesB

0

; B

1

; : : : ; B

k�1

in M

r;r

(R

0

) suh that if

V (n) =

0

B

�

S

1

(n)

.

.

.

S

r

(n)

1

C

A

;

one has V (kn+ a) = B

a

V (n) for 0 � a < k.

Proof.

(a) ) (b): Let K denote the k{kernel of S(n). Then hKi, the module generated by

K, is �nitely generated, so there exist sequenes S

1

; S

2

; : : : ; S

k

suh that

hKi = hS

1

; S

2

; : : : ; S

k

i:

But then eah S

i

is neessarily a �nite linear ombination of elements from K, and there

are only �nitely many S

i

, so hKi is generated by only �nitely many members of K.

(b) ) (): Let the k{kernel of fS(n)g

n�0

be generated by a �nite set of its subse-

quenes of the spei�ed form, say

S(k

f

i

n+ b

i

)

for 1 � i � i

0

. Let E = max

1�i�i

0

f

i

. Then for all e

j

> E, we an write

S(k

e

j

n+ a

j

) =

X

i



ij

S(k

f

ij

n+ b

ij

);

where f

ij

� E and 0 � b

ij

< k

f

ij

:

() ) (d): Take as the r sequenes the set K of subsequenes S

i

(n) = S(k

f

i

n + b

i

)

with 0 � f

i

� E and 0 � b

i

< k

f

i

. Then

S

i

(kn+ a) = S(k

f

i

(kn+ a) + b

i

) = S(k

f

i

+1

n+ ak

f

i

+ b

i

);

whih, if f

i

+ 1 � E, is an element of K, and if f

i

+ 1 > E, is a linear ombination of

elements of K.

(d) ) (e): Follows trivially.

(e) ) (a): We need to see that S(k

e

n+ a) is a linear ombination of the S

i

. Express

a in base k (possibly with leading zeroes) as

X

0�i<e

a

i

k

i

;

then it is easy to see that

V (k

e

n+ a) = B

a

0

B

a

1

� � �B

a

e�1

V (n);

and this expresses S(k

e

n+ a) as a linear ombination of the S

i

.
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Remarks.

� Note that in parts (d) and (e) of the theorem, the sequenes S

i

an be taken to be

in the k{kernel of S.

� Part (e) of the theorem gives a substitution-like de�nition, whih an be ompared

to the linear k{substitutions of Liardet [Li℄, whih generate exatly the k{automati se-

quenes.

� The dimension of the R

0

{module generated by the k{kernel is an invariant that may

be interpreted as a measure of omplexity of the sequene fS(n)g

n�0

.

� We note that every ultimately periodi sequene is (R

0

; k){regular for all R

0

and k.

Our next theorem illustrates a onnetion between k{regular sequenes and k{automati

sequenes:

Theorem 2.3.

A sequene is (R

0

; k){regular and takes on only �nitely many values if and only if it

is k{automati.

Proof.

If a sequene is k{automati, it is by de�nition �nitely valued, and sine its k{kernel

is �nite, it generates a �nitely generated module.

Now suppose S(n) is k{regular and takes on �nitely many values. From Theorem 2.2

(e), there exist sequene S = S

1

; S

2

; : : : ; S

r

(whih an be taken in the k{kernel of S) and

matries B

0

; B

1

; : : : B

k�1

suh that

V (n) =

0

B

B

�

S

1

(n)

S

2

(n)

.

.

.

S

r

(n)

1

C

C

A

satis�es V (kn+ a) = B

a

V (n) for 0 � a < k and n � 0. Let V be the (�nite) set of values

of fV (n)g

n�0

, and de�ne the k{homomorphism � by �(v) = w

0

w

1

� � �w

k�1

, where v 2 V

and w

a

= B

a

v for 0 � a < k. Then the in�nite word

V (0)V (1)V (2) � � �

is a �xed point of � and S

1

(n) is an image of this �xed point. Hene S(n) is k{automati.

Corollary 2.4.

If S(n) is (ZZ; k){regular, then for all m � 1, fS(n) modmg

n�0

is k-automati.

Remark.

The onverse does not hold. Let S(n) = 2

n

and use Theorem 2.11 below.

We now investigate the losure properties of k{regular sequenes:
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Theorem 2.5.

Let fS(n)g

n�0

and fT (n)g

n�0

be k{regular sequenes. Then so are S + T = fS(n) +

T (n)g

n�0

, �S = f�S(n)g

n�0

, and ST = fS(n)T (n)g

n�0

.

Proof.

Let S

1

= S;S

2

; : : : ; S

r

(respetively T

1

= T; T

2

; : : : ; T

r

) be a system of generators for

the module generated by the k{kernel of S (respetively T ). Then it is easy to see that

the r + r

0

sequenes S

1

; : : : ; S

r

; T

1

; : : : ; T

r

0

generate the module generated by the k{kernel

of S + T . Similarly, the rr

0

sequenes S

i

T

j

, 1 � i � r, 1 � j � r

0

generate the module

generated by the k{kernel of ST . Finally, the sequenes �S

i

, 1 � i � r, generate the

module generated by the k{kernel of �S.

Remarks.

We observe that some simple transformations do not preserve k{regularity.

� Let S(n); T (n) be (ZZ; k){regular sequenes with T (n) 6= 0 for all n. Then the

sequene S=T = fS(n)=T (n)g

n�0

need not even be (1Q; k){regular.

For example, de�ne T (2n) = n + 1, T (2n + 1) = T (n) + 1 for n � 0. De�ne T

j

(n) =

T (2

j

n+ 2

j�1

� 1). Then it is easy to see that T

j

(n) = n+ j for j � 1.

Suppose 1=T (n) were (1Q; 2){regular. Then the module generated by the sequenes

1=T

1

(n); 1=T

2

(n); 1=T

3

(n); : : :

would have �nite rank. Then for some m � 1, the m�m matrix M

ij

de�ned by

M

ij

= 1=T

j

(i � 1) = 1=(i + j � 1);

1 � i; j � m, would have determinant 0. But M

ij

is a Hilbert matrix and is well-known

to have nonzero determinant, a ontradition, and the onlusion follows.

� We note that k{regular sequenes are not losed under absolute value (and hene

not losed under max and min). Consider the funtion f(n) = e

0

(n)� e

1

(n), where e

0

(n)

ounts the number of 0's in the binary expansion of n, and e

1

(n) ounts the number of 1's

in the binary expansion of n. It is easily veri�ed that e

0

(n) and e

1

(n) are k{regular; hene

so is f(n). But jf(n)j is not k{regular. For we have

f(2

j

n) = je

0

(n) � e

1

(n) + jj

for n � 1 and j � 0. Now suppose there were a linear dependeny among these subse-

quenes; i. e. there exist a, b suh that

jn+ aj =

X

a+1�i�b



i

jx+ ij

for all integers n. For n � �(a + 1) the right side is of the form An + B and hene

monotone; but the left side is not, a ontradition.

� We also note that k{regular sequenes are not losed under omposition. As men-

tioned above, e

1

(n), the number of 1's in the binary expansion of n, is 2{regular, as is the
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funtion f(n) = n

2

. However, the omposition e

1

(f(n)) = e

1

(n

2

) is not 2{regular; if it

were, then by Corollary 2.4, e

1

(n

2

) mod 2 would be 2{automati. However, e

1

(n

2

) mod 2

is not 2{automati, by results of Allouhe [A2℄.

In the next theorem, we show that if a sequene is k{regular, then so is the subsequene

obtained by periodi indexing:

Theorem 2.6.

Let fS(n)g

n�0

be a k{regular sequene. Then for a � 1; b � 0, the sequene fS(an+

b)g

n�0

is k{regular.

Proof.

De�ne T (n) = S(an+ b).

Suppose S(n) is k{regular. Then the module generated by its k{kernel is generated

by S

1

(n); S

2

(n); : : : ; S

r

(n): We laim that eah sequene in the k{kernel of T (n) an be

expressed as a linear ombination of S

i

(an + ), for 1 � i � r and 0 �  < a+ b.

Proof: Take an element of the k{kernel of T (n), say T (k

e

n + j), 0 � j < k

e

. Write

ja+ b = d � k

e

+ f , where 0 � f < k

e

. Then

T (k

e

n+ j) = S(a(k

e

n+ j) + b)

= S(k

e

(an + d) + f);

Notie that sine 0 � j < k

e

, we have 0 � d < a + b. Now the module generated by the

k{kernel of fS(n)g

n�0

is �nitely generated, so S(k

e

m+ f) =

P

j



j

S

j

(m) for onstants 

j

.

Hene it follows that

S(k

e

(an+ d) + f) =

X

j



j

S

j

(an + d);

and the result follows.

Remark.

Let us de�ne S indexed by negative arguments to be 0. For example, fS(n� 1)g

n�0

is the sequene fS(n)g

n�0

with a 0 taked on the front.

Then it is easy to see that the preeding theorem holds even when b < 0.

Theorem 2.7.

Let fS(n)g

n�0

be a sequene suh that there exists an a � 2 suh that fS(an+ i)g

n�0

is k{regular for 0 � i < a. Then fS(n)g

n�0

is k{regular.

Proof.

For 0 � i < a, de�ne

T

i

(n) =

�

S(n); if n � i (mod a);

0; if n 6� i (mod a).

Also, write S

i

(n) = S(an+ i). Then it is easy to see that eah sequene T

i

(n) is k{regular;

indeed, T

i

(k

j

n+ ) is either the 0-sequene or the sequene S

i

(k

j

n+ 

0

) interspersed with
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groups of a= gd(a; k

j

)�1 zeros. Hene the k{kernel of T

i

(n) is �nitely generated. Finally,

we see that

S(n) =

X

0�i<a

T

i

(n);

whih shows that fS(n)g

n�0

is k{regular.

Remark.

From Theorems 2.6 and 2.7 it follows that if S(n) is k{regular, and r is a rational

number, then S(drne) and S(brn) are also k-regular.

Many sequene transformations from the literature preserve regularity. For example,

let fS(n)g

n�0

be a sequene, and onsider its Toeplitz transformation fS

0

(n)g

n�0

de�ned

by S

0

(2n) = S(n) and S

0

(2n + 1) = S

0

(n) for n � 0. (See [JK℄, [Pro℄). Then we have the

following, whih generalizes the ase of automati sequenes [A3℄:

Theorem 2.8.

fS(n)g

n�0

is 2{regular if and only if fS

0

(n)g

n�0

is 2{regular.

Proof.

Suppose fS(n)g

n�0

is 2{regular. Then the module generated by its 2{kernel is �nitely

generated, say by S

1

(n); : : : ; S

k

(n). Now onsider the module

M = hS

0

(n); S

1

(n); : : : ; S

k

(n)i:

Note that S

i

(2n) and S

i

(2n + 1) are linear ombinations of the S

j

. Also, S

0

(2n) = S(n)

and S

0

(2n+ 1) = S

0

(n). Thus by Theorem 2.2 (d), fS

0

(n)g

n�0

is 2{regular.

Now assume fS

0

(n)g

n�0

is 2{regular. Then by Theorem 2.6, S

0

(2n) is 2{regular. But

S

0

(2n) = S(n), and the result follows.

Theorem 2.9

Let f be an integer � 1. Then fS(n)g

n�0

is k

f

{regular if and only if fS(n)g

n�0

is

k{regular.

Proof.

Suppose fS(n)g

n�0

is k{regular. Then the module generated by its k{kernel is �nitely

generated and ontains its k

f

{kernel. Hene the module generated by its k

f

{kernel is also

�nitely generated.

To prove the other diretion, assume fS(n)g

n�0

is k

f

{regular.

We now show there exists a B suh that for all b > B, eah subsequene S(k

b

n+ )

an be expressed as a linear ombination

S(k

b

n+ ) =

X

i

d

i

S(k

b

i

n+ 

i

)

with b

i

� B and 0 � 

i

< k

b

i

. The result will then follow from Theorem 2.2 ().
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For let us write b = fr + s, 0 � s < f and  = qk

fr

+ t, 0 � t < k

fr

. Then, by

Theorem 2.2 (), there exists E suh that for all r > E we an express

S((k

f

)

r

m+ t) =

X

i

d

i

S((k

f

)

r

i

m+ t

i

);

where r

i

� E and 0 � t

i

< k

fr

i

.

Now put m = k

s

n+ q; we �nd

S((k

f

)

r

m+ t) = S(k

b

n+ ) =

X

i

d

i

S(k

fr

i

+s

n+ qk

fr

i

+ t

i

) =

X

i

d

i

S(k

b

i

n+ 

i

);

where b

i

= fr

i

+ s and 

i

= qk

fr

i

+ t

i

. Notie that b

i

< fE + f . Also, q � k

s

� 1, so



i

= qk

fr

i

+ t

i

� (k

s

� 1)k

fr

i

+ t

i

� k

fr

i

+s

� k

fr

i

+ t

i

< k

fr

i

+s

= k

b

i

;

thus we may take B = f(E + 1). Hene fS(n)g

n�0

is also k{regular.

C. Cho�rut and C. Reutenauer have pointed out that we may obtain alternative proofs

of Theorems 2.6{2.9 using the notion of rational transdution [SS℄ and Theorem 4.3 below.

Theorem 2.10.

Let fS(n)g

n�0

be a k{regular sequene with values in 1C, the omplex numbers. Then

there exists a onstant  suh that S(n) = O(n



).

Proof.

We use the haraterization of Theorem 2.2 (e). Let the base{k expansion of n be

a

j�1

a

j�2

� � � a

1

a

0

;

then j � 1 + log

k

n. Then

V (n) = B

a

0

B

a

1

� � �B

a

j�1

V (0):

If v is a d-dimensional vetor, de�ne

kvk =

X

1�i�d

jv

i

j;

if M is a d� d-matrix, de�ne

kMk = max

1�i�d

X

1�j�d

jM

ij

j:

Then it is easy to see that kMvk � kMkkvk.

9



Thus we see

S(n) � kV (n)k � kB

a

0

kkB

a

1

k � � � kB

a

j�1

kkV (0)k:

Now let  = max

0�i�k�1

kB

i

k, and d = kV (0)k. Then we have

S(n) � 

1+log

k

n

d � d

0

n



0

;

and the result follows.

Thus we see, for example, that f2

n

g

n�0

is not (ZZ; k){regular.

Theorem 2.11.

Let R be a Noetherian ring without zero divisors, and let a 2 R. Then the sequene

of powers fa

n

g

n�0

is (R; k){regular if and only if a = 0 or a is a root of unity.

Proof.

One diretion is simple, sine if a is 0 or a root of of unity, then the sequene of powers

is ultimately periodi, hene k{regular.

Now assume fa

n

g

n�0

is (R; k){regular. Then there exist r < 1 and �

j

, 0 � j < r

suh that

X

0�j<r

�

j

a

k

j

�n

= 0

for all n � 0.

Now reall the following identity for the Vandermonde determinant:

0

B

B

�

1 b

0

b

2

0

: : : b

m

0

1 b

1

b

2

1

: : : b

m

1

.

.

.

.

.

.

.

.

.

.

.

.

: : :

1 b

m

b

2

m

: : : b

m

m

1

C

C

A

=

Y

i>j

(b

i

� b

j

):

From this, we see that the sequenes fb

n

j

g

n�0

are linearly independent if and only if the

numbers b

1

; b

2

; : : : ; b

m

are distint.

Hene the numbers 1; a

k

; a

k

2

; : : : ; a

k

r

are not all distint and we must have

a

k

j

= a

k

l

for some j 6= l. Sine R has no zero-divisors, either a = 0 or a is a root of unity.

III. The ring of k{regular sequenes.

Assoiated to every k{regular sequene fS(n)g

n�0

is the formal power series in R[[X℄℄

de�ned by

X

n�0

S(n)X

n

;

10



where X is an indeterminate. We all suh a power series k{regular. In this setion we

show that the set of all k{regular power series forms a ring (but not a �eld).

Reall that the onvolution S ?T of two sequenes S(n) and T (n) is de�ned as follows:

(S ? T )(n) =

X

i+j=n

S(i)T (j):

Theorem 3.1.

The set of k{regular sequenes is losed under onvolution.

Proof.

For simpliity we prove this only in the ase k = 2.

Let us agree to write fA(2n)g as shorthand for the sequene fA(2n)g

n�0

.

Let A and B be 2{regular sequenes. The modules generated by their 2{kernels are

generated by sequenes a

1

; a

2

; : : : ; a

i

0

and b

1

; b

2

; : : : ; b

j

0

, respetively. We want to �nd

a basis for C, the module generated by the 2{kernel of A ? B. We write u

ij

= a

i

? b

j

for 1 � i � i

0

; 1 � j � j

0

. We laim that the set M of 2i

0

j

0

sequenes fu

ij

(n)g

n�0

and fu

ij

(n � 1)g

n�0

generates the module C. (As in the previous setion, we de�ne

u

ij

(�1) = 0.)

It is lear that M ontains all sequenes of the form

(fA(2

e

n+ i)g ? fB(2

f

n+ j)g)(n) (1)

and

(fA(2

e

n+ i)g ? fB(2

f

n+ j)g)(n� 1): (2)

Thus it suÆes to show how to write all the sequenes of the form

f(A ? B)(2

g

n+ a)g

as a linear ombination of the sequenes in (1) and (2).

This is done using the following formula:

(A ? B)(2

g

n+ a) =

X

0�i�a

(fA(2

g

n+ i)g ? fB(2

g

n+ a � i)g)(n)

+

X

a<j<2

g

(fA(2

g

n+ j)g ? (fB(2

g

n+ 2

g

+ a� j)g)(n� 1):

Hene the result follows.

(Note: it is apparently impossible to obtain Theorem 3.1 using the standard tools of

rational series, suh as rational transdutions.)

It follows from Theorem 3.1 that if the sequene fS(n)g

n�0

is k{regular, then so is

its running sum f

P

0�j�n

S(j)g

n�0

.

Sine the onvolution of sequenes is equivalent to (ordinary) multipliation of the

assoiated power series, we have:

Corollary 3.2.

The set of k{regular power series forms a ring.

11



Remark.

The set of k{regular power series does not form a �eld. This follows from the identity

1

1� 2X

= 1 + 2X + 4X

2

+ 8X

3

+ � � �

and the fat that f2

n

g

n�0

is not k{regular (Theorem 2.10).

Theorem 3.3.

Let F be an algebraially losed �eld (e. g., 1C). Let fS(n)g

n�0

be a sequene with

values in F . Let f(X) =

P

n�0

S(n)X

n

be a formal power series in F [[X℄℄. Assume that

f(X) represents a rational funtion of X; i. e. there exist polynomials p(X), q(X) suh

that f(X) = p(X)=q(X). Then fS(n)g

n�0

is k{regular if and only if the poles of f are

roots of unity.

Proof.

Note that by assumption, 0 is not a pole of f .

Suppose the poles of f are roots of unity. Then using expansion by partial frations,

we an write

f(X) =

X

i



i

(1� �

i

X)

e

i

where 

i

2 F , the e

i

are non-negative integers, and eah �

i

is a root of unity. To prove the

oeÆients of f form a k{regular sequene, it learly suÆes to show that (1� �

i

X)

�1

is

k{regular. But this power series has periodi oeÆients and so is k{regular.

Now suppose f(X) = p(X)=q(X) for polynomials p; q, and f is k{regular. Let 1=� be

one of the poles of f ; we may assume � 6= 0. We an then write

f(X) =

p(X)

q(X)

=

r(X)

s(X)(1 � �X)

e

;

where r(x); s(X) are polynomials and r(X) and 1 � �X are relatively prime. Then there

exist two polynomials u(X); v(X) suh that

u(X)r(X) + v(X)(1 � �X)

e

= 1:

Now u(X)f(X)s(X) + v(X) is also a k{regular power series, and we have

u(X)f(X)s(X) + v(X) = (1 � �X)

�e

: (3)

Thus (1 � �X)

�e

is k{regular. But (1 � �X)

e�1

is a polynomial and hene a k{regular

power series, so its produt with (3) is k{regular and thus (1 � �X)

�1

is k{regular. But

the oeÆients of this power series are �

n

, whih by Theorem 2.11 is k{regular if and only

if � is a root of unity.

This ompletes the proof.
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Remarks.

� We note that Theorem 3.3 gives us the following haraterization of k{regular se-

quenes assoiated with rational formal power series: they must be linear reurrenes

whose harateristi polynomial is a produt of ylotomi polynomials. See, for example,

Setion VII, Example 18.

� Also note that if R = 1Q, then (using Corollary 4.2 below) the radius of onvergene

of a k{regular power series is 1, and suh a series either represents a rational funtion or

has the unit irle as a natural boundary.

IV. Rational series and k{regular sequenes.

At �rst glane, it might seem that there is no relationship between k{regular power

series and the theory of ZZ{rational formal series, as desribed in [SS℄, [BR℄ [E, Chap. V℄.

For

P

n�0

2

n

X

n

is ZZ{rational, but is not k{regular. Similarly,

P

n�0

e

1

(n)X

n

is k{regular,

but is not ZZ{rational. (Here e

1

(n) ounts the number of 1's in the base{k expansion of n).

Nevertheless, there is a relationship whih an be roughly desribed as follows: 2{

regular power series are the \binary" analogue of ZZ{rational formal series in one variable.

Alternatively, ZZ{rational series in one variable are the \unary" analogue of k{regular power

series.

In this setion, we develop this relationship between k{regular sequenes and ZZ{

rational formal series. From this, we get a mahine model for the k{regular sequenes.

This model plays the same role as the ordinary �nite automaton does for k{automati

sequenes. We also prove that all k{regular sequenes an be omputed quikly.

We introdue some notation that will be used throughout this setion. Let k be �xed

and de�ne � = f0; 1; : : : ; k�1g. We need a way to uniquely assoiate integers with strings

giving their base{k representation. If

n =

X

0�i<e

a

i

k

i

;

and a

e�1

6= 0, then we say that the string a

e�1

a

e�2

: : : a

1

a

0

is the standard base{k repre-

sentation of n. Note that the standard representation of 0 is the empty string. The set of

all standard representations is just �+ (� � 0)�

�

.

First, we prove a useful lemma:

Lemma 4.1.

Let fS(n)g

n�0

be a sequene with entries in R. Then fS(n)g

n�0

is (R

0

; k){regular

if and only if there exist matries M

0

, M

1

; : : : ;M

k�1

with entries in R

0

and vetors �, �

with entries in R suh that

S(n) = �M

a

0

M

a

1

: : :M

a

e�1

�;

where a

e�1

a

e�2

: : : a

1

a

0

is the standard base{k representation of n.

13



Proof.

Suppose S(n) is k{regular. Then by Theorem 2.2 (e), we know that there exist

matries M

0

; : : :M

k�1

suh that

V (kn+ a) =M

a

V (n);

where

V (n) =

0

B

�

S

1

(n)

.

.

.

S

r

(n)

1

C

A

;

and S(n) = S

1

(n). Hene by setting � = V (0) and � = [1 0 0 � � � 0℄, we see that

V (n) = �M

a

0

M

a

1

: : :M

a

e�1

�

for all n � 0.

Now suppose S(n) = �M

a

0

: : :M

a

e�1

� for all n � 0, where a

e�1

� � � a

0

is the standard

base{k representation of n. De�ne V (n) =M

a

0

� � �M

a

e�1

� and

V (n) =

0

B

�

v

1

(n)

.

.

.

v

r

(n)

1

C

A

:

Then

V (kn+ a) =M

a

M

a

0

� � �M

a

e�1

� =M

a

V (n);

exept possibly when n = 0 and a = 0. (This speial ase arises beause the standard

representation of kn is the string a

e�1

� � � a

1

a

0

0, for n � 1, but not for n = 0.) In this ase,

by setting v

0

= V (0) �M

0

V (0) we see

V (kn) =M

0

V (n) + U(n)v

0

for all n � 0, where U(n) denotes the sequene that is 1 when n = 0 and 0 otherwise.

Then by Theorem 2.2 (d), we see that eah of the sequenes v

1

(n); : : : ; v

r

(n) is k{

regular. But then S(n) = �V (n) is k{regular, by Theorem 2.5.

Corollary 4.2. Suppose fS(n)g

n�0

is a (ZZ; k){regular sequene with values in 1Q. Then

there exist an integer r and a (ZZ; k){regular sequene fT (n)g

n�0

with values in ZZ suh

that S(n) = T (n)=r.

Proof. By Lemma 4.1, we have

S(n) = �M

a

0

M

a

1

� � �M

a

e�1

�

where a

e�1

� � � a

1

a

0

is the standard base{k representation of n. The matries M

i

have

integral entries, and the vetors � and � have rational entries. Let g be the least ommon

14



multiple of the denominators of entries in �, and g

0

be the least ommon multiple of the

denominators of entries in �. Then T (n) = (g�)M

a

0

M

a

1

� � �M

a

e�1

(g

0

�) is a (ZZ; k){regular

sequene with values in ZZ. The result follows by putting r = gg

0

.

Now we show how k{regular sequenes are related to ZZ{rational formal series. Let

x

0

; x

1

; : : : ; x

k�1

be non-ommuting variables. If w = w

1

� � �w

r

2 �

�

, then de�ne x

w

=

x

w

1

� � �x

w

r

. Let � be the map that sends n to x

a

0

x

a

1

: : : x

a

e�1

, where the standard base{k

representation of x is the string a

e�1

� � � a

1

a

0

.

Theorem 4.3.

fS(n)g

n�0

is k{regular if and only if the formal series

X

n�0

S(n)� (n)

is ZZ{rational.

For example, in the ase k = 2 we have

X

n�0

S(n)� (n) = S(0) + S(1)x

1

+ S(2)x

0

x

1

+ S(3)x

1

x

1

+ S(4)x

0

x

0

x

1

+ � � � :

Proof. Suppose fS(n)g

n�0

is k{regular. Then by Lemma 4.1, there exist matries

M

0

; : : : ;M

k�1

suh that

S(n) = �M

a

0

� � �M

a

e�1

�:

But by the fundamental theorem for ZZ{rational formal series (see, e.g. [SS, Theorem 2.3℄),

T =

X

w2�

�

�M

w

�x

w

is ZZ{rational. This is essentially the series

P

n�0

S(n)� (n), but it also ontains terms that

orrespond to non-standard base{k representations of n. Let A be the set of standard base{

k representations (e. g. those not beginning with a 0). Then as above, A = �+(�� 0)�

�

,

and so A is regular. Let A

R

denote the set of reversals of strings in A; then A

R

is also

regular. Now

U = har A

R

=

X

w2A

R

x

w

is a ZZ{rational formal series (see, e. g. [SS, Corollary 5.4 (iii)℄). Then T�U (the Hadamard

produt) is equal to

P

n�0

S(n)� (n), and sine ZZ{rational series are losed under � (see,

e. g. [SS, Theorem 4.4℄), the result follows.

Now suppose

P

n�0

S(n)� (n) is ZZ{rational. Then again by the de�nition of � and the

fundamental theorem we have S(n) = �M

w

�, where w = a

0

a

1

� � � a

e�1

, and a

e�1

� � � a

1

a

0

is the standard base{k representation of n. This ompletes the proof.
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Theorem 4.3 allows us to use the well-developed theory of ZZ{rational series to disuss

the properties of k{regular sequenes, at least in some ases. We ontinue this below in

Setion V. Now, however, we sketh a desription of our mahine model.

This model is essentially the same as that �rst given by Sh�utzenberger [Sh℄. However,

we repeat the desription for ompleteness.

Let us de�ne what we all a matrix mahine. It is a �nite-state mahine with auxiliary

storage in the form of a olumn vetor v 2 R

j1

for some j > 0. Here is how the mahine

operates: Suppose we are in state q. Upon reading a symbol a from the input, the mahine

�rst replaes v with Mv, where M =M(q; a) is a j � j matrix. Then the mahine moves

to a new state Æ(q; a). The output is determined as follows: when the last input symbol is

read, we are in state q

0

. There is a row vetor �(q

0

), and the output is the salar �(q

0

)v.

Now onsider the ase where the input is the base{k representation of an integer n,

starting with the most signi�ant digit, and the matrix mahine omputes S(n). We laim

this is preisely the lass of k{regular sequenes. By Lemma 4.1, this equivalene is easily

seen in the ase of 1-state mahines. Thus to prove the equivalene it suÆes to prove the

following

Theorem 4.4 (Sh�utzenberger).

A matrix mahine with r states an be simulated by a matrix mahine with 1 state.

Proof.

To simplify the exposition we show how to do this in the ase where j, the size of the

vetors and matries involved, equals 1.

The idea is to replae the single element v by a vetor v

0

of size r. All of the entries

of v

0

will be zero, exept for a single entry whih equals v. We ode the urrent state

by the position of v inside v

0

; if it is in position i, we are urrently in state i. Instead of

multiplying byM(q; a) we multiply by the matrix PQ, where Q

ii

=M(q

i

; a), 0 � i � r�1,

and P is a permutation matrix de�ned as follows:

P

ij

=

�

1; if Æ(q

j

; a) = q

i

0; otherwise.

Finally, �(q

i

) is the vetor onsisting of all ones.

The orretness of the onstrution is left to the reader. To extend this proof to the

ase j > 1, we replae all entries by blok matries.

Corollary 4.5.

The n-th term of a k{regular sequene an be omputed using O(log n) operations,

where an operation is an addition or multipliation of elements in the ring R.

Corollary 4.6.

The n-th term of a k{regular sequene over ZZ an be omputed in time polynomial

in log n.
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Remarks.

� At �rst glane, our matrix mahines would also seem to be similar to the linear

sequential mahines (LSM) of Harrison [Har1℄. This is not the ase, however. Our input

symbols a are hosen from an arbitrary alphabet �, while the LSM model uses k-tuples

hosen from a �eld. Our model allows a di�erent n � n matrix M(q; a) for every state

q and input symbol a, whereas the LSM model uses exatly two matries A and B and

de�nes a transition by

Æ(q; a) = Aq +Ba:

Our model allows the matries to ontain arbitrary ring elements, whereas the LSM model

uses a �eld. Finally, in our model we are only interested in the output assoiated with the

�nal state, rather than the string of outputs assoiated with eah state visited.

� We mention a onnetion between (ZZ; k){regular sequenes with values in ZZ and

the group �

k

(ZZ) of Morton and Mourant [MM℄. Indeed, every sequene fS(n)g

n�0

in

�

k

(ZZ) is k{regular, as it is easily seen that fS(n)g

n�0

2 �

k

(ZZ) if and only if the sequene

fS(n)� S(bn=k)g

n�0

is periodi.

V. The zero-set of a k{regular sequene.

Let fS(n)g

n�0

be a k{regular sequene. In this setion, we disuss the set

Q = fn j S(n) = 0g;

or, more preisely, the set Z(S) of strings of the standard base{k representations of elements

of Q. We all this set the zero-set of the sequene fS(n)g

n�0

.

We also disuss the set Z(S), the set of strings of the standard base{k representations

of n suh that S(n) 6= 0. (This set is essentially the support of the assoiated ZZ{rational

power series.) Note that

Z(S) + Z(S) = � + (� � 0)�

�

;

where � = f0; 1; : : : ; k � 1g.

Theorem 5.1. The set Z(S) is simultaneously in logarithmi spae and polynomial time.

The set Z(S) is also in the omplexity lass NC.

Proof.

The �rst statement follows immediately from results of Lipton and Zalstein [LZ℄.

The seond statement is left to the reader.

Theorem 5.2. For �xed k � 2, it is undeidable if a given k{regular sequene fS(n)g

n�0

has a zero term. In other words, it is undeidable if Z(S) is nonempty.

Proof.

To speify the k{regular sequene S(n), it is neessary to agree on a representation.

We assume we have been given the matries in Lemma 4.1 or Theorem 2.2 (e).
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As in [SS, Theorem 12.1℄, we redue the problem of determining whether or not an

arbitrary multivariate polynomial equation

p(x

1

; x

2

; : : : x

r

)

has a solution in non-negative integers (Hilbert's tenth problem) to the problem of whether

Z(S) is nonempty. The result will then follow by the elebrated result of Davis-Matijaevi�-

Putnam-Robinson [Dav℄.

Suppose we are given p(x

1

; x

2

; : : : ; x

r

). We enode this equation as a k{regular se-

quene as follows. First, we hoose f suh that k

f

� r+1. We now represent the variable

x

j

by e

j

(n), the number of j's in the base{k

f

expansion of n. Clearly for eah r-tuple of

non-negative integers (b

1

; b

2

; : : : ; b

r

), there exists an n for whih

(e

1

(n); : : : ; e

r

(n)) = (b

1

; : : : ; b

r

):

Now S(n) = p(e

1

(n); e

2

(n); : : : ; e

r

(n)) is k

f

{regular and its matrix representation an

be omputed with a reursive algorithm. But by Theorem 2.9, S(n) is also k{regular;

furthermore, the orresponding matries are e�etively determinable. Clearly Z(S) is

nonempty if and only if p(x

1

; x

2

; : : : ; x

r

) has a solution in non-negative integers.

As in [SS, p. 124℄, we an also give a more expliit example:

Theorem 5.3. There exists a k{regular sequene fS(n)g

n�0

suh that neither Z(S) nor

Z(S) are ontext-free.

Proof.

De�ne S(n) = e

1

(n)

2

� e

0

(n). It is not hard to verify that fS(n)g

n�0

is k{regular.

(Indeed, it will follow from Theorem 6.1.)

Now suppose Z(S) is ontext-free. Then Z(S) \ 1

+

0

�

= f1

n

0

n

2

j n � 1g would also

be ontext-free. But this an easily seen to be false, using the pumping lemma.

Now suppose Z(S) is ontext-free. Then L

1

= Z(S) \ 1

+

0

�

= f1

n

0

r

j n � 1; r 6= n

2

g

would be ontext-free. By a theorem of Ginsburg and Spanier [GS, Theorem 6.2, Corollary

2℄, L

2

= 1

�

0

�

� L would be ontext free. But L

2

\ 1

+

0

+

= f1

n

0

n

2

j n � 1g, whih is not

ontext-free, a ontradition.

VI. Some \Fourier" expansions.

For simpliity, all results and proofs in this setion assume k = 2.

We introdue some notation that will be used throughout this setion. Let n

(2)

denote

the string in A = � + 1(0 + 1)

�

that represents n in base 2. If s is a string in A, let v(S)

denote the integer represented by s. Let jsj denote the length of the string s. Let �(n) be

the integer obtained from n by deleting the most signi�ant bit of its base{2 expansion.

Let m and n be integers; we write m su� n for the relation: the string m

(2)

is a suÆx of

the string n

(2)

. De�ne E = 1(0 + 1)

�

. Let P 2 E, and let e

P

(n) denote the number of

18



(possibly overlapping) ourrenes of P in the base-k expansion of n. Let x

P

(n) be the

funtion that takes the value 1 if P is a suÆx of n

(2)

, and 0 otherwise.

Morton and Mourant proved [MM℄ that any sequene fS(n)g

n�0

taking values in ZZ

has a unique expansion as an in�nite sum, as follows:

S(n) = S(0) +

X

P2E

^

S(v(P ))e

P

(n):

Here the \Fourier" oeÆients

^

S(m) are integers. We de�ne

^

S(0) = S(0), and all the

sequene f

^

S(n)g

n�0

the pattern transform of fS(n)g

n�0

.

In this setion, we prove the following result: a sequene is 2{regular if and only if its

pattern transform is 2{regular. First, however, we show that the sequenes e

P

themselves

are 2{regular.

Theorem 6.1.

The sequene fe

P

(n)g

n�0

is 2{regular for any pattern P 2 E.

Proof.

Let us introdue the following notation: if w = w

1

w

2

� � �w

j

0

is a string and j � j

0

,

then

take(j;w) = w

1

w

2

� � �w

j

:

We laim that eah element of the 2{kernel an be written as a linear ombination of

the sequenes e

P

(2

f

n+ a) for 0 � f < jP j and 0 � a < 2

f

and the onstant sequene 1.

Proof: Consider an element of the 2{kernel, e

P

(2

f

n + a); 0 � a < 2

f

. Then if

f � jP j � 1, this sequene is already in the list above. Otherwise, f � jP j. Then 2

f

n + a

an be written in base 2 as

n

(2)

a

0

where ja

0

j = f and v(a

0

) = a. Then

e

P

(2

f

n+ a) = e

P

(2

jP j�1

n+ ) + e

P

(a);

where  = v(take(jP j � 1; a

0

)).

Now the �rst term on the right is in the list above, and the seond term is a onstant

multiple of the onstant sequene 1. Hene e

P

(2

f

n + a) is a ZZ{linear ombination of

elements in the list, and this ompletes the proof.

Corollary 6.2.

fe

P

(an + b)g

n�0

is 2{regular for all a; b � 0.

Theorem 6.3.

fS(n)g

n�0

is 2{regular if and only if f

^

S(n)g

n�0

is 2{regular.

First we prove two lemmas.
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Lemma 6.4.

For all n � 0 we have

S(2n) = S(n) +

X

m�1

m suff n

^

S(2m)

and

S(2n+ 1) = S(n) +

^

S(1) +

X

m�1

m suff n

^

S(2m+ 1):

Proof.

S(2n) = S(0) +

X

P

^

S(v(P ))e

P

(2n)

= S(0) +

^

S(v(1))e

1

(2n) +

X

P

^

S(v(P0))e

P0

(2n) +

X

P

^

S(v(P1))e

P1

(2n)

= S(0) +

^

S(1)e

1

(n) +

X

P

^

S(v(P0))e

P0

(n) +

X

P

^

S(v(P0))x

P

(n) +

X

P

^

S(v(P1))e

P1

(n)

= S(0) +

X

P

^

S(v(P ))e

P

(n) +

X

P

^

S(v(P0))x

P

(n)

= S(n) +

X

P

^

S(v(P0))x

P

(n)

= S(n) +

X

m�1

m suff n

^

S(2m):

The formula for S(2n + 1) is proved similarly; the extra term

^

S(1) omes from the

fat that

^

S(v(1))e

1

(2n+ 1) =

^

S(1)(e

1

(n) + 1) =

^

S(1)e

1

(n) +

^

S(1):

This ompletes the proof.

Lemma 6.5.

For all n � 1 we have

^

S(2n) = S(2n)� S(n) � S(2�(n)) + S(�(n)):

For all n � 1 we have

^

S(2n+ 1) = S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)):
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Proof.

Notie �rst that

fm � 1 j m su� ng = fm � 1 j (m su� n) and (m 6= n)g [ fng

= fm � 1 j m su� �(n)g [ fng;

the unions being disjoint.

Hene, using Lemma 6.4, we �nd

S(2n) � S(n) =

X

m�1

m suff n

^

S(2m)

=

^

S(2n) +

X

m�1

m suff �(n)

^

S(2m);

whih an be rewritten as:

^

S(2n) = (S(2n)� S(n)) � (S(2�(n)) � S(�(n))):

The seond formula is obtained in a slightly di�erent manner:

S(2n+ 1) � S(n) =

^

S(1) +

X

m�1

m suff n

^

S(2m+ 1)

=

^

S(2n + 1) +

^

S(1) +

X

m�1

m suff �(n)

^

S(2m+ 1);

whih an be rewritten as:

^

S(2n+ 1) = (S(2n+ 1)� S(n)�

^

S(1)) � (S(2�(n) + 1)� S(�(n)) �

^

S(1))

= S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)):

This ompletes the proof of Lemma 6.5.

We are now ready to prove Theorem 6.3:

Proof.

Suppose �rst that S is 2{regular and let fS

1

= S;S

2

; : : : ; S

r

g be a �nite set of gener-

ators for the ZZ{module generated by its 2{kernel. De�ne

U(n) =

�

1; if n = 0;

0; otherwise.

Consider the ZZ{module M generated by the S

j

(n), the S

j

(�(n)), and U(n); i. e.

M = hS

1

; S

2

; : : : ; S

r

; S

1

Æ �; S

2

Æ �; : : : ; S

r

Æ �;U;

^

Si:
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To prove that

^

S is 2{regular, it suÆes to prove that for eah sequene V (n) ontained

in the list of generators for M, the subsequenes fV (2n)g

n�0

and fV (2n+ 1)g

n�0

are in

M.

For S

1

; : : : ; S

r

, this follows from the 2{regularity of S. By Lemma 6.5,

^

S(2n) = S(2n)� S(n) � S(2�(n)) + S(�(n)) +

^

S(0)U(n);

and so M ontains f

^

S(2n)g

n�0

. Similarly, Lemma 6.5 implies that

^

S(2n+ 1) = S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)) +

^

S(1)U(n);

hene M ontains f

^

S(2n + 1)g

n�0

.

For S

i

Æ �, we have S

i

(�(2n)) = S

i

(2�(n)). Similarly,

S

i

(�(2n+ 1)) =

�

S

i

(2�(n) + 1); if n � 1;

S

i

(0); if n = 0,

= S

i

(2�(n) + 1) + (S

i

(0) � S

i

(1))U(n);

showing that S

i

(2�(n) + 1) an be written as a linear ombination of generators.

Finally, we see that U(2n) = U(n), and U(2n + 1) = 0, for all n � 0.

Now suppose that

^

S is 2{regular. We wish to see that S is 2{regular.

Let

^

S

1

=

^

S;

^

S

2

; : : : ;

^

S

t

be a �nite set of generators for the ZZ{module generated by the

2{kernel of

^

S. Then there exist integers a

ij

and b

ij

suh that

^

S

i

(2n) =

X

1�j�t

a

ij

^

S

j

(n);

and

^

S

i

(2n + 1) =

X

1�j�t

b

ij

^

S

j

(n):

De�ne

T

i

(n) =

X

m�1

m suff n

^

S

i

(m);

and onsider the ZZ{module N generated by S; T

1

; T

2

; : : : ; T

t

, and the onstant sequene 1.

This module ontains S. We must prove for eah of the generators V , the sequenes

fV (2n)g

n�0

and fV (2n+ 1)g

n�0

are in N .

For S, this follows from Lemma 6.4:

S(2n) = S(n) +

X

m�1

m suff n

^

S(2m)

= S(n) +

X

m�1

m suff n

X

1�j�t

a

1j

^

S(m)

= S(n) +

X

1�j�t

a

1j

T

j

(n);

22



similarly,

S(2n+ 1) = S(n) +

^

S(1) +

X

1�j�t

b

1j

T

j

(n):

For T

i

, we have:

T

i

(2n) =

X

m�1

m suff 2n

^

S

i

(m)

=

X

k�1

k suff n

^

S

i

(2k)

=

X

1�j�t

a

ij

T

j

(n);

and

T

i

(2n+ 1) =

X

m�1

m suff 2n+1

^

S

i

(m)

=

^

S

i

(1) +

X

k�1

k suff n

^

S

i

(2k + 1)

=

^

S

i

(1) +

X

1�j�t

b

ij

T

j

(n):

The result for the onstant sequene 1 is left to the reader!

Remarks.

� C. Reutenauer has pointed out the following simple proof of Theorem 6.3: Let

A = f�g [ f1; 2; : : : ; k � 1g�

�

. Then

S = (S; �) +

X

P2E

(

^

S;P )A P �

�

;

where L is the harateristi series of L. We have

S � (S; �) = A

^

S �

�

= A

^

S(� � �)

�1

;

and so

^

S = A

�1

(S � (S; �))(� ��):

However, it is not immediately lear how to obtain the expliit formula in Lemma 6.5 from

this observation.

� It is possible to view Theorem 6.3 as a generalization of results of Cho�rut and

Sh�utzenberger [CS℄. They disussed ounting funtions similar to our sum

X

P2E

^

S(v(P ))e

P

(n):
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However, beause they restrited their attention to �nite automata with ounters, they

were fored to put restritions on the set E.

� Theorem 6.3 is also a generalization of previous results of Allouhe, Morton, and

Shallit [AMS℄.

Our last result onerns the pattern transform of fe

P

(an+ b)g

n�0

. We prove that, in

this ase, the oeÆients

^

S(m) are bounded and in fat, are k{automati.

Theorem 6.6.

Let

e

P

(an+ b) =

^

S(0) +

X

P2E

^

S(v(P ))e

P

(n):

Then

^

S(m) is a 2{automati sequene.

Proof.

By Corollary 6.2, we know that S(n) = e

P

(an + b) is 2{regular. Hene by Theorem

6.3,

^

S(n) is 2{regular. By Theorem 2.3, it suÆes to show that

^

S takes only �nitely many

values. By Lemma 6.5 it suÆes to prove that S(n) � S(�(n)) takes only �nitely many

values.

If n 6= 0 and s = jn

(2)

j, one has (an + b) � (a�(n) + b) = a(n � �(n)) = a2

s�1

.

Hene an + b and a�(n) + b have the same s � 1 �nal digits. Let x be �xed suh that

max(a; b) < 2

x

; then an + b < 2

x+s

+ 2

x

< 2

x+s+1

; hene an + b has at most x + s + 1

digits.

Finally, the numbers an+b and a�(n)+b di�er in at most (x+s+1)� (s�1) = x+2

digits. Hene, for every P , je

P

(an+ b)� e

P

(a�(n)+ b)j is bounded by x+2, and the result

follows.

VII. Some examples.

Unless otherwise indiated, we assume k = 2 in the examples that follow. Sequene

numbers refer to Sloane's book [Sl℄.

Example 1.

By Theorem 6.1, we know the sequene fe

1

(n)g

n�0

is 2{regular. In fat, it satis�es

the relations e

1

(2n) = e

1

(n); e

1

(2n + 1) = e

1

(n) + 1. Hene its 2{kernel is generated by

e

1

(n) and the onstant sequene 1. (This is Sloane's sequene #41.)

Example 2.

De�ne A(n) =

P

1�j�n

e

1

(j), the total number of 1's in the base{2 expansion of the

�rst n integers. Then A(n) is 2{regular by the remark after Theorem 3.1. A(n) has been

extensively studied in the literature ([BS℄, [CL℄, [CY℄). It is Sloane's sequene #360.
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Example 3.

Consider the sequene

f(n)g

n�0

= 0; 2; 6; 8; 18; 20; 24; 26; 54; 56; : : : ;

whih lists the numerators of the left endpoints of the Cantor set. (Alternatively, these are

the integers whose base{3 representations ontain no 1's; see [MFP℄.) Then it is easy to

see that (2n) = 3(n) and (2n + 1) = 3(n) + 2. Hene it is 2{regular. (Note, however,

that its harateristi sequene 101000101 � � � is atually 3{automati.)

For a more general perspetive on suh sequenes, see [Mah2℄.

Example 4.

The sequene e

1

(3n) has been studied extensively by Newman, Slater, and Coquet

([N℄, [NS℄, [Coq℄). By Corollary 5.2 it is 2{regular. By Theorem 6.6 it has a 2{automati

pattern transform. In fat, we �nd

e

1

(3n) = 2e

1

(n) � 2e

11

(n) + e

111

(n) � 2e

1011

(n) + e

11011

(n) � 2e

101011

(n) + e

1101011

(n) � � � �

= 2e

1

(n) � 2

X

i�0

e

(10)

i

11

(n) +

X

i�0

e

11(01)

i

1

(n):

This expansion gives an alternative explanation to the observation [N℄ that the �rst few

values of e

1

(3n) are almost all even. See [AMS℄.

Example 5.

Let j be an integer � 0. The sequene fn

j

g

n�0

is 2{regular, as the module generated

by its 2{kernel is generated by the onstant sequene 1 and the sequenes fng

n�0

, fn

2

g

n�0

,

: : :, fn

j

g

n�0

.

From Theorem 6.3, we know the orresponding pattern transforms are 2{regular.

Using Lemma 6.5, we �nd:

n = e

1

(n) + e

10

(n) + e

11

(n) + 2(e

100

(n) + � � � + e

111

(n))

+ 4(e

1000

+ � � �+ e

1111

(n)) + 8(e

10000

(n) + � � �+ e

11111

(n)) + � � �

Example 6.

Let w

R

denote the reverse of the string w. Consider the map whih takes every integer

to the integer represented by the reverse of its base{2 representation, i. e. r(n) = v(n

R

(2)

).

Then it is not diÆult to show that [IMO℄ r(2n) = r(n), r(4n + 3) = 3r(2n + 1) � 2r(n),

r(8n+1) = 3r(4n+1)� 2r(2n+1), and r(8n+ 5) = 5r(2n+ 1)� 4r(n). Hene it follows

that the module generated by the 2{kernel of fr(n)g

n�0

is generated by its subsequenes

fr(n)g

n�0

, fr(2n + 1)g

n�0

, and fr(4n + 1)g

n�0

.

Example 7.
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Let d(0) = 0, d(1) = 1, d(2n) = d(n), and d(2n+1) = d(n) + d(n+1). This sequene

forms the numerators of the entries in the Stern-Broot tree (see [St℄, [GKP℄). It was also

studied by de Rham [R℄ and is Sloane's sequene #56. The �rst few terms are

0; 1; 1; 2; 1; 3; 2; 3; 1; 4; 3; 5; 2; 5; 3; 4; : : : :

It is easy to see that d(4n+1) = d(n) + d(2n+1), and d(4n+3) = 2d(2n+1)� d(n), and

it follows that d is 2{regular. Also see [Dij, pp. 215{216, 230{232℄.

A similar sequene is given by a(0) = 0, a(1) = 1, a(2n) = a(n), and a(2n + 1) =

a(n+ 1)� a(n). It satis�es a(4n+ 1) = a(2n+ 1)� a(n) and a(4n+ 3) = a(n) and hene

is 2{regular. See [Rez1℄, [Rez2℄.

Example 8.

De�ne �

2

(n) to be the exponent of the highest power of 2 that divides n. (This is

essentially Sloane's sequene #51.) Then if h(n) = �

2

(n + 1), we see that h(2n) = 0 and

h(2n+ 1) = h(n) + 1. Thus fh(n)g

n�0

is 2{regular.

Using Lemma 6.4, we �nd

�

2

(n+ 1) = e

1

(n) � (e

10

(n) + e

110

(n) + e

1110

(n) + � � �):

Example 9.

Using the remark after Theorem 3.1, we see that �

2

(n!) =

P

1�j�n

�

2

(j) is 2{regular.

Example 10.

Let the binary expansion of an integer n be written as

X

i�0

b

i

(n)2

i

;

where b

i

2 f0; 1g. De�ne g(n) =

P

i�0

(i + 1)b

i

(n). Then it is easy to see that g(2n) =

g(n) + e

1

(n) and g(2n+ 1) = g(n) + e

1

(n) + 1. Hene fg(n)g

n�0

is 2{regular.

Using Lemma 6.4, we an ompute the pattern transform of g(n). We �nd

g(n) =

X

P21(0+1)

�

e

P

(n):

Example 11.

Let f(n) = jn

(2)

j, i. e.

f(n) =

�

0; if n = 0;

1 + blog

2

n; if n � 1.

Then we easily see that f(2n+1) = f(n)+1, f(4n) = 2f(2n)�f(n), and f(4n+2) = f(n)+

2. Hene the module generated by its 2-kernel is generated by ff(n)g

n�0

, ff(2n)g

n�0

,

and the onstant sequene 1. Using Lemma 6.4, we �nd

f(n) = e

1

(n) + e

10

(n) + e

100

(n) + e

1000

(n) + � � � :
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Example 12.

Let fB(n)g

n�0

be the sequene 0; 3; 5; 6; 9; 10; 12; 15; : : : ; the integers whose base{2

representation ontains an even number of 1's. (This is Sloane's sequene #952). Let

u(n) = e

1

(n) mod 2; then u(n) is the lassial Thue-Morse sequene and 1 � u(n) is

the harateristi sequene of B(n). We easily prove that B(2n) = 2B(n) � u(n) and

B(2n + 1) = 2B(n) + 3(1� u(n)); hene B is 2{regular.

Example 13.

Let fC(n)g

n�0

be the sequene ofMoser-de Bruijn ([Mos℄, [B2℄): 0; 1; 4; 5; 16; 17; 20; 21; : : :

It onsists of integers that an be written as the sum of distint powers of 4. This is Sloane's

sequene #1315. Note that C(2n) = 4C(n) and C(2n + 1) = 4C(n) + 1; hene C is 2{

regular. See [LMP℄. In [BM℄ it is shown that the harateristi sequene of C(n) gives a

binary number suh that its binary expansion and the binary expansion of its reiproal

are expliitly known. Its ontinued fration is also expliitly known.

Similarly, the sequene of Loxton-van der Poorten [LP1℄

0; 1; 3; 4; 5; 11; 12; 13; 15; 16; 17; 19; 20; 21; 43; 44; : : :

of positive integers that an be represented in base 4 using only the digits �1; 0; 1 is

3{regular.

Example 14.

Let G(n) = 2

e

1

(n)

. This is Gould's sequene [G℄, and Sloane's sequene #109. It

satis�es G(2n) = G(n); G(2n+ 1) = 2G(n) and hene is 2{regular.

Glaisher [Gl℄ showed that G(n) ounts the number of odd binomial oeÆients in row

n of Pasal's triangle.

More generally, let p be a prime and let G

p

(n) be the number of binomial oeÆients

in row n of Pasal's triangle whih are not divisible by p. Then Fine [Fi℄ showed that

G

p

(n) =

Y

0�i�e

(a

i

+ 1)

where the base{p expansion of n is a

e

a

e�1

� � � a

1

a

0

. Of ourse, G

p

(n) is p{regular.

Now put H

p

(n) =

P

0�k�n

G

p

(k). Then H

p

(n) is also p{regular. The sequenes

H

2

(n),

1; 3; 5; 9; 11; 15; 19; 27; 29; 33; 37; 45; 49; 57; : : :

and H

3

(n),

1; 3; 6; 8; 12; 18; 21; 27; 36; 38; 42; 48; 52; 60; 72; : : :

appear in [LM℄. Also see [HLVVM℄, [LMVV℄.

Example 15.

Let fb(n)g

n�0

be the sequene of numbers represented by binary Gray ode [Gr℄, [Gi℄:

0; 1; 3; 2; 6; 7; 5; 4; 12; 13; 15; 14; 10; 11; 9; 8; � � �
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Then it is easy to see that b(4n) = 2b(2n), b(4n+1) = 2b(2n)+1, b(4n+2) = 2b(2n+1)+1,

and b(4n+ 3) = 2b(2n + 1). Hene fb(n)g

n�0

is 2{regular.

Similarly, if (n) denotes the sum of the bits in the Gray ode representation of n,

then we �nd (2n+1) = 2(n)� (2n)+1; (4n) = (2n); and (4n+2) = (2n+1)+1.

Hene f(n)g

n�0

is 2{regular. See [FR℄.

Example 16.

Consider the sequene of lattie points (x(n); y(n)) traed out by paperfolding urves

with an ultimately periodi sequene of unfolding instrutions [DMFP,MFS℄. Then fx(n)g

n�0

and fy(n)g

n�0

are 2{regular.

For example, onsider the sequene of lattie points (x(n); y(n)) traed out by the

spae-�lling urve with unfolding instrutions RLRLRL � � �.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 � � �

x(n) = 0 0 1 1 0 0 1 1 2 2 3 3 2 2 1 1 � � �

y(n) = 0 1 1 2 2 3 3 2 2 3 3 4 4 3 3 4 � � �

Then the sequenes satisfy the identities x(0) = 0, x(2) = 1, x(2n + 1) = x(2n),

x(4n) = 2x(n), x(8n+2) = �2x(n) +2x(2n) + x(4n+2), x(16n+6) = 2x(n) +x(4n+2),

x(16n + 14) = 2x(2n) + 2x(4n + 2) � x(8n + 6), and y(0) = 0, y(1) = 1, y(4n) = 2y(n),

y(4n+ 1) = y(4n+ 2) = 2y(n) � y(2n) + y(2n + 1), y(8n + 3) = y(8n + 7) = 2y(2n + 1).

Example 17.

Van der Corput's sequene '

2

(n) is de�ned as follows [Cor℄: if

n =

X

i�0

b

i

(n)2

i

;

where b

i

2 f0; 1g, then

'

2

(n) =

X

i�0

b

i

(n)2

�i�1

:

We see that '

2

(0) = 0, '

2

(2n) =

1

2

'

2

(n), and '

2

(2n + 1) =

1

2

+

1

2

'

2

(n). Hene the

sequene of rational numbers '

2

(n) is (1Q; 2){regular.

Also note that '

2

(n) = r(n)=2

f(n)

, where r(n) is the sequene of Example 6 and f(n)

is the sequene of Example 11.

Halton [Hal℄ generalized van der Corput's sequene to bases b � 2.

Example 18.

Let

1

(1 �X)(1�X

2

) � � � (1�X

j

)

=

X

n�0

P

j

(n)X

n

:

Then P

j

(n) enumerates the number of partitions of n into j or fewer parts. The sequene

P

3

(n) is Sloane's sequene #186; P

4

(n) is sequene #229; P

5

(n) is sequene #237, and

P

6

(n) is sequene #243.
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By Theorem 3.3, P

j

(n) is k{regular for all j � 1 and all k � 2. Note, however, that

the funtion P

1

(n) = lim

j!1

P

j

(n), whih ounts the number of unrestrited partitions,

is not k{regular, as it grows too quikly. Hene k{regular sequenes are not losed under

taking simple limits.

Example 19.

Let w = w

0

w

1

w

2

� � � be an in�nite word over a �nite alphabet, and de�ne s

w

(n) to be

the number of distint subwords (European terminology: fators) of length n in w. Then

s

w

(n)� s

w

(n� 1) is frequently k{automati, and hene in these ases, s

w

(n) is k{regular.

For example, this is true when w is the �xed point of the Toeplitz substitution given by

0! 0010 and 1! 1010 [Rau℄; when w is the in�nite word of Thue-Morse, the �xed point

of the substitution given by 0 ! 01 and 1! 10 [Brl℄ [LV℄; and in a more general lass of

in�nite words given by iterated homomorphisms disussed by Tapsoba [Tap℄.

Example 20.

It is well-known that n is a sum of three squares if and only if n is not of the form

4

a

(8k + 7). It is easily seen that the sequene

t(n) =

�

0; if n = 4

a

(8k + 7);

1; otherwise,

is 2{automati. Hene the sequene

Q(n) =

X

1�k�n

t(k);

whih ounts the number of positive integers � n that are the sum of three squares, is

2{regular. See [Sh℄, [OS℄, [W℄.

Example 21.

An addition hain to n is a sequene of pairs of positive integers

(a

1

; b

1

); (a

2

; b

2

); : : : ; (a

r

; b

r

)

where (i) a

r

+ b

r

= n and (ii) for all s, either a

s

= 1, or a

s

= a

i

+ b

i

for some i < s, and

the same holds for b

s

. The ost of the addition hain is

P

1�i�r

a

i

b

i

. Denote the ost of

the minimum ost addition hain to n as (n). Then it an be shown [GYY℄ that (1) = 0,

and (2n) = (n) + n

2

, (2n+ 1) = (n) + n

2

+ 2n for n � 1. Hene (n) is 2{regular.

Example 22.

De�ne b(d;n) as the number of representations

n =

X

i�0

�

i

2

i

;

29



where 0 � �

i

< d. Then b(2;n) = 1, b(3;n) = d(n + 1), where d(n) is the sequene of

Example 7, and b(4;n) = 1 + bn=2. (See [Rez3℄). It is possible to show that b(d;n) is

2{regular for all d � 1. However, b(1;n) = lim

d!1

b(d;n) is not k{regular, as it is known

that

log b(1;n) �

1

log 4

(log n)

2

:

(See [Mah℄, [B1℄, [Kn1℄). Note that if f(X) =

P

n�0

(�1)

e

1

(n)

X

n

, and g(X) =

P

n�0

b(1;n)X

n

,

then 1=f(X) = g(X

2

)(1 + X), whih shows that f(X) is not invertible in the ring of 2{

regular power series. P. Dumas has pointed out [Dum℄ that the sequene fb(1;n) mod

2

M

g

n�0

is 2{automati for all M � 0.

Example 23.

Let �

3

(n) denote the exponent of the highest power of 3 that divides n, and s

3

(n)

denote the sum of the digits of n when expressed in base 3.

De�ne r(n) =

P

0�i<n

�

2i

i

�

. Then �

3

(r(n)) is 3{regular. This follows from the (not-

so-trivial) fat that

�

3

(r(n)) = �

3

(

�

2n

n

�

) + 2�

3

(n)

and the (trivial) fat that

�

3

(

�

2n

n

�

) = s

3

(n) �

1

2

s

3

(2n):

See [SS2℄.

Example 24.

As in Setion VI, let

�(n) =

�

0; if n = 0;

n� 2

blog

2

n

; if n > 0.

Then A. Liao (personal ommuniation) asked for the solution T (n) to the reurrene

T (n) = �(n) + T (�(n));

where f(0) = 0. We see that T (n) is 2{regular, as the identities T (2n) = 2T (n), T (4n+1) =

2T (n) + T (2n + 1), and T (4n + 3) = �2T (n) + 3T (2n + 1) + 1 an easily be veri�ed by

indution.

T (n) also has the following pleasant expansion as a sum of pattern sequenes:

T (n) =

X

v(P )�3

�

�(P )

2

�

e

P

(n):
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Example 25.

The earliest referene to a non-trivial lass of k{regular sequenes we have found is

from an 1822 paper of Charles Babbage [Bab℄, in whih he disusses sequenes suh as

�

2

u

n

= u

n+1

mod 10;

\whih is one of a lass of equations never hitherto integrated." By onsidering both sides

(mod 10), we see that the sequene fu

n

mod 10g

n�0

is ultimately periodi and therefore

u

n

is k{regular for all k � 2. This sequene was deemed to have \no intrinsi mathematial

signi�ane" by Dubbey [Dub, pp. 182℄.

Example 26.

Let e(0) = 0, e(1) = 1, and de�ne e(n) to be the least integer greater than e(n � 1)

suh that the sequene e(0); : : : ; e(n) ontains no three terms in arithmeti progression.

The �rst few terms of this sequene are

0; 1; 3; 4; 9; 10; 12; 13; 27; 28; 30; 31; 36; 37; 39; 40; 81; : : :

and in general the sequene onsists of numbers that an be written as distint powers of

3. (Compare Example 13.) We have e(2n) = 3e(n) and e(2n+1) = 3e(n) +1, and so e(n)

is 2{regular. See [ET℄ and [Guy, p. 114℄.

Example 27.

Let k be an integer � 2, and put

f

k

(n) =

X

1�i�n

blog

k

i:

Then f

k

(n) is k{regular. In fat, we have

f

k

(n) = (n+ 1)blog

k

n �

k

blog

k

n+1

� k

k � 1

:

See [Kn3, Setion 1.2.4, Exerise 42 (b) ℄.

The number of omparisons required to sort n items in many sorting algorithms forms

a 2{regular sequene. The following examples illustrate this:

Example 28.

Merge sort, given a list of n integers, proeeds as follows: �rst the left half of the list

is sorted (reursively), then the right half is sorted, and �nally the two halves are merged

together. The number of omparisons needed to merge sort n items is given by T (1) = 0,

and

T (n) = T (bn=2) + T (dn=2e) + n� 1;

for n � 2, and it is not diÆult to see that T (n) is a 2{regular sequene.
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The resulting sequene

0; 1; 3; 5; 8; 11; 14; 17; 21; : : :

is Sloane's sequene #963. It was disussed by Levitt, Green, and Goldberg [LGG℄, who

gave the following losed form:

T (n) = ndlog

2

ne � 2

dlog

2

ne

+ 1:

Also see [Kn2, Setion 5.3.1, Equation (3)℄.

Example 29.

Let (n) denote the number of key omparisons used to sort n elements by Bather's

method (see, for example, [Knu2, Setion 5.2.2℄). The �rst few terms of this sequene are

0; 1; 3; 5; 9; 12; 16; 19; 26; 31; 37; 41; 48; 53; 59; 63; : : :

De�ne a(n) = (n+ 1) � (n). Then it is shown in [Knu2, Setion 5.2.2, Exerises 14, 15℄

that a(2n) = a(n) + blog

2

(2n); a(2n + 1) = a(n) + 1 and hene a(n) is 2{regular. Hene

(n) is 2{regular.

Example 30.

Let F (n) denote the number of key omparisons in Ford-Johnson sorting. Here are

the �rst few values of this sequene:

0; 1; 3; 5; 7; 10; 13; 16; 19; 22; 26; 30; 34; 38; 42; 46; 50; : : :

It is Sloane's sequene #954. A. Hadian showed that

F (n) =

X

1�k�n

dlog

2

3n

4

e;

see [Kn2, Setion 5.3.1℄. It is easy to show that dlog

2

ne is a 2{regular sequene. Then by

Theorem 2.6 dlog

2

3ne� 2 = dlog

2

3n=4e is 2{regular. Finally, by Theorem 3.1, F (n) must

be 2{regular. Knuth [Kn2, Setion 5.3.1, Exerise 14℄ gives the following \losed form" for

F (n):

F (n) = ndlog

2

3n

4

e � b2

blog

2

6n

=3+ b

1

2

log

2

6n:

Example 31.

Let k(n) denote the maximum number of key omparisons used by list-merge sorting;

see [Kn2, Setion 5.2.4℄. Here are the �rst few terms of this sequene

0; 1; 3; 5; 9; 11; 14; 17; 25; 27; 30; 33; 38; 41; 45; 49; : : :
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Then it is known that if the binary representation of n is

2

e

1

+ 2

e

2

+ � � �+ 2

e

t

;

then

k(n) = 1� 2

e

t

+

X

1�k�t

(e

k

+ k � 1)2

e

k

:

(See [Kn2, Setion 5.2.4, Exerises 14℄).

From this it is easy to see that k(2n) = 2k(n) + 2n � 1 for n � 1 and k(2n + 1) =

k(2n) + e

1

(n) + 2

�

2

(n)+1

� 1 for n � 1. Hene k(n) is a 2{regular sequene.

Example 32.

Similarly, the number of omparisons needed in many merging algorithms forms a 2{

regular sequene. For example, let M(m;n) denote the minimum number of omparisons

to merge m things with n. Then

M(1; n) = dlog

2

(n+ 1)e

and

M(2; n) = dlog

2

7

12

(n+ 1)e + dlog

2

14

17

(n + 1)e:

(See [Kn2, Setion 5.3.2℄.) While M(1; n) is easily seen to be 2{regular, we an prove that

M(2; n) is 2{regular using Theorems 2.6 and 2.7.

Example 33.

In analysis of a greedy heuristi for a mathing problem, Reingold and Tarjan [RT℄

de�ne a funtion f(n) for positive even arguments, and write

f(n) = min

2�t�n�2

t even

��1����>0

��1����>0

f�f(t) + �f(n� t)g:

Later they show that

f(2n) =

�

2

3

f(n); if n is even;

1

3

f(n + 1) +

1

3

f(n � 1); if n is odd.

They also give the following expliit form for f(2n):

f(2n) = 1�

X

2�i�n

3

�dlog

2

ie

:

It follows from this that f(2n) is a (1Q; 2){regular sequene. The �rst few values of this

sequene are:

1; 2=3; 5=9; 4=9; 11=27; 10=27; 1=3; 8=27; � � �
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Example 34.

The Josephus problem is as follows: the numbers from 1 to n are written in a irle.

Starting with the number 1, every 2nd number that remains is rossed o� until only one

is left. The \survivor" is denoted J(n). The �rst few values of J(n) are as follows:

1; 1; 3; 1; 3; 5; 7; 1; 3; 5; 7; 9; 11; 13; 15; � � � :

This problem was disussed by Graham, Knuth, and Patashnik [GKP, pp. 8{16℄, who

observed that J(2n) = 2J(n) � 1 and J(2n + 1) = 2J(n) + 1 for n � 1. It follows that

J(n) is 2{regular.

The same problem, where 2 is replaed by k and the result is the �rst unrossed-

o� number enountered when there are only k � 1 numbers left, does not appear to be

k-regular in general. See [GKP, pp. 79{81℄.

We are grateful to P. Dumas for pointing out this example.

Example 35.

We show that the sequene of primes fp(n)g

n�0

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; : : :

is not k{regular. Suppose it were. Then using Lemma 4.1, we see that fp(k

n

)g

n�0

must

satisfy a linear reurrene. Then if

lim

n!1

p(k

n

)

nk

n

exists, it must be an algebrai number. But from the prime number theorem,

lim

n!1

p(k

n

)

nk

n

= log k;

whih is transendental, a ontradition.

VIII. Some Open Problems.

1. Let R

0

= 1Q. Prove that if fS(n)g

n�0

is k

1

-regular and k

2

-regular, and k

1

and k

2

are multipliatively independent, then the assoiated power series

P

n�0

S(n)X

n

2 1Q[[X℄℄

is a rational funtion. In the ase where R

0

is �nite, this is a result of Cobham [Cob2℄.

2. Determine all the units of the ring of k-regular power series.

3. Obtain transendene results for the real numbers

P

n�0

S(n)p

�n

, where S(n) is

p-regular and

P

n�0

S(n)X

n

is not a rational funtion. See [LP2℄.

IX. Aknowledgments.

34



We are grateful to O. Salon for suggesting the term k{kernel [Sa℄.

Part of this work was done while the �rst author was visiting Dartmouth College.

Part of this work was done while the seond author was a visiting sientist at the

University of Waterloo and a visiting professor at the University of Wisonsin, Madison.

A preliminary version of this paper was presented at the Symposium on Theoretial

Aspets of Computer Siene (STACS) in Rouen, Frane, on February 24, 1990.

The seond author aknowledges with thanks onversations with E. Bah, C. Cho�rut,

L. Dikey, J. Drisoll, G. Frandsen, D. Joseph, S. Kurtz, R. Lipton, A. Lubiw, D. Passman,

E. Reingold, N. J. A. Sloane, and C. Reutenauer.

Referenes

[A1℄ J.-P. Allouhe, Automates �nis en th�eorie des nombres, Expo. Math. 5 (1987), 239-266.

[A2℄ J.-P. Allouhe, Somme des hi�res et transendane, Bull. So. Math. Frane 110 (1982),

279-285.

[A3℄ J.-P. Allouhe, Suites in�nies �a r�ep�etitions born�ees, S�eminaire de Th�eorie des Nombres de

Bordeaux, 1983-1984, Expos�e no. 20.

[A4℄ J.-P. Allouhe, Note sur un artile de Sharif et Woodok, S�em. de Th�eorie des Nombres de

Bordeaux, 2

e

s�erie, 1 (1989), 163-187.

[AMS℄ J.-P. Allouhe, P. Morton, and J. Shallit, Pattern spetra, substring enumeration, and auto-

mati sequenes, preprint.

[B1℄ N. G. de Bruijn, On Mahler's partition problem, Indag. Math. 10 (1948), 210-220

[B2℄ N. G. de Bruijn, Some diret deompositions of the set of integers, Math. Tables Aids

Comput. 18 (1964), 537-546.

[Bab℄ C. Babbage, Observations on the appliation of mahinery to the omputation of mathemat-

ial tables, Memoirs of the Astronomial Soiety 1 (1822), 311-314; reprinted in Babbage's

Calulating Engines, Tomash Publishers, Los Angeles, 1982.

[BM℄ A. Blanhard and M. Mend�es Frane, Sym�etrie et transendane, Bull. Si. Math. 106

(1982), 325-335.

[BR℄ J. Berstel and C. Reutenauer, Rational Series and Their Languages, Springer-Verlag, 1988.

[Brl℄ S. Brlek, Enumeration of fators in the Thue-Morse word, Dis. Appl. Math. 24 (1989),

83-96.

[BS℄ R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. Math. 49

(1948), 333-340.

35



[CKMR℄ G. Christol, T. Kamae, M. Mend�es Frane and G. Rauzy, Suites alg�ebriques, automates et

substitutions, Bull. So. Math. Frane 108 (1980), 401-419.

[CL℄ G. Clements and B. Lindstr�om, A sequene of (�1)-determinants with large values, Pro.

Amer. Math. So. 16 (1965), 548-550.

[Cob℄ A. Cobham, Uniform tag sequenes, Math. Systems Theory 6 (1972), 164-192.

[Cob2℄ A. Cobham, On the base-dependene of sets of numbers reognizable by �nite automata,

Math. Systems Theory 3 (1969), 186-192.

[Coq℄ J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983),

107-115.

[Cor℄ J. C. van der Corput, Verteilungsfunktionen, Pro. Ned. Akad. v. Wet. 38 (1935), 813-821.

[CS℄ C. Cho�rut and M. P. Sh�utzenberger, Counting with rational funtions, Theor. Comput.

Si. 58 (1988), 81-101.

[CY℄ P. Cheo and S. Yien, A problem on the k-adi representations of positive integers, Ata.

Math. Sinia 5 (1955), 433-438.

[Dav℄ M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.

[Dij℄ E. W. Dijkstra, Seleted Writings on Computing: a Personal Perspetive, Springer-Verlag,

New York, 1982.

[DMFP℄ M. Dekking, M. Mend�es Frane, and A. van der Poorten, FOLDS!, Math. Intell. 4 (1982),

130-138; 173-181; 190-195. (Errata in Math. Intell. 5 (1983), 5.)

[Dub℄ J. M. Dubbey, The Mathematial Work of Charles Babbage, Cambridge University Press,

1978.

[Dum℄ P. Dumas, Suite automatiques �a valeurs dans un anneau ommutatif, preprint.

[E℄ S. Eilenberg, Automata, Languages, and Mahines, Volume A, Aademi Press, 1974.

[ET℄ P. Erd�os and P. Tur�an, On some sequenes of integers, J. Lond. Math. So. 11 (1936),

261-264.

[Fi℄ N. J. Fine, Binomial oeÆients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592.

[FR℄ P. Flajolet and L. Ramshaw, A note on Gray ode and odd-even merge, SIAM J. Comput.

9 (1980), 142-158.

[G℄ H. W. Gould, Exponential binomial oeÆient series, Tehnial Report 4, Department of

Mathematis, W. Virginia Univ., September 1961.

[Gi℄ E. Gilbert, Gray odes and paths on the n-ube, Bell Sys. Teh. J. 37 (1958), 815-826.

[GKP℄ R. Graham, D. Knuth, and O. Patashnik, Conrete Mathematis, Addison-Wesley, 1989.

[Gl℄ J. W. L. Glaisher, On the residue of a binomial-theorem oeÆient with respet to a prime

modulus, Quart. J. Pure Appl. Math. 30 (1899), 150-156.

[Gr℄ F. Gray, U. S. patent 2,632,058, Marh 17, 1953 (Filed November 13, 1947).

[GS℄ S. Ginsburg and E. H. Spanier, Bounded ALGOL-like languages, Trans. Amer. Math. So.

113 (1964), 333-368.

36



[Guy℄ R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.

[GYY℄ R. Graham, A. Yao, and F. Yao, Addition hains with multipliative ost, Dis. Math. 23

(1978), 115-119.

[Hal℄ J. H. Halton, On the eÆieny of ertain quasi-random sequenes of points in evaluating

multi-dimensional integrals, Numer. Math. 2 (1960), 84-90.

[Har1℄ M. Harrison, Letures on Linear Sequential Mahines, Aademi Press, 1969.

[HLVVM℄ N. S. Holter, A. Lakhtakia, V. K. Varadan, V. V. Varadan, and R. Messier, On a new lass of

planar fratals: the Pasal-Sierpinski gaskets, J. Phys. A: Math. Gen. 19 (1986), 1753-1759.

[IMO℄ 29th International Math Olympiad{Solutions,Math. Mag. 62 (1989), 212.

[JK℄ K. Jaobs and M. Keane, 0-1-Sequenes of Toeplitz type, Z. Wahrsheinlihkeitstheorie verw.

Geb. 13 (1969), 123-131.

[Kn1℄ D. E. Knuth, An almost linear reurrene, Fib. Quart. 4 (1966), 117-128.

[Kn2℄ D. E. Knuth, Sorting and Searhing, The Art of Computer Programming, V. 3, Addison-

Wesley, 1973.

[Kn3℄ D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming, V. 1, Addison-

Wesley, 1973.

[Lan℄ S. Lang, Algebra, Addison-Wesley, 1971.

[LGG℄ K. N. Levitt, M. W. Green, and J. Goldberg, A study of the data ommutation problems in

a self-repairable multiproessor, Pro. AFIPS Conf. 32 (1968), 515-527.

[Li℄ P. Liardet, Automata and generalized Rudin-Shapiro sequenes, Sem. Salzburg Universit�at,

1986; Publiation 23, U. R. A. #225, C. N. R. S., Marseille, 1989.

[LM℄ A. Lakhtakia and R. Messier, Self-similar sequenes and haos from Gauss sums, Comput.

& Graphis 13 (1989), 59-62.

[LMP℄ D. H. Lehmer, K. Mahler, and A. J. van der Poorten, Integers with digits 0 or 1, Math.

Comp. 46 (1986) 683-689.

[LMVV℄ A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Fratal sequenes derived

from the self-similar extensions of the Sierpinski gasket, J. Phys. A: Math. Gen. 21 (1988),

1925-1928.

[LP1℄ J. H. Loxton and A. J. van der Poorten, An awful problem about integers in base four, Ata

Arithmetia 49 (1987), 193-203.

[LP2℄ J. H. Loxton and A. J. van der Poorten, Arithmeti properties of automata: regular se-

quenes, J. reine angew. Math. 392 (1988), 57-69.

[LV℄ A. de Lua and S. Varrihio, Some ombinatorial properties of the Thue-Morse sequene

and a problem in semigroups, Theor. Comput. Si. 63 (1989), 333-348.

[LZ℄ R. Lipton and Y. Zalstein, Word problems solvable in logspae, J. ACM 24 (1977), 522-526.

[Mah℄ K. Mahler, On a speial funtional equation, J. Lond. Math. So. 15 (1940), 115-123.

[Mah2℄ K. Mahler, On the generating funtion of the integers with a missing digit, J. Indian Math.

So. 15 (1951), 33-40.

37



[Mau℄ C. Mauduit, Substitutions et ensembles normaux, Habilitation, Marseille, 1989.

[MFP℄ M. Mend�es Frane and A. J. van der Poorten, From geometry to Euler identities, Theor.

Comput. Si. 65 (1989), 213-220.

[MFS℄ M. Mend�es Frane and J. Shallit, Wire bending, J. Combinatorial Theory, A 50 (1989) 1-23.

[MM℄ P. Morton and W. Mourant, Paper folding, digit patterns, and groups of arithmeti fratals,

Pro. Lond. Math. So. 59 (1989), 253-293.

[Mos℄ L. Moser, An appliation of generating series, Math. Mag. 35 (1962), 37-38.

[N℄ D. J. Newman, On the number of binary digits in a multiple of three, Pro. Amer. Math.

So. 21 (1969), 719-721.

[NS℄ D. J. Newman and M. Slater, Binary digit distribution over naturally de�ned sequenes,

Trans. Amer. Math. So. 213 (1975), 71-78.

[OS℄ A. H. Osbaldestin and P. Shiu, A orrelated digital sum problem assoiated with sums of

three squares, Bull. Lond. Math. So. 21 (1989), 369-374.

[Pro℄ H. Prodinger, Non-repetitive sequenes and Gray ode, Dis. Math. 43 (1983), 113-116.

[R℄ G. de Rham, Un peu de math�ematiques �a propos d'une ourbe plane, Elem. Math. 2 (1947),

73-77; 89-97.

[Rau℄ G. Rauzy, Suites �a termes dans un alphabet �ni, S�em. Th�eorie des Nombres de Bordeaux,

2

e

s�erie, 1982-3, 25.01{25.16.

[Rez1℄ B. Reznik, A new sequene with many properties, Abs. Amer. Math. So. 5 (1984), 16.

[Rez2℄ B. Reznik, Some extremal problems for ontinued frations, Ill. J. Math. 29 (1985), 261-279.

[Rez3℄ B. Reznik, Some binary partition funtions, in B. C. Berndt, H. G. Diamond, H. Halberstam,

and A. Hildebrand, eds., Analyti Number Theory (Proeedings of a Conferene in Honor of

Paul T. Bateman), Birkh�auser, Boston, 1990, pp. 451-477.

[RT℄ E. M. Reingold and R. E. Tarjan, On a greedy heuristi for omplete mathing, SIAM J.

Comput. 10 (1981), 676-681.

[Sa℄ O. Salon, Quelles tuiles! (Pavages ap�eriodiques du plan et automates bidimensionnels), S�em.

de Th�eorie des Nombres de Bordeaux, (2) 1 (1989), 1-25.

[Sh℄ M. P. Sh�utzenberger, On the de�nition of a family of automata, Information and Control 4

(1961), 245-270.

[Sh℄ P. Shiu, Counting sums of three squares, Bull. Lond. Math. So. 20 (1988), 203-208.

[Sl℄ N. J. A. Sloane, A Handbook of Integer Sequenes, Aademi Press, 1973.

[SS℄ A. Salomaa and M. Soittola, Automata-theoreti Aspets of Formal Power Series, Springer-

Verlag, 1978.

[SS2℄ N. Strauss and J. Shallit, Advaned Problem 6625, Amer. Math. Monthly 97 (1990), 252.

[St℄ M. A. Stern,

�

Uber eine zahlentheoretishe Funktion, J. reine angew. Math. 55 (1858),

193-220.

38



[Tap℄ T. Tapsoba, Complexit�e de suites automatiques, Th�ese de troisi�eme yle, Universit�e d'Aix-

Marseille II, 1987.

[W℄ S. S. Wagsta�, Jr., The Shnirelmann density of the sums of three squares, Pro. Amer.

Math. So. 52 (1975), 1-7.

Last revision: May 21, 1991

39


