To appear, Theoretical Computer Science, Nov. 1992

The Ring of k-Regular Sequences

Jean-Paul Allouche* Jeffrey Shallit$
C.N.R. S (U R. A 226) Dept. of Computer Science
Mathématiques et Informatique Unwwversity of Waterloo
38405 Talence Cedex Waterloo, Ontario N2L 5G1
France Canada
allouchelfrbdx1l.bitnet shallit@watdragon.waterloo.edu

Abstract.

The automatic sequence is the central concept at the intersection of formal language
theory and number theory. It was introduced by Cobham, and has been extensively studied
by Christol, Kamae, Mendes France and Rauzy, and other writers. Since the range of
automatic sequences is finite, however, their descriptive power is severely limited.

In this paper, we generalize the concept of automatic sequence to the case where the
sequence can take its values in a (possibly infinite) ring R; we call such sequences k-regular.
(When R is finite, we obtain automatic sequences as a special case.) We argue that k—
regular sequences provide a good framework for discussing many “naturally—occurring”
sequences, and we support this contention by exhibiting many examples of k-regular
sequences from numerical analysis, topology, number theory, combinatorics, analysis of
algorithms, and the theory of fractals.

We investigate the closure properties of k—regular sequences. We prove that the set
of k—regular sequences forms a ring under the operations of term-by-term addition and
convolution. Hence the set of associated formal power series in R[[X]] also forms a ring.

We show how k-regular sequences are related to Z-rational formal series. We give a
machine model for the k—regular sequences. We prove that all k—regular sequences can be
computed quickly.

Let the pattern sequence ep(n) count the number of occurrences of the pattern P in
the base—k expansion of n. Morton and Mourant showed that every sequence over Z has a
unique expansion as a sum of pattern sequences. We prove that this “Fourier” expansion
maps k-regular sequences to k-regular sequences. (This can be viewed as a generalization
of results of Choffrut and Schutzenberger, and previous results of Allouche, Morton, and
Shallit.) In particular, the coeflicients in the expansion of ep(an + b) form a k—automatic
sequence.

Many natural examples and some open problems are given.
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I. Introduction.

Let {S(n)}n>0 be a sequence with values chosen from a finite set ¥. Then {S(n)},>0
is said to be k—automatic if, informally speaking, S(n) is a finite-state function of the
base—k expansion of n.

Automatic sequences have been studied by Cobham [Cob], Christol, Kamae, Mendes
France and Rauzy [CKMR], and others. (For example, see [DMFP], [Mau], and the survey
paper of Allouche [Al].) There are many other ways to characterize automatic sequences.
For example, consider the following

Definition 1.1.
The k-kernel of a sequence is the set of all subsequences of the form {S(k°n +a)}n>o,
where e > 0 and 0 < a < k€.

Cobham [Cob] proved the following

Theorem 1.2.
A sequence is k—automatic if and only if its k—kernel is finite.

Unfortunately, the range of automatic sequences is necessarily finite, and this restricts
their descriptive power.

In this paper, we are concerned with a natural generalization of automaticity to the
case where the sequence {S(n)},>0 takes its values in a (possibly infinite) ring; we call
such sequences k—regular. (Another generalization of automatic sequences was already
given by Allouche [A4].) We use an analogue of Theorem 1.2 as our definition. We show
that k—regular sequences provide an excellent framework for describing many “naturally
occurring” sequences, such as the numerators of the left endpoints of the Cantor set, the
sequence {v,(n!)},>0, which counts the number of times a prime p divides a factorial, bi-
nary Gray code, numerators of entries of the Stern-Brocot tree, multiplicative-cost addition
chains, etc.

We prove that k-regular sequences have nice closure properties. By associating a
formal power series with each sequence, we prove that the set of k—regular sequences forms
a ring, but not a field, under the usual power series operations.

We explore the connection with a machine model of Schiitzenberger [Sch], which in-
cludes finite automata with counters as a special case. This allows us to prove that the
n-th term of a k—regular sequence can be computed in time polynomial in log n.

We introduce the pattern sequences ep(n), which count the number of occurrences
of the string P in the base-k expansion of n. Morton and Mourant [MM] showed that
every sequence {S(n)}n>0 over Z has a unique expansion as a sum of pattern sequences.
In analogy with the Fourier transform, we call this sequence of coefficients {S(n)}nzo the
pattern transform of {S(n)}n,>0. We show that a sequence is k-regular if and only if its
pattern transform is k—regular. This can be viewed as a generalization of results of Choffrut
and Schiitzenberger [CS] and previous results of the authors and P. Morton [AMS].

Finally, we give many examples and some open problems.
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II. k—regular sequences: definition and properties.

Let R’ be a commutative Noetherian ring, i. e. a ring in which every ideal is finitely
generated. (Examples of such rings include all finite rings, Z, all fields K, and the poly-
nomial rings K[ X].) Let R be a ring containing R’.

Let S(R) denote the set of sequences with values in R. Let {S(n)},>0 be a sequence
with values in R, and let k be an integer > 2.

Definition 2.1.

We say {S(n)}n>01s (R, k)-regularif there exist a finite number of sequences Sy, S, . ..

with values in R, such that each sequence in the k-kernel of {S(n)},>0 is an R'-linear
combination of the S;.

Let K denote the k-kernel of {S(n)}n>0. Then {S(n)}n>0 is (R, k)-regular means
that
(K) C (S1,S52,...5),

i. e. (K) is a sub-module of a finitely generated R'—module. By a well-known theorem
(see, e. g., [Lan, pp. 142-144]), it follows that (K) itself is finitely generated.

Thus Definition 2.1 can be restated as follows: a sequence {S(n)},>o with values
in Ris (R, k) regular if the R'-module generated by its k-kernel is a finitely generated
R'—submodule of S(R).

If the context is clear, we usually write just k—regular.

Note that if R is a finite ring, then we recover the case of k—automatic sequences. For
if every subsequence in the k—kernel can be written as an R'-linear combination of a finite
set of sequences, then there are only a finite number of distinct elements of the k-kernel.
In fact, the same holds for sequences that take on only finitely many values (see Theorem
2.3 below).

The reader may now wish to look at Section VII for some examples of k-regular
sequences.

Our first theorem gives several alternative characterizations of k-regular sequences:

Theorem 2.2.

The following are equivalent:

(a) {S(n)}n>o is (R, k)-regular;

(b) The R'-module generated by the k—kernel of {S(n)}n>0 is generated by a finite
number of its subsequences of the form S(kfin + b;) where 0 <b; < kTi;

(c) There exists an integer E such that for all e; > E, each subsequence S(k®n+ a;)
with 0 < a; < k% can be expressed as an R'-linear combination

S(kejn + CL]‘) = ZcijS(kfijn + bi]‘),

where f;; < E and 0 < b;; < kfii;
(d) There exist an integer r and r sequences S = S1,S2,...,S,, such that for1 <i <r,
the k sequences {S;(kn + a)}n>0, 0 < a < k, are R'-linear combinations of the S;;
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(e) There exist an integer r, r sequences S = S1,Ss,...,S,, and k matrices By, By,...,Byr_1
in M, (R') such that if
S1(n)

one has V(kn 4+ a) = B,V (n) for 0 < a < k.

Proof.
(a) = (b): Let K denote the k—kernel of S(n). Then (K), the module generated by
KC, is finitely generated, so there exist sequences Sy, S5, ..., S, such that

(K) =(S1,S52,...,5k).
But then each 5; is necessarily a finite linear combination of elements from K, and there

are only finitely many S;, so (K) is generated by only finitely many members of K.

(b) = (c): Let the k—kernel of {S(n)},>0 be generated by a finite set of its subse-
quences of the specified form, say

S(kfin +b;)
for 1 <i <i'. Let F = max <;<y fi. Then for all e; > E, we can write
S(kejn—l—a]‘) = ZcijS(kf”n—l—bij),
where f;; < E and 0 < b;; < ki,

(¢) = (d): Take as the r sequences the set K of subsequences S;(n) = S(kfin + b;)
with 0 < f; < E and 0 < b; < kfi. Then

Si(kn +a) = S(kVi (kn + a) +b;) = S(F o + akdi 4 b;),

which, if f; +1 < E, is an element of X, and if f; +1 > E. is a linear combination of
elements of K.

(d) = (e

(e) (a): We need to see that S(k°n 4 a) is a linear combination of the S;. Express
a in base k (possibly with leading zeroes) as

Z a;k’;

0<i<e

= Follows trivially.
=

):
):

then it is easy to see that
V(k‘n+a) = ByyBa, -+ Ba._,V(n),
and this expresses S(k°n + a) as a linear combination of the S;. W
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Remarks.

e Note that in parts (d) and (e) of the theorem, the sequences S; can be taken to be
in the k—kernel of S.

e Part (e) of the theorem gives a substitution-like definition, which can be compared
to the linear k—substitutions of Liardet [Li], which generate exactly the k—automatic se-
quences.

e The dimension of the R'—module generated by the k—kernel is an invariant that may
be interpreted as a measure of complexity of the sequence {S(n)}n>0.

e We note that every ultimately periodic sequence is (R', k)-regular for all R’ and k.

Our next theorem illustrates a connection between k—regular sequences and k—automatic
sequences:

Theorem 2.3.
A sequence is (R, k)-regular and takes on only finitely many values if and only if it
is k—automatic.

Proof.

If a sequence is k—automatic, it is by definition finitely valued, and since its k—kernel
is finite, it generates a finitely generated module.

Now suppose S(n) is k—regular and takes on finitely many values. From Theorem 2.2
(e), there exist sequence S = S1,S5%,...,S, (which can be taken in the k—kernel of S) and
matrices By, By,...Br_1 such that

Sr(n)
satisfies V(kn + a) = B,V (n) for 0 < a < k and n > 0. Let V be the (finite) set of values
of {V(n)}n>0, and define the k~homomorphism ¢ by o(v) = wow; - - - wr—_1, where v € V
and w, = Byv for 0 < a < k. Then the infinite word
VOV(LH)V(2)- -

is a fixed point of o and S1(n) is an image of this fixed point. Hence S(n) is k—automatic.
|

Corollary 2.4.
If S(n) is (Z, k)-regular, then for all m > 1, {S(n) mod m},>o is k-automatic.

Remark.
The converse does not hold. Let S(n) = 2" and use Theorem 2.11 below.

We now investigate the closure properties of k-regular sequences:

5



Theorem 2.5.
Let {S(n)}n>0 and {T(n)},>0 be k-regular sequences. Then so are S +T = {S(n) +
T(n)}nzo, @S = {aS(n)}nzo, and ST = {5(n)T(n)}n>0.

Proof.

Let S1 =5,52,...,5, (respectively Ty = T,T5,...,T;) be a system of generators for
the module generated by the k—kernel of S (respectively T'). Then it is easy to see that
the r + ' sequences Sq,...,S,,T1,..., T generate the module generated by the k—kernel
of S+ T. Similarly, the rr’ sequences S;Tj, 1 < i < r, 1 <j < generate the module
generated by the k—kernel of ST. Finally, the sequences a5;, 1 < ¢ < r, generate the
module generated by the k—kernel of 5. W

Remarks.
We observe that some simple transformations do not preserve k-regularity.

e Let S(n),T(n) be (Z,k)-—regular sequences with T(n) # 0 for all n. Then the
sequence S/T = {S(n)/T(n)},>0 need not even be (Q, k)-regular.

For example, define T(2n) =n + 1, T(2n 4+ 1) = T(n) + 1 for n > 0. Define T;(n) =
T(2n + 277! —1). Then it is easy to see that T;(n) = n + j for j > 1.

Suppose 1/T(n) were (Q,2)-regular. Then the module generated by the sequences

1/T1(n)7 1/T2(n)7 1/T3(n)7 s
would have finite rank. Then for some m > 1, the m x m matrix M;; defined by
Mij =1/Ti(i —=1) = 1/(i +j = 1),

1 <4,5 < m, would have determinant 0. But M;; is a Hilbert matrix and is well-known
to have nonzero determinant, a contradiction, and the conclusion follows.

e We note that k—regular sequences are not closed under absolute value (and hence
not closed under max and min). Consider the function f(n) = eg(n) — e1(n), where eg(n)
counts the number of 0’s in the binary expansion of n, and e;(n) counts the number of 1’s
in the binary expansion of n. It is easily verified that eq(n) and e;(n) are k—regular; hence
sois f(n). But |f(n)| is not k—regular. For we have

f(2'n) = leo(n) — ex(n) + |

for n > 1 and j > 0. Now suppose there were a linear dependency among these subse-
quences; i. e. there exist a, b such that

In+ a| = Z cile + 1|

a+1<i<b

for all integers n. For n > —(a + 1) the right side is of the form An + B and hence
monotone; but the left side is not, a contradiction.

e We also note that k—regular sequences are not closed under composition. As men-
tioned above, e1(n), the number of 1’s in the binary expansion of n, is 2-regular, as is the
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function f(n) = n*. However, the composition e;(f(n)) = e;(n?) is not 2-regular; if it
were, then by Corollary 2.4, e1(n?) mod 2 would be 2-automatic. However, e1(n*) mod 2
is not 2-automatic, by results of Allouche [A2].

In the next theorem, we show that if a sequence is k—regular, then so is the subsequence
obtained by periodic indexing;:

Theorem 2.6.
Let {S(n)}n>0 be a k-regular sequence. Then for a > 1,b > 0, the sequence {S(an +
b)}n>o is k-regular.

Proof.

Define T'(n) = S(an + b).

Suppose S(n) is k—regular. Then the module generated by its k—kernel is generated
by Si(n),S2(n),...,Sr(n). We claim that each sequence in the k—kernel of T'(n) can be
expressed as a linear combination of S;(an 4 ¢), for 1 <i<rand 0 <ec<a+bd.

Proof: Take an element of the k—kernel of T'(n), say T(k°n + j), 0 < j < k°. Write
ja+b=d-k®+ f, where 0 < f < k°. Then

T(k‘n+j)=S(a(kn+j)+0b)
= S(k(an +d) + f),

Notice that since 0 < j < k¢, we have 0 < d < a +b. Now the module generated by the
k—kernel of {S(n)},>o is finitely generated, so S(k®m + f) = >_. ¢;5;(m) for constants c;.
Hence it follows that
S(k“(an +d) + f) =Y ¢;Sj(an +d),
J
and the result follows. W

Remark.

Let us define S indexed by negative arguments to be 0. For example, {S(n —1)},>0
is the sequence {S(n)},>0 with a 0 tacked on the front.

Then it is easy to see that the preceding theorem holds even when b < 0.

Theorem 2.7.
Let {S(n)}n>0 be a sequence such that there exists an a > 2 such that {S(an+1)},>0
is k-regular for 0 < i < a. Then {S(n)}n>0 is k-regular.

Proof.
For 0 < < a, define

[ S(n), ifn=1i(mod a);
Ti(n) = {0, if n #Zi (mod a).

Also, write S;(n) = S(an+1i). Then it is easy to see that each sequence T;(n) is k—regular;
indeed, T;(k’n 4+ ¢) is either the 0-sequence or the sequence S;(k'n + ¢) interspersed with
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groups of a/ ged(a, k’) — 1 zeros. Hence the k-kernel of T;(n) is finitely generated. Finally,
we see that

which shows that {S(n)},>0 is k-regular. W

Remark.
From Theorems 2.6 and 2.7 it follows that if S(n) is k—regular, and r is a rational
number, then S([rn]) and S(|rn|) are also k-regular.

Many sequence transformations from the literature preserve regularity. For example,
let {S(n)}n>0 be a sequence, and consider its Toeplitz transformation {S'(n)},>0 defined
by S'(2n) = S(n) and S'(2n 4+ 1) = S'(n) for n > 0. (See [JK], [Pro]). Then we have the

following, which generalizes the case of automatic sequences [A3]:

Theorem 2.8.
{S(n)}n>o0 is 2-regular if and only if {S'(n)}n>0 is 2-regular.

Proof.
Suppose {S(n)}n>0 is 2-regular. Then the module generated by its 2-kernel is finitely
generated, say by S1(n),...,Sk(n). Now consider the module

M = (S"(n), S1(n), ..., Sk(n)).

Note that S;(2n) and S;(2n + 1) are linear combinations of the S;. Also, S’(2n) = S(n)
and S'(2n 4+ 1) = S’(n). Thus by Theorem 2.2 (d), {S5’(n)}n>0 is 2-regular.

Now assume {S(n)},,>0 is 2-regular. Then by Theorem 2.6, S’(2n) is 2-regular. But
S’'(2n) = S(n), and the result follows. W

Theorem 2.9
Let f be an integer > 1. Then {S(n)}n>o is k' -regular if and only if {S(n)},>o is
k-regular.

Proof.

Suppose {S(n)}n>0 is k-regular. Then the module generated by its k-kernel is finitely
generated and contains its k/-kernel. Hence the module generated by its k/kernel is also
finitely generated.

To prove the other direction, assume {S(n)},>o is k/-regular.

We now show there exists a B such that for all b > B, each subsequence S(k’n + ¢)
can be expressed as a linear combination

S(k'n 4 ¢) = diS(k"n + ¢;)

with b; < B and 0 < ¢; < kb. The result will then follow from Theorem 2.2 (c).
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For let us write b = fr4+ s, 0 < s < fand e = gk/" +¢, 0 <t < k/". Then, by
Theorem 2.2 (c), there exists E such that for all r > E we can express

SR m+t) = diS(()'m + t3),

where r; < E and 0 < ¢; < kI,
Now put m = k°n + ¢; we find

S((E)m+t) = S(kPn+¢) =Y diS(RT"Fon + gk 4 1) = diS(K''n + ),

where b; = fr; + s and ¢; = gk/" 4+ t;. Notice that b; < fE + f. Also, ¢ < k* — 1, so

c; = qkfri +t < (ks — l)kfri +t;
< pfrits _ pfri 1t < Irits — kbi;

thus we may take B = f(E + 1). Hence {S(n)},>0 is also k-regular. W

C. Choffrut and C. Reutenauer have pointed out that we may obtain alternative proofs
of Theorems 2.6-2.9 using the notion of rational transduction [SS] and Theorem 4.3 below.

Theorem 2.10.
Let {S(n)}n>0 be a k-regular sequence with values in €, the complex numbers. Then
there exists a constant ¢ such that S(n) = O(n®).

Proof.

We use the characterization of Theorem 2.2 (e). Let the base—k expansion of n be
aj—_1Q5—2 - a100;
then 7 <1+ log; n. Then
V(n) = BayBa, -+ Ba;_, V(0).

If v is a d-dimensional vector, define

loll = > lvil

1<i<d

if M is a d X d-matrix, define

[M]| = max > M.
1<d -
==Ngi<a

Then it is easy to see that | Mv|| < ||M]|||v]|.
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Thus we see
S(0) < IV < IBanlll Bl -+ 1By, 1V O
Now let ¢ = maxg<i<r—1 ||Bi||, and d = ||[V(0)]|. Then we have
S(n) < Mg g < d'n®
and the result follows. W
Thus we see, for example, that {2"},>¢ is not (Z, k)-regular.

Theorem 2.11.
Let R be a Noetherian ring without zero divisors, and let a € R. Then the sequence
of powers {a" }n>0 is (R, k)-regular if and only if a = 0 or a is a root of unity.

Proof.

One direction is simple, since if a is 0 or a root of of unity, then the sequence of powers
is ultimately periodic, hence k-regular.

Now assume {a"}, >0 is (R, k)-regular. Then there exist r < co and Aj, 0 < j < r

such that 4
Y Ad" =0
0<j<r
for all n > 0.
Now recall the following identity for the Vandermonde determinant:
1 by B ... WO
1 b B ..
S - H(bi = bj)-
. . . . o .. Z>]
1 by, b, ... b
From this, we see that the sequences {b?}nZO are linearly independent if and only if the
numbers by, bs, ..., b, are distinct.
2 r
Hence the numbers 1,a*,a* ... a*" are not all distinct and we must have
aF = ¥

for some j # [. Since R has no zero-divisors, either @ = 0 or a is a root of unity. M

ITI. The ring of k—regular sequences.
Associated to every k-regular sequence {S(n)},>0 is the formal power series in R[[X]]

defined by
Z S(n)X",

n>0
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where X is an indeterminate. We call such a power series k—regular. In this section we
show that the set of all k-regular power series forms a ring (but not a field).
Recall that the convolution S*T of two sequences S(n) and T(n) is defined as follows:

(S*T)(n)= Y SHT())-

t+j=n

Theorem 3.1.
The set of k—regular sequences is closed under convolution.

Proof.

For simplicity we prove this only in the case k = 2.

Let us agree to write {A(2n)} as shorthand for the sequence {A(2n)},>0.

Let A and B be 2-regular sequences. The modules generated by their 2-kernels are
generated by sequences aj,as,...,a; and by, by, ... by, respectively. We want to find
a basis for C, the module generated by the 2-kernel of A« B. We write u;; = a; % b,
for 1 < i <1 <j < j. We claim that the set M of 2i'j" sequences {u;;(n)}n>0
and {u;j(n — 1)},>0 generates the module C'. (As in the previous section, we define

uij(=1) =0.)
It is clear that M contains all sequences of the form
({A@2n + )}« {B2 n + j)})(n) (1)
and
({A@n + D)}« {B2/n +j)})(n —1). (2)
Thus it suffices to show how to write all the sequences of the form
{(AxB)(29n+a)}

as a linear combination of the sequences in (1) and (2).
This is done using the following formula:

(A*B)(2/n +a) = Z ({A@2%n + )} » {B(2n + a — i)})(n)
£ ({AR )} (B 42 a— j)})(n - 1),

Hence the result follows. W

(Note: it is apparently impossible to obtain Theorem 3.1 using the standard tools of
rational series, such as rational transductions.)

It follows from Theorem 3.1 that if the sequence {S(n)}n>0 is k-regular, then so is
its running sum {5 ;<,, S() a0

Since the convolution of sequences is equivalent to (ordinary) multiplication of the
associated power series, we have:

Corollary 3.2.
The set of k—regular power series forms a ring.
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Remark.
The set of k—regular power series does not form a field. This follows from the identity

—14+2X +4X% +8X3 + ...
oY +2X + +8X° +

and the fact that {2"},,>¢ is not k-regular (Theorem 2.10).

Theorem 3.3.

Let F be an algebraically closed field (e. g., C). Let {S(n)},>0 be a sequence with
values in F. Let f(X) =) ,5(n)X"™ be a formal power series in F[[X]]. Assume that
f(X) represents a rational function of X; i. e. there exist polynomials p(X), q(X) such
that f(X) = p(X)/q(X). Then {S(n)}n>o0 is k-regular if and only if the poles of f are

roots of unity.

Proof.
Note that by assumption, 0 is not a pole of f.
Suppose the poles of f are roots of unity. Then using expansion by partial fractions,

we can write
=V _%9
=%

(3
where ¢; € F, the e; are non-negative integers, and each (; is a root of unity. To prove the
coefficients of f form a k-regular sequence, it clearly suffices to show that (1 — (;X)~! is
k—regular. But this power series has periodic coefficients and so is k-regular.
Now suppose f(X) = p(X)/q(X) for polynomials p, ¢, and f is k—regular. Let 1/( be
one of the poles of f; we may assume ( # 0. We can then write

where r(2), s(X) are polynomials and »(X) and 1 — (X are relatively prime. Then there
exist two polynomials u(X), v(X) such that

w(X)r(X) +o(X)(1 - (X)* = 1.
Now u(X)f(X)s(X) + v(X) is also a k-regular power series, and we have
u(X)f(X)s(X) +v(X) = (1 - ¢X)™". (3)
Thus (1 — (X)™¢ is k-regular. But (1 — (X)*"! is a polynomial and hence a k-regular
power series, so its product with (3) is k-regular and thus (1 — (X)~! is k-regular. But
the coefficients of this power series are (", which by Theorem 2.11 is k—regular if and only
if { is a root of unity.

This completes the proof. N
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Remarks.

e We note that Theorem 3.3 gives us the following characterization of k-regular se-
quences associated with rational formal power series: they must be linear recurrences
whose characteristic polynomial is a product of cyclotomic polynomials. See, for example,
Section VII, Example 18.

e Also note that if R = @, then (using Corollary 4.2 below) the radius of convergence
of a k—regular power series is 1, and such a series either represents a rational function or
has the unit circle as a natural boundary.

IV. Rational series and k-regular sequences.

At first glance, it might seem that there is no relationship between k-regular power
series and the theory of Z-rational formal series, as described in [SS], [BR] [E, Chap. V].
For > -,2"X"™is Z-rational, but is not k-regular. Similarly, > -, ei(n)X" is k-regular,
but is not Z-rational. (Here e;(n) counts the number of 1’s in the base—k expansion of n).

Nevertheless, there s a relationship which can be roughly described as follows: 2-
regular power series are the “binary” analogue of Z-rational formal series in one variable.
Alternatively, Z-rational series in one variable are the “unary” analogue of k—regular power
series.

In this section, we develop this relationship between k-regular sequences and Z—
rational formal series. From this, we get a machine model for the k-regular sequences.
This model plays the same role as the ordinary finite automaton does for k—automatic
sequences. We also prove that all k—regular sequences can be computed quickly.

We introduce some notation that will be used throughout this section. Let k be fixed
and define ¥ = {0,1,...,k—1}. We need a way to uniquely associate integers with strings
giving their base—k representation. If

n= Z a;k’,

0<i<e

and a._; # 0, then we say that the string a._ja._s ...ajag is the standard base—k repre-
sentation of n. Note that the standard representation of 0 is the empty string. The set of
all standard representations is just e + (X — 0)X*.

First, we prove a useful lemma:

Lemma 4.1.

Let {S(n)}n>0 be a sequence with entries in R. Then {S(n)},>0 is (R, k)-regular
if and only if there exist matrices My, My,..., My_1 with entries in R’ and vectors A, k
with entries in R such that

S(n) =AMy My, ... M, _ K

Qe—1"Y
where a._1a.—o...ayag is the standard base—k representation of n.
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Proof.
Suppose S(n) is k-regular. Then by Theorem 2.2 (e), we know that there exist
matrices My, ... Mp_y such that

V(kn 4+ a) = M,V (n),

where
Sl(n)
V(n) = )
Sr(n)
and S(n) = S1(n). Hence by setting k = V(0) and A =[1 0 0---0], we see that

Vin) =AMy My, ... My, K

‘ Ae—1

for all n > 0.
Now suppose S(n) = AM,, ... M, _,x for all n > 0, where a._; - - - ag is the standard
base—k representation of n. Define Vi(n) = M, --- M,__,x and
v1(n)
Vin) = :
vr(n)
Then

V(kn—l—a) — MaMao "'Mae—1H = MaV(TL),

except possibly when n = 0 and @ = 0. (This special case arises because the standard
representation of kn is the string a._; - - - a1 a0, for n > 1, but not for n = 0.) In this case,

by setting v/ = V(0) — MoV (0) we see
V(kn) = MoV (n) + U(n)v’

for all n > 0, where U(n) denotes the sequence that is 1 when n = 0 and 0 otherwise.
Then by Theorem 2.2 (d), we see that each of the sequences vi(n),...,v.(n) is k-
regular. But then S(n) = AV(n) is k—regular, by Theorem 2.5. B

Corollary 4.2. Suppose {S(n)}n>0 is a (Z, k)-regular sequence with values in Q. Then
there exist an integer r and a (Z, k)-regular sequence {T(n)}, >0 with values in Z such

that S(n) =T(n)/r.

Proof. By Lemma 4.1, we have

S(n) = AMu M, -+ M

ae—lﬁ"

where a._q ---ayap is the standard base—k representation of n. The matrices M; have
integral entries, and the vectors A and x have rational entries. Let g be the least common
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multiple of the denominators of entries in A, and ¢’ be the least common multiple of the
denominators of entries in k. Then T'(n) = (gA\)Myo My, - Mo, (9'K) is a (Z, k)-regular
sequence with values in Z. The result follows by putting r = g¢’. H

Now we show how k-regular sequences are related to Z-rational formal series. Let
r9,%1,...,2L_1 be non-commuting variables. If w = w;---w, € ¥* then define z, =
L+ &y, . Let 7 be the map that sends n to x, 24, ... 24._,, where the standard base—k
representation of x is the string a._1 ---ajag.

Lw

Theorem 4.3.
{S(n)}n>o0 is k-regular if and only if the formal series

> S(n)r(n)

n>0
is Z—rational.

For example, in the case k = 2 we have

Y S(n)r(n) = 5(0) + S(1)ar + S(2)wowrr + S(3)wrwy + S(4)worows + -+

n>0

Proof. Suppose {S(n)},>0 is k-regular. Then by Lemma 4.1, there exist matrices
My, ..., My_1 such that
S(n) =AMy, - M,

de_1 K-

But by the fundamental theorem for Z-rational formal series (see, e.g. [SS, Theorem 2.3]),

T = Z MMy rz
wEL*

is Z-rational. This is essentially the series > o, S(n)7(n), but it also contains terms that
correspond to non-standard base—k representations of n. Let A be the set of standard base—
k representations (e. g. those not beginning with a 0). Then as above, A = e+ (¥ —0)X*,
and so A is regular. Let A% denote the set of reversals of strings in A; then A® is also
regular. Now
U = char A" = Z Tow
weEAR

is a Z-rational formal series (see, e. g. [SS, Corollary 5.4 (iii)]). Then TOU (the Hadamard
product) is equal to > -, .S(n)7(n), and since Z-rational series are closed under © (see,
e. g. [SS, Theorem 4.4]), the result follows.

Now suppose >+, S(n)7(n) is Z-rational. Then again by the definition of 7 and the
fundamental theorem we have S(n) = AM,x, where w = agay -+ de—1, and ae—1 -+ - ajag
is the standard base—k representation of n. This completes the proof. B
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Theorem 4.3 allows us to use the well-developed theory of Z-rational series to discuss
the properties of k—regular sequences, at least in some cases. We continue this below in
Section V. Now, however, we sketch a description of our machine model.

This model is essentially the same as that first given by Schiitzenberger [Sch]. However,
we repeat the description for completeness.

Let us define what we call a matriz machine. It is a finite-state machine with auxiliary
storage in the form of a column vector v € R;; for some j > 0. Here is how the machine
operates: Suppose we are in state ¢q. Upon reading a symbol a from the input, the machine
first replaces v with Mwv, where M = M(q,a) is a j X j matrix. Then the machine moves
to a new state d(q,a). The output is determined as follows: when the last input symbol is
read, we are in state ¢’. There is a row vector A(¢'), and the output is the scalar A(¢')v.

Now consider the case where the input is the base—k representation of an integer n,
starting with the most significant digit, and the matrix machine computes S(n). We claim
this is precisely the class of k—regular sequences. By Lemma 4.1, this equivalence is easily
seen in the case of 1-state machines. Thus to prove the equivalence it suffices to prove the
following

Theorem 4.4 (Schiitzenberger).

A matrix machine with r states can be simulated by a matrix machine with 1 state.

Proof.

To simplify the exposition we show how to do this in the case where j, the size of the
vectors and matrices involved, equals 1.

The idea is to replace the single element v by a vector v” of size r. All of the entries
of v" will be zero, except for a single entry which equals v. We code the current state
by the position of v inside v’; if it is in position ¢, we are currently in state 7. Instead of
multiplying by M (q, a) we multiply by the matrix PQ, where Q;; = M(q¢i,a),0 <i<r—1,
and P is a permutation matrix defined as follows:

1, if é(q;,a) = q;
P’l’:{o (g.0) = ¢

otherwise.

Finally, A(¢;) is the vector consisting of all ones.
The correctness of the construction is left to the reader. To extend this proof to the
case j > 1, we replace all entries by block matrices. B

Corollary 4.5.
The n-th term of a k-regular sequence can be computed using O(logn) operations,
where an operation is an addition or multiplication of elements in the ring R.

Corollary 4.6.

The n-th term of a k—regular sequence over Z can be computed in time polynomial
in log n.
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Remarks.

o At first glance, our matrix machines would also seem to be similar to the linear
sequential machines (LSM) of Harrison [Harl]. This is not the case, however. Our input
symbols a are chosen from an arbitrary alphabet X, while the LSM model uses k-tuples
chosen from a field. Our model allows a different n x n matrix M(q,a) for every state
q and iput symbol a, whereas the LSM model uses exactly two matrices A and B and
defines a transition by

d(¢q,a) = Aq + Ba.

Our model allows the matrices to contain arbitrary ring elements, whereas the LSM model
uses a field. Finally, in our model we are only interested in the output associated with the
final state, rather than the string of outputs associated with each state visited.

e We mention a connection between (Z, k)-regular sequences with values in Z and
the group I'y(Z) of Morton and Mourant [MM]. Indeed, every sequence {S(n)},>o in
I'v(Z) is k-regular, as it is easily seen that {S(n)}n>0 € I'x(Z) if and only if the sequence
{S(n) — S(|n/k])}n>0 is periodic.

V. The zero-set of a k—regular sequence.
Let {S(n)}n>0 be a k-regular sequence. In this section, we discuss the set

Q= {n|5(n) =0},

or, more precisely, the set Z(.9) of strings of the standard base—k representations of elements
of . We call this set the zero-set of the sequence {S(n)},>0.

We also discuss the set Z(.S), the set of strings of the standard basek representations
of n such that S(n) # 0. (This set is essentially the support of the associated Z-rational
power series.) Note that

Z(S)+Z(S)=€e+ (T —-0)ZF,
where ¥ = {0,1,...,k —1}.
Theorem 5.1. The set Z(5) is simultaneously in logarithmic space and polynomial time.

The set Z(S) is also in the complexity class NC.

Proof.
The first statement follows immediately from results of Lipton and Zalcstein [LZ].
The second statement is left to the reader. W

Theorem 5.2. For fixed k > 2, it is undecidable if a given k-regular sequence {S(n)},>0
has a zero term. In other words, it is undecidable if Z(S) is nonempty.

Proof.
To specify the k-regular sequence S(n), it is necessary to agree on a representation.
We assume we have been given the matrices in Lemma 4.1 or Theorem 2.2 (e).
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As in [SS, Theorem 12.1], we reduce the problem of determining whether or not an
arbitrary multivariate polynomial equation

pler,xq, ... xp)

has a solution in non-negative integers (Hilbert’s tenth problem) to the problem of whether
Z(S) is nonempty. The result will then follow by the celebrated result of Davis-Matijacevié-
Putnam-Robinson [Dav].

Suppose we are given p(x1,xs,...,2,). We encode this equation as a k-regular se-
quence as follows. First, we choose f such that k/ > r + 1. We now represent the variable
z; by ej(n), the number of j’s in the base-k/ expansion of n. Clearly for each r-tuple of
non-negative integers (by,bs,...,b;), there exists an n for which

(ex(n),...,er(n)) = (b1,...,by).

Now S(n) = p(ei(n),es(n),..., e (n)) is k' -regular and its matrix representation can
be computed with a recursive algorithm. But by Theorem 2.9, S(n) is also k—regular;
furthermore, the corresponding matrices are effectively determinable. Clearly Z(S) is
nonempty if and only if p(x1,x2,...,2,) has a solution in non-negative integers. M

Asin [SS, p. 124], we can also give a more explicit example:

Theorem 5.3. There exists a k-regular sequence {S(n)}n>0 such that neither Z(S) nor
Z(S) are context-free.

Proof.

Define S(n) = ei(n)? — eg(n). It is not hard to verify that {S(n)},>o is k-regular.
(Indeed, it will follow from Theorem 6.1.)

Now suppose Z(S) is context-free. Then Z(S)N 110* = {170"" | n > 1} would also
be context-free. But this can easily seen to be false, using the pumping lemma.

Now suppose Z(S) is context-free. Then Ly = Z(S) N 110* = {1"0" | n > 1,r # n?}
would be context-free. By a theorem of Ginsburg and Spanier [GS, Theorem 6.2, Corollary
2], Ly = 1*0* — L would be context free. But Ly N 170" = {170"" | n > 1}, which is not
context-free, a contradiction. MW

VI. Some “Fourier” expansions.

For simplicity, all results and proofs in this section assume k = 2.

We introduce some notation that will be used throughout this section. Let n(y) denote
the string in A = e+ 1(0 + 1)* that represents n in base 2. If s is a string in A, let v(S)
denote the integer represented by s. Let |s| denote the length of the string s. Let A(n) be
the integer obtained from n by deleting the most significant bit of its base—2 expansion.
Let m and n be integers; we write m suff n for the relation: the string m,) is a suffix of

the string n(5). Define E = 1(0 4+ 1)*. Let P € E, and let ep(n) denote the number of
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(possibly overlapping) occurrences of P in the base-k expansion of n. Let xp(n) be the
function that takes the value 1 if P is a suffix of n(y), and 0 otherwise.

Morton and Mourant proved [MM] that any sequence {S(n)}n>o taking values in Z
has a unique expansion as an infinite sum, as follows:

S(n) = S(0) + Y _ S(v(P))ep(n).

Pel

Here the “Fourier” coefficients S(m) are integers. We define S(0) = $(0), and call the
sequence {S(n)}nzo the pattern transform of {S(n)},>o.

In this section, we prove the following result: a sequence is 2-regular if and only if its
pattern transform is 2-regular. First, however, we show that the sequences ep themselves
are 2-regular.

Theorem 6.1.
The sequence {ep(n)}n>0 is 2-regular for any pattern P € E.

Proof.
Let us introduce the following notation: if w = wjws---wj is a string and j < j’,
then
take(j, w) = wiwsy - - w;.

We claim that each element of the 2-kernel can be written as a linear combination of
the sequences ep(2/n + a) for 0 < f < |P] and 0 < a < 2/ and the constant sequence 1.
Proof: Consider an element of the 2-kernel, ep(2/n + a),0 < a < 2/. Then if
f < |P| — 1, this sequence is already in the list above. Otherwise, f > |P|. Then 2/n + a
can be written in base 2 as
n(oa’

where |a'| = f and v(a’) = a. Then
ep(2fn +a) = ep(2|P|_1n +¢) + ep(a),
where ¢ = v(take(|P| —1,a")).
Now the first term on the right is in the list above, and the second term is a constant

multiple of the constant sequence 1. Hence ep(2/n + a) is a Z linear combination of
elements in the list, and this completes the proof. B

Corollary 6.2.
{ep(an + b)},>0 is 2-regular for all a,b > 0.

Theorem 6.3. )
{S(n)}n>o0 is 2-regular if and only if {S(n)}n>0 is 2-regular.

First we prove two lemmas.
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Lemma 6.4.
For all n > 0 we have

S@2n)=Sn)+ Y S(2m)

m>1
m suff n

and

S@n+1)=Sn)+S1)+ Y S@m+1).

m>1
m suff n

Proof.

S(2n) = S(0) + > _ 5(v(P))ep(2n)

P

= S(0) + S(v(1))er(2n) + > S(v(P0))epo(2n) + Y S(v(P1))epr(2n)

= S(0) + 5(L)er(n) + > S(v(P0))epo(n) + > S((P0)zp(n) + > S(u(P1))epi(n)

P

= S(0) + Y _S((P))ep(n) + Y _ S(v(P0))xp(n)

The formula for S(2n + 1) is proved similarly; the extra term S(l) comes from the
fact that

S(v(1))er(2n +1) = S(1)(e1(n) +1) = S(1)es (n) + S(1).

This completes the proof. B

Lemma 6.5.
For all n > 1 we have

~

$(2n) = S(2n) — S(n) — S(2A(n)) + S(A(n)).

For all n > 1 we have

~

S(2n+1) = S(2n +1) — S(n) — S(2A(n) + 1) + S(A(n)).
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Proof.
Notice first that

{m>1|msuff n} ={m >1| (m suff n) and (m # n)} U {n}
={m >1|msuff A\(n)} U{n},

the unions being disjoint.
Hence, using Lemma 6.4, we find

S(2n)—S(n)= Y S(2m)

m>1
m suff n

=S5@n)+ Y 5(2m),

m>1
m suff A(n)

which can be rewritten as:
$(2n) = (5(2n) — S(n)) = (S(2A(n)) = S(A(n))).
The second formula is obtained in a slightly different manner:

S(2n+1) — S(n) = Z S(2m +1

=S@n+ 1)+ 51+ ) S@m+1),

m>1
m suff A(n)

which can be rewritten as:

S(2n+1) = (S(2n +1) = S(n) = 5(1)) — (S(2A(n) + 1) — S(A(n)) — 5(1))
= S(2n+1) - S(n) — S(2A(r) + 1) + S(A(n)).

This completes the proof of Lemma 6.5. B
We are now ready to prove Theorem 6.3:

Proof.
Suppose first that S is 2-regular and let {S; = 5, 9,,...,5;} be a finite set of gener-
ators for the Z—module generated by its 2-kernel. Define

1, ifn=0;
Uln) = {O, otherwise.

Consider the Z-module M generated by the S;(n), the S;(A(n)), and U(n); i. e
M =(51,5,...,5,510X530\,...,5.0\U,S).
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To prove that S is 2-regular, it suffices to prove that for each sequence V(n) contained
in the list of generators for M, the subsequences {V(2n)}n>0 and {V(2n + 1)},,>0 are in
M.

For S1,...,5,, this follows from the 2-regularity of S. By Lemma 6.5,

S(2n) = 5(2n) — S(n) — S(2A\(n)) + S(A(n)) + S(0)U(n),

and so M contains {S(?n)}nzo. Similarly, Lemma 6.5 implies that

~

S(?n +1)=952n+1)—S(n)—S2A(n)+ 1)+ S(A(n)) + S(1)U(n);

hence M contains {S(?n + 1)} n>o.

For S; o A, we have S;(A(2n)) = Si(2A(n)). Similarly,

A(n)+1), ifn>1;
) if n =0,

showing that S;(2A(n) + 1) can be written as a linear combination of generators.

Finally, we see that U(2n) = U(n), and U(2n + 1) = 0, for all n > 0.

Now suppose that S is 2- regular. We wish to see that S is 2-regular.

Let 51 S 52, .. St be a finite set of generators for the Z—module generated by the
2-kernel of S. Then there exist integers a;; and b;; such that

and

Define

and consider the Z-module N generated by S, Ty, Ts, ..., T, and the constant sequence 1.
This module contains S. We must prove for each of the generators V', the sequences
{V(2n)}n>0 and {V(2n + 1)},>0 are in N.
For S, this follows from Lemma 6.4:

S@2n)=Sn)+ Y S(2m)

m>1
m suff n

Z Z ar;5(m

m>1 1< <t

m suff n

=S(n)+ > ay;Ti(n);

1<j<t
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similarly,
S@n+1)=S(n)+S1)+ Y by;Ti(n).
1<5<t

For T;, we have:

T(2n) = ) Si(m)

m>1
m suff 2n

= ) 5i(2k)

k>1
k suff n

= Y a;Ty(n),
1<)<t

and

T2n+1)= > Si(m)
m szg'fzén{—l

=S(1)+ > Si(2k+1)

k>1
k suff n

= Si(1)+ D bi;Ti(n).

1)<t
The result for the constant sequence 1 is left to the reader! M
Remarks.

o C. Reutenauer has pointed out the following simple proof of Theorem 6.3: Let
A={etU{1,2,...,k—1}¥*. Then

S=(S.e)+ > (5, P)AP X"
PeFlE

where L is the characteristic series of L. We have

and so

S=A"(S— (S €)(e—I).

However, it 1s not immediately clear how to obtain the explicit formula in Lemma 6.5 from
this observation.

e It is possible to view Theorem 6.3 as a generalization of results of Choffrut and
Schiitzenberger [CS]. They discussed counting functions similar to our sum

> S((P))ep(n).

Pel
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However, because they restricted their attention to finite automata with counters, they
were forced to put restrictions on the set E.

e Theorem 6.3 is also a generalization of previous results of Allouche, Morton, and

Shallit [AMS].

Our last result concerns the pattern transform of {ep(an +b)},>0. We prove that, in

this case, the coefficients S(m) are bounded and in fact, are k—automatic.

Theorem 6.6.
Let

ep(an +b) = S(0) + > S(v(P))ep(n).

Then S(m) is a 2—automatic sequence.

Proof.

By Corollary 6.2, we know that S(n) = ep(an + b) is 2-regular. Hence by Theorem
6.3, S(n) is 2-regular. By Theorem 2.3, it suffices to show that S takes only finitely many
values. By Lemma 6.5 it suffices to prove that S(n) — S(A(n)) takes ounly finitely many
values.

If n # 0 and s = |n(y|, one has (an + b) — (aX(n) + b) = a(n — A(n)) = a2°~ 1.
Hence an + b and aA(n) + b have the same s — 1 final digits. Let @ be fixed such that
max(a,b) < 2%; then an +b < orts 4 9r ~ 2“’3"'1; hence an + b has at most # + s + 1
digits.

Finally, the numbers an +b and a\(n)+b differ in at most (x+s+1)—(s—1) = 2 +2
digits. Hence, for every P, |ep(an+b) —ep(aX(n)+b)| is bounded by « + 2, and the result
follows. N

VII. Some examples.
Unless otherwise indicated, we assume k = 2 in the examples that follow. Sequence
numbers refer to Sloane’s book [S]].

Example 1.

By Theorem 6.1, we know the sequence {e1(n)},>0 is 2-regular. In fact, it satisfies
the relations e1(2n) = ey1(n); e1(2n + 1) = e;(n) + 1. Hence its 2-kernel is generated by
e1(n) and the constant sequence 1. (This is Sloane’s sequence #41.)

Example 2.

Define A(n) = El<j<n e1(j), the total number of 1’s in the base—2 expansion of the
first n integers. Then A(n) is 2-regular by the remark after Theorem 3.1. A(n) has been
extensively studied in the literature ([BS], [CL], [CY]). It is Sloane’s sequence #360.
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Example 3.
Consider the sequence

{e(n)}nzo = 0,2,6,8,18,20, 24, 26,54, 56, . . .,

which lists the numerators of the left endpoints of the Cantor set. (Alternatively, these are
the integers whose base—3 representations contain no 1’s; see [MFP].) Then it is easy to
see that ¢(2n) = 3¢(n) and ¢(2n 4+ 1) = 3¢(n) + 2. Hence it is 2-regular. (Note, however,
that its characteristic sequence 101000101 - - - is actually 3—automatic.)

For a more general perspective on such sequences, see [Mah?2].

Example 4.

The sequence e1(3n) has been studied extensively by Newman, Slater, and Coquet
([N], [NS], [Coq]). By Corollary 5.2 it is 2-regular. By Theorem 6.6 it has a 2-automatic
pattern transform. In fact, we find

e1(3n) = 2e1(n) — 2e11(n) + e111(n) — 2e1011(n) + e11011(n) — 2€101011(R) + €1101011(R) — - -

e 261(71) — 22 6(10)1’11(”) —I_ Z 611(01)1'1(71).

i>0 i>0

This expansion gives an alternative explanation to the observation [N] that the first few
values of e1(3n) are almost all even. See [AMS].

Example 5.

Let j be an integer > 0. The sequence {n?},>¢ is 2-regular, as the module generated
by its 2-kernel is generated by the constant sequence 1 and the sequences {n},>0, {n*},>0,
e ey {n]}nzo.

From Theorem 6.3, we know the corresponding pattern transforms are 2-regular.
Using Lemma 6.5, we find:

n=ei(n)+eo(n) +er1(n) +2(e100(n) + -+ + e111(n))
+ 4(e1000 + - -+ e1111(n)) + 8(e10000(n) + -+ + €11111(R)) + - -

Example 6.

Let w® denote the reverse of the string w. Consider the map which takes every integer
to the integer represented by the reverse of its base—2 representation, i. e. r(n) = v(ng)).
Then it is not difficult to show that [IMO] r(2n) = r(n), r(4n 4+ 3) = 3r(2n + 1) — 2r(n),
r(8n+1) =3r(4n+1) —2r(2n 4+ 1), and r(8n + 5) = 5r(2n 4+ 1) — 4r(n). Hence it follows
that the module generated by the 2-kernel of {r(n)},>o is generated by its subsequences
{r(n)}n>0, {r(2n 4+ 1)}n>0, and {r(4n +1)}n>o.

Example 7.
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Let d(0) =0, d(1) =1, d(2n) = d(n), and d(2n + 1) = d(n) 4+ d(n + 1). This sequence
forms the numerators of the entries in the Stern-Brocot tree (see [St], [GKP]). It was also
studied by de Rham [R] and is Sloane’s sequence #56. The first few terms are

0,1,1,2,1.3,2,3,1,4,3,5,2,5,3.4, ...

It is easy to see that d(4n +1) = d(n)+d(2n+ 1), and d(4n + 3) = 2d(2n+ 1) — d(n), and
it follows that d is 2-regular. Also see [Dij, pp. 215-216, 230-232].

A similar sequence is given by a(0) = 0, a(1l) = 1, a(2n) = a(n), and a(2n + 1) =
a(n +1) — a(n). It satisfies a(4n + 1) = a(2n + 1) — a(n) and a(4n + 3) = a(n) and hence
is 2-regular. See [Rezl], [Rez2].

Example 8.

Define v2(n) to be the exponent of the highest power of 2 that divides n. (This is
essentially Sloane’s sequence #51.) Then if h(n) = v2(n + 1), we see that h(2n) = 0 and
h(2n 4+ 1) = h(n) 4+ 1. Thus {h(n)},>0 is 2-regular.

Using Lemma 6.4, we find

ve(n+1) =e1(n) — (e10(n) + e110(n) + e1110(n) + -+ -).

Example 9.
Using the remark after Theorem 3.1, we see that v2(n!) = 3°, ., v2(j) is 2-regular.

Example 10.
Let the binary expansion of an integer n be written as

> bi(n)2,
i>0

where b; € {0,1}. Define g(n) = > .o,(i + 1)b;(n). Then it is easy to see that g(2n) =
g(n) + e1(n) and g(2n +1) = g(n) + e1(n) + 1. Hence {g(n)}n>0 is 2-regular.

Using Lemma 6.4, we can compute the pattern transform of g(n). We find

gln)= > ep(n).

Pe1(04+1)*
Example 11.
Let f(n) = |n(l, i. e.

0, if n=0;
f(n):{l—l—tlogznj, if n>1.

Then we easily see that f(2n+1) = f(n)+1, f(4n) = 2f(2n)— f(n), and f(4n+2) = f(n)+
2. Hence the module generated by its 2-kernel is generated by {f(n)}n>0, {f(2n)}n>0,
and the constant sequence 1. Using Lemma 6.4, we find

f(n) =ei(n) + ero(n) + e100(n) + e1000(n) + - - -
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Example 12.

Let {B(n)}n>0 be the sequence 0,3,5,6,9,10,12,15,..., the integers whose base-2
representation contains an even number of 1’s. (This is Sloane’s sequence #952). Let
u(n) = e;(n) mod 2; then u(n) is the classical Thue-Morse sequence and 1 — u(n) is
the characteristic sequence of B(n). We easily prove that B(2n) = 2B(n) — u(n) and
B(2n +1) =2B(n) + 3(1 — u(n)); hence B is 2-regular.

Example 13.

Let {C(n)}n>0 be the sequence of Moser-de Bruijn ([Mos], [B2]): 0,1,4,5,16,17,20,21, ...

It consists of integers that can be written as the sum of distinct powers of 4. This is Sloane’s
sequence #1315. Note that C'(2n) = 4C(n) and C(2n + 1) = 4C(n) 4 1; hence C is 2—-
regular. See [LMP]. In [BM] it is shown that the characteristic sequence of C(n) gives a
binary number such that its binary expansion and the binary expansion of its reciprocal
are explicitly known. Its continued fraction is also explicitly known.

Similarly, the sequence of Lozton-van der Poorten [LP1]

0,1,3,4,5,11,12,13,15,16,17,19, 20,21, 43. 44, . ..

of positive integers that can be represented in base 4 using only the digits —1,0,1 is
3-regular.

Example 14.

Let G(n) = 291" This is Gould’s sequence [G], and Sloane’s sequence #109. Tt
satisfies G(2n) = G(n); G(2n 4+ 1) = 2G(n) and hence is 2-regular.

Glaisher [G]] showed that G(n) counts the number of odd binomial coefficients in row
n of Pascal’s triangle.

More generally, let p be a prime and let G,(n) be the number of binomial coefficients
in row n of Pascal’s triangle which are not divisible by p. Then Fine [Fi] showed that

Gp(n) = JJ (ai+1)

0<i<e

where the base—p expansion of n is acac—1 - - - ajag. Of course, G,(n) is p-regular.
Now put Hy,(n) = > jcp<, Gp(k). Then H,(n) is also p-regular. The sequences
Hz(n),
1,3,5,9,11,15,19,27,29,33,37,45,49,57, ...

and Hs(n),
1,3,6,8,12,18, 21,27, 36, 38, 42, 48, 52, 60, 72, . ..

appear in [LM]. Also see [HLVVM], [LMVV].

Example 15.
Let {b(n)},>0 be the sequence of numbers represented by binary Gray code [Gr], [Gi]:

0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8, - - -
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Then it is easy to see that b(4n) = 2b(2n), b(dn+1) = 2b(2n)+1, b(4n+2) = 2b(2n+1)+1,
and b(4n 4 3) = 2b(2n + 1). Hence {b(n)},>0 is 2-regular.

Similarly, if v(n) denotes the sum of the bits in the Gray code representation of n,
then we find v(2n 4+ 1) = 2v(n) —~v(2n) + 1; v(4n) = v(2n); and v(4n+2) = v(2n + 1) + 1.
Hence {y(n)},>0 is 2-regular. See [FR].

Example 16.

Consider the sequence of lattice points (#(n),y(n)) traced out by paperfolding curves
with an ultimately periodic sequence of unfolding instructions [DMFP, MFS]. Then {z(n)}»>0
and {y(n)},>0 are 2-regular.

For example, consider the sequence of lattice points (x(n),y(n)) traced out by the
space-filling curve with unfolding instructions RLRLRL - - -.

n =0123456789101112131415---
¢(n)=00110011223 3 2 2 1 1 ---
yn)=01122332233 4 4 3 3 4 --.

Then the sequences satisfy the identities x(0) = 0, x(2) = 1, 2(2n + 1) = z(2n),
x(4n) = 2x(n), (8n 4+ 2) = —2x(n) +22(2n) + x(4n +2), 2(16n +6) = 2x(n) + x(4n + 2),
¢(16n + 14) = 22(2n) + 22(4n 4+ 2) — 2(8n + 6), and y(0) = 0, y(1) = 1, y(4n) = 2y(n),
y(dn + 1) = y(4n + 2) = 2y(n) —y(2n) + y(2n + 1), y(8n + 3) = y(8n + 7) = 2y(2n + 1).

Example 17.
Van der Corput’s sequence a(n) is defined as follows [Cor]: if

where b; € {0,1}, then

We see that ¢2(0) = 0, p2(2n) = Lp2(n), and ¢2(2n + 1) = £ + Tpa(n). Hence the
sequence of rational numbers p2(n) is (Q,2)-regular.

Also note that @o(n) = #(n)/2/(™ where r(n) is the sequence of Example 6 and f(n)
is the sequence of Example 11.

Halton [Hal] generalized van der Corput’s sequence to bases b > 2.

Example 18.

Let
1 n
1-X)(1-X2)--(1-X7) > Pi(n)X™.

n>0

Then P;(n) enumerates the number of partitions of n into j or fewer parts. The sequence
Ps(n) is Sloane’s sequence #186; Py(n) is sequence #229; Ps(n) is sequence #237, and
Ps(n) is sequence #243.
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By Theorem 3.3, P;(n) is k—regular for all j > 1 and all k¥ > 2. Note, however, that
the function Po(n) = lim;_, o P;(n), which counts the number of unrestricted partitions,
i1s not k-regular, as it grows too quickly. Hence k—regular sequences are not closed under
taking simple limits.

Example 19.

Let w = wowjws - - - be an infinite word over a finite alphabet, and define s,,(n) to be
the number of distinct subwords (European terminology: factors) of length n in w. Then
Sw(n) — syu(n —1) is frequently k—automatic, and hence in these cases, s,,(n) is k—regular.
For example, this is true when w is the fixed point of the Toeplitz substitution given by
0 — 0010 and 1 — 1010 [Rau]; when w is the infinite word of Thue-Morse, the fixed point
of the substitution given by 0 — 01 and 1 — 10 [Br]] [LV]; and in a more general class of
infinite words given by iterated homomorphisms discussed by Tapsoba [Tap].

Example 20.
It is well-known that n is a sum of three squares if and only if n is not of the form
4%(8k 4 7). It is easily seen that the sequence

Hn) = {0, if n =48k +7);

1, otherwise,

is 2—automatic. Hence the sequence

which counts the number of positive integers < n that are the sum of three squares, is

2-regular. See [Sh], [OS], [W].

Example 21.
An addition chain to n is a sequence of pairs of positive integers

(al,bl), (az,bz), ceey (ar,br)

where (i) a, + b, = n and (ii) for all s, either as; = 1, or as = a; + b; for some i < s, and
the same holds for b,. The cost of the addition chain is ), ..., a;b;. Denote the cost of
the minimum cost addition chain to n as ¢(n). Then it can be shown [GYY] that ¢(1) = 0,
and ¢(2n) = ¢(n) + n?, e(2n+1)=c(n)+ n? 4+ 2n for n > 1. Hence ¢(n) is 2-regular.

Example 22.
Define b(d;n) as the number of representations

n = Zeﬂi,

i>0

29



where 0 < ¢; < d. Then b(2;n) = 1, b(3;n) = d(n + 1), where d(n) is the sequence of
Example 7, and b(4;n) = 1 + |n/2]. (See [Rez3]). It is possible to show that b(d;n) is
2-regular for all d > 1. However, b(co;n) = limg_, o b(d; n) is not k-regular, as it is known
that

log b(oo;n) ~ (log n)?.

log 4
(See [Mah], [B1], [Kn1]). Note that if f(X) =3 . (~1)=MX" and g(X) =, 5, b(oo;n) X",
then 1/f(X) = g(X?)(1 + X), which shows that f(X) is not invertible in the ring of 2—
regular power series. P. Dumas has pointed out [Dum] that the sequence {b(co;n) mod
2M}n20 i1s 2—automatic for all M > 0.

Example 23.
Let v3(n) denote the exponent of the highest power of 3 that divides n, and s3(n)
denote the sum of the digits of n when expressed in base 3.
Define r(n) = > gc;cn (2;) Then vs(r(n)) is 3—regular. This follows from the (not-
so-trivial) fact that
2n

wa(r(a) = val () + 2040

and the (trivial) fact that

See [SS2].

Example 24.
As in Section VI, let

0, if n=0;
Aln) = {n —2llogzn] i 5 > 0.

Then A. Liao (personal communication) asked for the solution T'(n) to the recurrence
T(n) = A(n) +T(A(n)),

where f(0) = 0. We see that T'(n) is 2-regular, as the identities T'(2n) = 2T (n), T(4n+1) =

2T(n) 4+ T(2n 4+ 1), and T'(4n + 3) = —2T(n) + 3T(2n 4+ 1) + 1 can easily be verified by

induction.
T(n) also has the following pleasant expansion as a sum of pattern sequences:

T(n)= > [@W ep(n).

v(P)>3
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Example 25.
The earliest reference to a non-trivial class of k-regular sequences we have found is
from an 1822 paper of Charles Babbage [Bab], in which he discusses sequences such as

A%y, = Up41 mod 10,

“which is one of a class of equations never hitherto integrated.” By considering both sides
(mod 10), we see that the sequence {u,, mod 10}, >¢ is ultimately periodic and therefore
uy 1s k—regular for all k& > 2. This sequence was deemed to have “no intrinsic mathematical

significance” by Dubbey [Dub, pp. 182].

Example 26.

Let e(0) = 0, e(1) = 1, and define e(n) to be the least integer greater than e(n — 1)
such that the sequence e(0),...,e(n) contains no three terms in arithmetic progression.
The first few terms of this sequence are

0,1,3,4,9,10,12,13,27, 28,30, 31, 36, 37, 39, 40,81, . ..

and in general the sequence consists of numbers that can be written as distinct powers of
3. (Compare Example 13.) We have ¢(2n) = 3e(n) and e¢(2n 4 1) = 3e(n) + 1, and so e(n)
is 2-regular. See [ET] and [Guy, p. 114].

Example 27.
Let k be an integer > 2, and put

Then fi(n) is k—regular. In fact, we have

kUng n|+1 _ L
k-1

fr(n) = (n+1)[log,n] —
See [Kn3, Section 1.2.4, Exercise 42 (b) |.

The number of comparisons required to sort n items in many sorting algorithms forms
a 2-regular sequence. The following examples illustrate this:

Example 28.

Merge sort, given a list of n integers, proceeds as follows: first the left half of the list
is sorted (recursively), then the right half is sorted, and finally the two halves are merged
together. The number of comparisons needed to merge sort n items is given by T(1) = 0,
and

T(n) =T([n/2]) + T([n/2]) + n -1,

for n > 2, and it is not difficult to see that T'(n) is a 2-regular sequence.
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The resulting sequence
0,1,3,5,8,11,14,17,21, ...

is Sloane’s sequence #963. It was discussed by Levitt, Green, and Goldberg [LGG], who

gave the following closed form:
T(n) = nflogyn] — ollogonl | 1
Also see [Kn2, Section 5.3.1, Equation (3)].

Example 29.
Let ¢(n) denote the number of key comparisons used to sort n elements by Batcher’s
method (see, for example, [Knu2, Section 5.2.2]). The first few terms of this sequence are

0,1,3,5,9,12,16,19, 26, 31,37, 41, 48, 53,59, 63, . ..

Define a(n) = ¢(n + 1) — ¢(n). Then it is shown in [Knu2, Section 5.2.2, Exercises 14, 15]
that a(2n) = a(n) + |log,(2n)]; a(2n + 1) = a(n) + 1 and hence a(n) is 2-regular. Hence

¢(n) is 2-regular.

Example 30.
Let F(n) denote the number of key comparisons in Ford-Johnson sorting. Here are
the first few values of this sequence:

0,1,3,5,7,10,13,16,19, 22,26, 30, 34, 38, 42,46, 50, . ..
It is Sloane’s sequence #954. A. Hadian showed that

Fn)= 3 flog, >

1<k<n

see [Kn2, Section 5.3.1]. It is easy to show that [log, n] is a 2-regular sequence. Then by
Theorem 2.6 [log, 3n| — 2 = [log, 3n/4] is 2-regular. Finally, by Theorem 3.1, F(n) must
be 2-regular. Knuth [Kn2, Section 5.3.1, Exercise 14] gives the following “closed form” for
F(n):

3n oz 61 1
F(n) = n[logy —~] — 21521 /3] 4 | - log, 6n).

Example 31.
Let k(n) denote the maximum number of key comparisons used by list-merge sorting;
see [Kn2, Section 5.2.4]. Here are the first few terms of this sequence

0,1,3,5,9,11,14,17, 25,27, 30, 33, 38,41, 45,49, . ..
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Then it is known that if the binary representation of n is
261 _|_2f’32_|__,__|_2€t7

then
k(n)=1-24 > (e +k—1)2°.
1<k<t

(See [Kn2, Section 5.2.4, Exercises 14]).
From this it is easy to see that k(2n) = 2k(n) +2n — 1 for n > 1 and k(2n + 1) =
E(2n) 4+ e1(n) + ov2(m)+1 _ 1 for n > 1. Hence k(n) is a 2-regular sequence.

Example 32.

Similarly, the number of comparisons needed in many merging algorithms forms a 2—
regular sequence. For example, let M (m,n) denote the minimum number of comparisons
to merge m things with n. Then

M(1,n) = [logy(n +1)]

and . 4

M(2,n) = [logy 75 (n +1)] + [log, =(n +1)].
(See [Kn2, Section 5.3.2].) While M(1,n) is easily seen to be 2-regular, we can prove that
M(2,n) is 2-regular using Theorems 2.6 and 2.7.

Example 33.
In analysis of a greedy heuristic for a matching problem, Reingold and Tarjan [RT]
define a function f(n) for positive even arguments, and write

fy =, min | {af) £ F 1)
ath—e:\y/e—nﬁ>0
B>1—a—B>0

Later they show that

[ 2f(n), if n is even;
f(2n) = { gf(”‘|‘1)‘|‘%f(”_1)v if n 1s odd.

They also give the following explicit form for f(2n):

fn)y=1- ) 3fsrl,

2<i<n

It follows from this that f(2n) is a (Q,2)-regular sequence. The first few values of this
sequence are:

1,2/3,5/9,4/9,11/27,10/27,1/3,8/27, - - -
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Example 34.

The Josephus problem is as follows: the numbers from 1 to n are written in a circle.
Starting with the number 1, every 2nd number that remains is crossed off until only one
is left. The “survivor” is denoted J(n). The first few values of .J(n) are as follows:

1,1,3,1,3,5,7,1,3,5,7,9,11,13,15, - - -

This problem was discussed by Graham, Knuth, and Patashnik [GKP, pp. 8-16], who
observed that J(2n) = 2J(n) — 1 and J(2n + 1) = 2J(n) + 1 for n > 1. It follows that
J(n) is 2-regular.

The same problem, where 2 is replaced by k and the result is the first uncrossed-
off number encountered when there are only k& — 1 numbers left, does not appear to be
k-regular in general. See [GKP, pp. 79-81].

We are grateful to P. Dumas for pointing out this example.

Example 35.
We show that the sequence of primes {p(n)},>0

2,3,5,7,11,13,17,19,23,29,. 31,37, ...

is not k-regular. Suppose it were. Then using Lemma 4.1, we see that {p(k™)}, >0 must
satisfy a linear recurrence. Then if

kn
lim p(k")

n—oo nkm

exists, it must be an algebraic number. But from the prime number theorem,

kn
lim p(k")

n—oo nkm"

= logk,

which is transcendental, a contradiction.

VIII. Some Open Problems.

1. Let R = Q). Prove that if {S(n)},>0 is ki-regular and ko-regular, and k; and k,
are multiplicatively independent, then the associated power series > -, S(n)X"™ € Q[[X]]
is a rational function. In the case where R’ is finite, this is a result of Cobham [Cob2].

2. Determine all the units of the ring of k-regular power series.

3. Obtain transcendence results for the real numbers > -, S(n)p™", where S(n) is
p-regular and > ., S(n)X" is not a rational function. See [LP2].
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