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Abstra
t.

The automati
 sequen
e is the 
entral 
on
ept at the interse
tion of formal language

theory and number theory. It was introdu
ed by Cobham, and has been extensively studied

by Christol, Kamae, Mend�es Fran
e and Rauzy, and other writers. Sin
e the range of

automati
 sequen
es is �nite, however, their des
riptive power is severely limited.

In this paper, we generalize the 
on
ept of automati
 sequen
e to the 
ase where the

sequen
e 
an take its values in a (possibly in�nite) ring R; we 
all su
h sequen
es k{regular.

(When R is �nite, we obtain automati
 sequen
es as a spe
ial 
ase.) We argue that k{

regular sequen
es provide a good framework for dis
ussing many \naturally{o

urring"

sequen
es, and we support this 
ontention by exhibiting many examples of k{regular

sequen
es from numeri
al analysis, topology, number theory, 
ombinatori
s, analysis of

algorithms, and the theory of fra
tals.

We investigate the 
losure properties of k{regular sequen
es. We prove that the set

of k{regular sequen
es forms a ring under the operations of term-by-term addition and


onvolution. Hen
e the set of asso
iated formal power series in R[[X℄℄ also forms a ring.

We show how k{regular sequen
es are related to ZZ{rational formal series. We give a

ma
hine model for the k{regular sequen
es. We prove that all k{regular sequen
es 
an be


omputed qui
kly.

Let the pattern sequen
e e

P

(n) 
ount the number of o

urren
es of the pattern P in

the base{k expansion of n. Morton and Mourant showed that every sequen
e over ZZ has a

unique expansion as a sum of pattern sequen
es. We prove that this \Fourier" expansion

maps k{regular sequen
es to k{regular sequen
es. (This 
an be viewed as a generalization

of results of Cho�rut and S
h�utzenberger, and previous results of Allou
he, Morton, and

Shallit.) In parti
ular, the 
oeÆ
ients in the expansion of e

P

(an + b) form a k{automati


sequen
e.

Many natural examples and some open problems are given.
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x Resear
h supported in part by NSF Grant CCR-8817400, the Wis
onsin Alumni Resear
h

Foundation, and a Walter Burke award from Dartmouth College.
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I. Introdu
tion.

Let fS(n)g

n�0

be a sequen
e with values 
hosen from a �nite set �. Then fS(n)g

n�0

is said to be k{automati
 if, informally speaking, S(n) is a �nite-state fun
tion of the

base{k expansion of n.

Automati
 sequen
es have been studied by Cobham [Cob℄, Christol, Kamae, Mend�es

Fran
e and Rauzy [CKMR℄, and others. (For example, see [DMFP℄, [Mau℄, and the survey

paper of Allou
he [A1℄.) There are many other ways to 
hara
terize automati
 sequen
es.

For example, 
onsider the following

De�nition 1.1.

The k{kernel of a sequen
e is the set of all subsequen
es of the form fS(k

e

n+a)g

n�0

,

where e � 0 and 0 � a < k

e

.

Cobham [Cob℄ proved the following

Theorem 1.2.

A sequen
e is k{automati
 if and only if its k{kernel is �nite.

Unfortunately, the range of automati
 sequen
es is ne
essarily �nite, and this restri
ts

their des
riptive power.

In this paper, we are 
on
erned with a natural generalization of automati
ity to the


ase where the sequen
e fS(n)g

n�0

takes its values in a (possibly in�nite) ring; we 
all

su
h sequen
es k{regular. (Another generalization of automati
 sequen
es was already

given by Allou
he [A4℄.) We use an analogue of Theorem 1.2 as our de�nition. We show

that k{regular sequen
es provide an ex
ellent framework for des
ribing many \naturally

o

urring" sequen
es, su
h as the numerators of the left endpoints of the Cantor set, the

sequen
e f�

p

(n!)g

n�0

, whi
h 
ounts the number of times a prime p divides a fa
torial, bi-

nary Gray 
ode, numerators of entries of the Stern-Bro
ot tree, multipli
ative-
ost addition


hains, et
.

We prove that k{regular sequen
es have ni
e 
losure properties. By asso
iating a

formal power series with ea
h sequen
e, we prove that the set of k{regular sequen
es forms

a ring, but not a �eld, under the usual power series operations.

We explore the 
onne
tion with a ma
hine model of S
h�utzenberger [S
h℄, whi
h in-


ludes �nite automata with 
ounters as a spe
ial 
ase. This allows us to prove that the

n-th term of a k{regular sequen
e 
an be 
omputed in time polynomial in log n.

We introdu
e the pattern sequen
es e

P

(n), whi
h 
ount the number of o

urren
es

of the string P in the base{k expansion of n. Morton and Mourant [MM℄ showed that

every sequen
e fS(n)g

n�0

over ZZ has a unique expansion as a sum of pattern sequen
es.

In analogy with the Fourier transform, we 
all this sequen
e of 
oeÆ
ients f

^

S(n)g

n�0

the

pattern transform of fS(n)g

n�0

. We show that a sequen
e is k{regular if and only if its

pattern transform is k{regular. This 
an be viewed as a generalization of results of Cho�rut

and S
h�utzenberger [CS℄ and previous results of the authors and P. Morton [AMS℄.

Finally, we give many examples and some open problems.
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II. k{regular sequen
es: de�nition and properties.

Let R

0

be a 
ommutative Noetherian ring, i. e. a ring in whi
h every ideal is �nitely

generated. (Examples of su
h rings in
lude all �nite rings, ZZ, all �elds K, and the poly-

nomial rings K[X℄.) Let R be a ring 
ontaining R

0

.

Let S(R) denote the set of sequen
es with values in R. Let fS(n)g

n�0

be a sequen
e

with values in R, and let k be an integer � 2.

De�nition 2.1.

We say fS(n)g

n�0

is (R

0

; k){regular if there exist a �nite number of sequen
es S

1

; S

2

; : : : ; S

j

with values in R, su
h that ea
h sequen
e in the k{kernel of fS(n)g

n�0

is an R

0

{linear


ombination of the S

i

.

Let K denote the k{kernel of fS(n)g

n�0

. Then fS(n)g

n�0

is (R

0

; k){regular means

that

hKi � hS

1

; S

2

; : : : S

n

i;

i. e. hKi is a sub-module of a �nitely generated R

0

{module. By a well-known theorem

(see, e. g., [Lan, pp. 142{144℄), it follows that hKi itself is �nitely generated.

Thus De�nition 2.1 
an be restated as follows: a sequen
e fS(n)g

n�0

with values

in R is (R

0

; k){regular if the R

0

{module generated by its k{kernel is a �nitely generated

R

0

{submodule of S(R).

If the 
ontext is 
lear, we usually write just k{regular.

Note that if R

0

is a �nite ring, then we re
over the 
ase of k{automati
 sequen
es. For

if every subsequen
e in the k{kernel 
an be written as an R

0

{linear 
ombination of a �nite

set of sequen
es, then there are only a �nite number of distin
t elements of the k{kernel.

In fa
t, the same holds for sequen
es that take on only �nitely many values (see Theorem

2.3 below).

The reader may now wish to look at Se
tion VII for some examples of k{regular

sequen
es.

Our �rst theorem gives several alternative 
hara
terizations of k{regular sequen
es:

Theorem 2.2.

The following are equivalent:

(a) fS(n)g

n�0

is (R

0

; k){regular;

(b) The R

0

{module generated by the k{kernel of fS(n)g

n�0

is generated by a �nite

number of its subsequen
es of the form S(k

f

i

n+ b

i

) where 0 � b

i

< k

f

i

;

(
) There exists an integer E su
h that for all e

j

> E, ea
h subsequen
e S(k

e

j

n+ a

j

)

with 0 � a

j

< k

e

j


an be expressed as an R

0

{linear 
ombination

S(k

e

j

n+ a

j

) =

X

i




ij

S(k

f

ij

n+ b

ij

);

where f

ij

� E and 0 � b

ij

< k

f

ij

;

(d) There exist an integer r and r sequen
es S = S

1

; S

2

; : : : ; S

r

, su
h that for 1 � i � r,

the k sequen
es fS

i

(kn+ a)g

n�0

, 0 � a < k, are R

0

{linear 
ombinations of the S

i

;
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(e) There exist an integer r, r sequen
es S = S

1

; S

2

; : : : ; S

r

, and k matri
esB

0

; B

1

; : : : ; B

k�1

in M

r;r

(R

0

) su
h that if

V (n) =

0

B

�

S

1

(n)

.

.

.

S

r

(n)

1

C

A

;

one has V (kn+ a) = B

a

V (n) for 0 � a < k.

Proof.

(a) ) (b): Let K denote the k{kernel of S(n). Then hKi, the module generated by

K, is �nitely generated, so there exist sequen
es S

1

; S

2

; : : : ; S

k

su
h that

hKi = hS

1

; S

2

; : : : ; S

k

i:

But then ea
h S

i

is ne
essarily a �nite linear 
ombination of elements from K, and there

are only �nitely many S

i

, so hKi is generated by only �nitely many members of K.

(b) ) (
): Let the k{kernel of fS(n)g

n�0

be generated by a �nite set of its subse-

quen
es of the spe
i�ed form, say

S(k

f

i

n+ b

i

)

for 1 � i � i

0

. Let E = max

1�i�i

0

f

i

. Then for all e

j

> E, we 
an write

S(k

e

j

n+ a

j

) =

X

i




ij

S(k

f

ij

n+ b

ij

);

where f

ij

� E and 0 � b

ij

< k

f

ij

:

(
) ) (d): Take as the r sequen
es the set K of subsequen
es S

i

(n) = S(k

f

i

n + b

i

)

with 0 � f

i

� E and 0 � b

i

< k

f

i

. Then

S

i

(kn+ a) = S(k

f

i

(kn+ a) + b

i

) = S(k

f

i

+1

n+ ak

f

i

+ b

i

);

whi
h, if f

i

+ 1 � E, is an element of K, and if f

i

+ 1 > E, is a linear 
ombination of

elements of K.

(d) ) (e): Follows trivially.

(e) ) (a): We need to see that S(k

e

n+ a) is a linear 
ombination of the S

i

. Express

a in base k (possibly with leading zeroes) as

X

0�i<e

a

i

k

i

;

then it is easy to see that

V (k

e

n+ a) = B

a

0

B

a

1

� � �B

a

e�1

V (n);

and this expresses S(k

e

n+ a) as a linear 
ombination of the S

i

.
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Remarks.

� Note that in parts (d) and (e) of the theorem, the sequen
es S

i


an be taken to be

in the k{kernel of S.

� Part (e) of the theorem gives a substitution-like de�nition, whi
h 
an be 
ompared

to the linear k{substitutions of Liardet [Li℄, whi
h generate exa
tly the k{automati
 se-

quen
es.

� The dimension of the R

0

{module generated by the k{kernel is an invariant that may

be interpreted as a measure of 
omplexity of the sequen
e fS(n)g

n�0

.

� We note that every ultimately periodi
 sequen
e is (R

0

; k){regular for all R

0

and k.

Our next theorem illustrates a 
onne
tion between k{regular sequen
es and k{automati


sequen
es:

Theorem 2.3.

A sequen
e is (R

0

; k){regular and takes on only �nitely many values if and only if it

is k{automati
.

Proof.

If a sequen
e is k{automati
, it is by de�nition �nitely valued, and sin
e its k{kernel

is �nite, it generates a �nitely generated module.

Now suppose S(n) is k{regular and takes on �nitely many values. From Theorem 2.2

(e), there exist sequen
e S = S

1

; S

2

; : : : ; S

r

(whi
h 
an be taken in the k{kernel of S) and

matri
es B

0

; B

1

; : : : B

k�1

su
h that

V (n) =

0

B

B

�

S

1

(n)

S

2

(n)

.

.

.

S

r

(n)

1

C

C

A

satis�es V (kn+ a) = B

a

V (n) for 0 � a < k and n � 0. Let V be the (�nite) set of values

of fV (n)g

n�0

, and de�ne the k{homomorphism � by �(v) = w

0

w

1

� � �w

k�1

, where v 2 V

and w

a

= B

a

v for 0 � a < k. Then the in�nite word

V (0)V (1)V (2) � � �

is a �xed point of � and S

1

(n) is an image of this �xed point. Hen
e S(n) is k{automati
.

Corollary 2.4.

If S(n) is (ZZ; k){regular, then for all m � 1, fS(n) modmg

n�0

is k-automati
.

Remark.

The 
onverse does not hold. Let S(n) = 2

n

and use Theorem 2.11 below.

We now investigate the 
losure properties of k{regular sequen
es:
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Theorem 2.5.

Let fS(n)g

n�0

and fT (n)g

n�0

be k{regular sequen
es. Then so are S + T = fS(n) +

T (n)g

n�0

, �S = f�S(n)g

n�0

, and ST = fS(n)T (n)g

n�0

.

Proof.

Let S

1

= S;S

2

; : : : ; S

r

(respe
tively T

1

= T; T

2

; : : : ; T

r

) be a system of generators for

the module generated by the k{kernel of S (respe
tively T ). Then it is easy to see that

the r + r

0

sequen
es S

1

; : : : ; S

r

; T

1

; : : : ; T

r

0

generate the module generated by the k{kernel

of S + T . Similarly, the rr

0

sequen
es S

i

T

j

, 1 � i � r, 1 � j � r

0

generate the module

generated by the k{kernel of ST . Finally, the sequen
es �S

i

, 1 � i � r, generate the

module generated by the k{kernel of �S.

Remarks.

We observe that some simple transformations do not preserve k{regularity.

� Let S(n); T (n) be (ZZ; k){regular sequen
es with T (n) 6= 0 for all n. Then the

sequen
e S=T = fS(n)=T (n)g

n�0

need not even be (1Q; k){regular.

For example, de�ne T (2n) = n + 1, T (2n + 1) = T (n) + 1 for n � 0. De�ne T

j

(n) =

T (2

j

n+ 2

j�1

� 1). Then it is easy to see that T

j

(n) = n+ j for j � 1.

Suppose 1=T (n) were (1Q; 2){regular. Then the module generated by the sequen
es

1=T

1

(n); 1=T

2

(n); 1=T

3

(n); : : :

would have �nite rank. Then for some m � 1, the m�m matrix M

ij

de�ned by

M

ij

= 1=T

j

(i � 1) = 1=(i + j � 1);

1 � i; j � m, would have determinant 0. But M

ij

is a Hilbert matrix and is well-known

to have nonzero determinant, a 
ontradi
tion, and the 
on
lusion follows.

� We note that k{regular sequen
es are not 
losed under absolute value (and hen
e

not 
losed under max and min). Consider the fun
tion f(n) = e

0

(n)� e

1

(n), where e

0

(n)


ounts the number of 0's in the binary expansion of n, and e

1

(n) 
ounts the number of 1's

in the binary expansion of n. It is easily veri�ed that e

0

(n) and e

1

(n) are k{regular; hen
e

so is f(n). But jf(n)j is not k{regular. For we have

f(2

j

n) = je

0

(n) � e

1

(n) + jj

for n � 1 and j � 0. Now suppose there were a linear dependen
y among these subse-

quen
es; i. e. there exist a, b su
h that

jn+ aj =

X

a+1�i�b




i

jx+ ij

for all integers n. For n � �(a + 1) the right side is of the form An + B and hen
e

monotone; but the left side is not, a 
ontradi
tion.

� We also note that k{regular sequen
es are not 
losed under 
omposition. As men-

tioned above, e

1

(n), the number of 1's in the binary expansion of n, is 2{regular, as is the
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fun
tion f(n) = n

2

. However, the 
omposition e

1

(f(n)) = e

1

(n

2

) is not 2{regular; if it

were, then by Corollary 2.4, e

1

(n

2

) mod 2 would be 2{automati
. However, e

1

(n

2

) mod 2

is not 2{automati
, by results of Allou
he [A2℄.

In the next theorem, we show that if a sequen
e is k{regular, then so is the subsequen
e

obtained by periodi
 indexing:

Theorem 2.6.

Let fS(n)g

n�0

be a k{regular sequen
e. Then for a � 1; b � 0, the sequen
e fS(an+

b)g

n�0

is k{regular.

Proof.

De�ne T (n) = S(an+ b).

Suppose S(n) is k{regular. Then the module generated by its k{kernel is generated

by S

1

(n); S

2

(n); : : : ; S

r

(n): We 
laim that ea
h sequen
e in the k{kernel of T (n) 
an be

expressed as a linear 
ombination of S

i

(an + 
), for 1 � i � r and 0 � 
 < a+ b.

Proof: Take an element of the k{kernel of T (n), say T (k

e

n + j), 0 � j < k

e

. Write

ja+ b = d � k

e

+ f , where 0 � f < k

e

. Then

T (k

e

n+ j) = S(a(k

e

n+ j) + b)

= S(k

e

(an + d) + f);

Noti
e that sin
e 0 � j < k

e

, we have 0 � d < a + b. Now the module generated by the

k{kernel of fS(n)g

n�0

is �nitely generated, so S(k

e

m+ f) =

P

j




j

S

j

(m) for 
onstants 


j

.

Hen
e it follows that

S(k

e

(an+ d) + f) =

X

j




j

S

j

(an + d);

and the result follows.

Remark.

Let us de�ne S indexed by negative arguments to be 0. For example, fS(n� 1)g

n�0

is the sequen
e fS(n)g

n�0

with a 0 ta
ked on the front.

Then it is easy to see that the pre
eding theorem holds even when b < 0.

Theorem 2.7.

Let fS(n)g

n�0

be a sequen
e su
h that there exists an a � 2 su
h that fS(an+ i)g

n�0

is k{regular for 0 � i < a. Then fS(n)g

n�0

is k{regular.

Proof.

For 0 � i < a, de�ne

T

i

(n) =

�

S(n); if n � i (mod a);

0; if n 6� i (mod a).

Also, write S

i

(n) = S(an+ i). Then it is easy to see that ea
h sequen
e T

i

(n) is k{regular;

indeed, T

i

(k

j

n+ 
) is either the 0-sequen
e or the sequen
e S

i

(k

j

n+ 


0

) interspersed with
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groups of a= g
d(a; k

j

)�1 zeros. Hen
e the k{kernel of T

i

(n) is �nitely generated. Finally,

we see that

S(n) =

X

0�i<a

T

i

(n);

whi
h shows that fS(n)g

n�0

is k{regular.

Remark.

From Theorems 2.6 and 2.7 it follows that if S(n) is k{regular, and r is a rational

number, then S(drne) and S(brn
) are also k-regular.

Many sequen
e transformations from the literature preserve regularity. For example,

let fS(n)g

n�0

be a sequen
e, and 
onsider its Toeplitz transformation fS

0

(n)g

n�0

de�ned

by S

0

(2n) = S(n) and S

0

(2n + 1) = S

0

(n) for n � 0. (See [JK℄, [Pro℄). Then we have the

following, whi
h generalizes the 
ase of automati
 sequen
es [A3℄:

Theorem 2.8.

fS(n)g

n�0

is 2{regular if and only if fS

0

(n)g

n�0

is 2{regular.

Proof.

Suppose fS(n)g

n�0

is 2{regular. Then the module generated by its 2{kernel is �nitely

generated, say by S

1

(n); : : : ; S

k

(n). Now 
onsider the module

M = hS

0

(n); S

1

(n); : : : ; S

k

(n)i:

Note that S

i

(2n) and S

i

(2n + 1) are linear 
ombinations of the S

j

. Also, S

0

(2n) = S(n)

and S

0

(2n+ 1) = S

0

(n). Thus by Theorem 2.2 (d), fS

0

(n)g

n�0

is 2{regular.

Now assume fS

0

(n)g

n�0

is 2{regular. Then by Theorem 2.6, S

0

(2n) is 2{regular. But

S

0

(2n) = S(n), and the result follows.

Theorem 2.9

Let f be an integer � 1. Then fS(n)g

n�0

is k

f

{regular if and only if fS(n)g

n�0

is

k{regular.

Proof.

Suppose fS(n)g

n�0

is k{regular. Then the module generated by its k{kernel is �nitely

generated and 
ontains its k

f

{kernel. Hen
e the module generated by its k

f

{kernel is also

�nitely generated.

To prove the other dire
tion, assume fS(n)g

n�0

is k

f

{regular.

We now show there exists a B su
h that for all b > B, ea
h subsequen
e S(k

b

n+ 
)


an be expressed as a linear 
ombination

S(k

b

n+ 
) =

X

i

d

i

S(k

b

i

n+ 


i

)

with b

i

� B and 0 � 


i

< k

b

i

. The result will then follow from Theorem 2.2 (
).
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For let us write b = fr + s, 0 � s < f and 
 = qk

fr

+ t, 0 � t < k

fr

. Then, by

Theorem 2.2 (
), there exists E su
h that for all r > E we 
an express

S((k

f

)

r

m+ t) =

X

i

d

i

S((k

f

)

r

i

m+ t

i

);

where r

i

� E and 0 � t

i

< k

fr

i

.

Now put m = k

s

n+ q; we �nd

S((k

f

)

r

m+ t) = S(k

b

n+ 
) =

X

i

d

i

S(k

fr

i

+s

n+ qk

fr

i

+ t

i

) =

X

i

d

i

S(k

b

i

n+ 


i

);

where b

i

= fr

i

+ s and 


i

= qk

fr

i

+ t

i

. Noti
e that b

i

< fE + f . Also, q � k

s

� 1, so




i

= qk

fr

i

+ t

i

� (k

s

� 1)k

fr

i

+ t

i

� k

fr

i

+s

� k

fr

i

+ t

i

< k

fr

i

+s

= k

b

i

;

thus we may take B = f(E + 1). Hen
e fS(n)g

n�0

is also k{regular.

C. Cho�rut and C. Reutenauer have pointed out that we may obtain alternative proofs

of Theorems 2.6{2.9 using the notion of rational transdu
tion [SS℄ and Theorem 4.3 below.

Theorem 2.10.

Let fS(n)g

n�0

be a k{regular sequen
e with values in 1C, the 
omplex numbers. Then

there exists a 
onstant 
 su
h that S(n) = O(n




).

Proof.

We use the 
hara
terization of Theorem 2.2 (e). Let the base{k expansion of n be

a

j�1

a

j�2

� � � a

1

a

0

;

then j � 1 + log

k

n. Then

V (n) = B

a

0

B

a

1

� � �B

a

j�1

V (0):

If v is a d-dimensional ve
tor, de�ne

kvk =

X

1�i�d

jv

i

j;

if M is a d� d-matrix, de�ne

kMk = max

1�i�d

X

1�j�d

jM

ij

j:

Then it is easy to see that kMvk � kMkkvk.

9



Thus we see

S(n) � kV (n)k � kB

a

0

kkB

a

1

k � � � kB

a

j�1

kkV (0)k:

Now let 
 = max

0�i�k�1

kB

i

k, and d = kV (0)k. Then we have

S(n) � 


1+log

k

n

d � d

0

n




0

;

and the result follows.

Thus we see, for example, that f2

n

g

n�0

is not (ZZ; k){regular.

Theorem 2.11.

Let R be a Noetherian ring without zero divisors, and let a 2 R. Then the sequen
e

of powers fa

n

g

n�0

is (R; k){regular if and only if a = 0 or a is a root of unity.

Proof.

One dire
tion is simple, sin
e if a is 0 or a root of of unity, then the sequen
e of powers

is ultimately periodi
, hen
e k{regular.

Now assume fa

n

g

n�0

is (R; k){regular. Then there exist r < 1 and �

j

, 0 � j < r

su
h that

X

0�j<r

�

j

a

k

j

�n

= 0

for all n � 0.

Now re
all the following identity for the Vandermonde determinant:

0

B

B

�

1 b

0

b

2

0

: : : b

m

0

1 b

1

b

2

1

: : : b

m

1

.

.

.

.

.

.

.

.

.

.

.

.

: : :

1 b

m

b

2

m

: : : b

m

m

1

C

C

A

=

Y

i>j

(b

i

� b

j

):

From this, we see that the sequen
es fb

n

j

g

n�0

are linearly independent if and only if the

numbers b

1

; b

2

; : : : ; b

m

are distin
t.

Hen
e the numbers 1; a

k

; a

k

2

; : : : ; a

k

r

are not all distin
t and we must have

a

k

j

= a

k

l

for some j 6= l. Sin
e R has no zero-divisors, either a = 0 or a is a root of unity.

III. The ring of k{regular sequen
es.

Asso
iated to every k{regular sequen
e fS(n)g

n�0

is the formal power series in R[[X℄℄

de�ned by

X

n�0

S(n)X

n

;

10



where X is an indeterminate. We 
all su
h a power series k{regular. In this se
tion we

show that the set of all k{regular power series forms a ring (but not a �eld).

Re
all that the 
onvolution S ?T of two sequen
es S(n) and T (n) is de�ned as follows:

(S ? T )(n) =

X

i+j=n

S(i)T (j):

Theorem 3.1.

The set of k{regular sequen
es is 
losed under 
onvolution.

Proof.

For simpli
ity we prove this only in the 
ase k = 2.

Let us agree to write fA(2n)g as shorthand for the sequen
e fA(2n)g

n�0

.

Let A and B be 2{regular sequen
es. The modules generated by their 2{kernels are

generated by sequen
es a

1

; a

2

; : : : ; a

i

0

and b

1

; b

2

; : : : ; b

j

0

, respe
tively. We want to �nd

a basis for C, the module generated by the 2{kernel of A ? B. We write u

ij

= a

i

? b

j

for 1 � i � i

0

; 1 � j � j

0

. We 
laim that the set M of 2i

0

j

0

sequen
es fu

ij

(n)g

n�0

and fu

ij

(n � 1)g

n�0

generates the module C. (As in the previous se
tion, we de�ne

u

ij

(�1) = 0.)

It is 
lear that M 
ontains all sequen
es of the form

(fA(2

e

n+ i)g ? fB(2

f

n+ j)g)(n) (1)

and

(fA(2

e

n+ i)g ? fB(2

f

n+ j)g)(n� 1): (2)

Thus it suÆ
es to show how to write all the sequen
es of the form

f(A ? B)(2

g

n+ a)g

as a linear 
ombination of the sequen
es in (1) and (2).

This is done using the following formula:

(A ? B)(2

g

n+ a) =

X

0�i�a

(fA(2

g

n+ i)g ? fB(2

g

n+ a � i)g)(n)

+

X

a<j<2

g

(fA(2

g

n+ j)g ? (fB(2

g

n+ 2

g

+ a� j)g)(n� 1):

Hen
e the result follows.

(Note: it is apparently impossible to obtain Theorem 3.1 using the standard tools of

rational series, su
h as rational transdu
tions.)

It follows from Theorem 3.1 that if the sequen
e fS(n)g

n�0

is k{regular, then so is

its running sum f

P

0�j�n

S(j)g

n�0

.

Sin
e the 
onvolution of sequen
es is equivalent to (ordinary) multipli
ation of the

asso
iated power series, we have:

Corollary 3.2.

The set of k{regular power series forms a ring.

11



Remark.

The set of k{regular power series does not form a �eld. This follows from the identity

1

1� 2X

= 1 + 2X + 4X

2

+ 8X

3

+ � � �

and the fa
t that f2

n

g

n�0

is not k{regular (Theorem 2.10).

Theorem 3.3.

Let F be an algebrai
ally 
losed �eld (e. g., 1C). Let fS(n)g

n�0

be a sequen
e with

values in F . Let f(X) =

P

n�0

S(n)X

n

be a formal power series in F [[X℄℄. Assume that

f(X) represents a rational fun
tion of X; i. e. there exist polynomials p(X), q(X) su
h

that f(X) = p(X)=q(X). Then fS(n)g

n�0

is k{regular if and only if the poles of f are

roots of unity.

Proof.

Note that by assumption, 0 is not a pole of f .

Suppose the poles of f are roots of unity. Then using expansion by partial fra
tions,

we 
an write

f(X) =

X

i




i

(1� �

i

X)

e

i

where 


i

2 F , the e

i

are non-negative integers, and ea
h �

i

is a root of unity. To prove the


oeÆ
ients of f form a k{regular sequen
e, it 
learly suÆ
es to show that (1� �

i

X)

�1

is

k{regular. But this power series has periodi
 
oeÆ
ients and so is k{regular.

Now suppose f(X) = p(X)=q(X) for polynomials p; q, and f is k{regular. Let 1=� be

one of the poles of f ; we may assume � 6= 0. We 
an then write

f(X) =

p(X)

q(X)

=

r(X)

s(X)(1 � �X)

e

;

where r(x); s(X) are polynomials and r(X) and 1 � �X are relatively prime. Then there

exist two polynomials u(X); v(X) su
h that

u(X)r(X) + v(X)(1 � �X)

e

= 1:

Now u(X)f(X)s(X) + v(X) is also a k{regular power series, and we have

u(X)f(X)s(X) + v(X) = (1 � �X)

�e

: (3)

Thus (1 � �X)

�e

is k{regular. But (1 � �X)

e�1

is a polynomial and hen
e a k{regular

power series, so its produ
t with (3) is k{regular and thus (1 � �X)

�1

is k{regular. But

the 
oeÆ
ients of this power series are �

n

, whi
h by Theorem 2.11 is k{regular if and only

if � is a root of unity.

This 
ompletes the proof.
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Remarks.

� We note that Theorem 3.3 gives us the following 
hara
terization of k{regular se-

quen
es asso
iated with rational formal power series: they must be linear re
urren
es

whose 
hara
teristi
 polynomial is a produ
t of 
y
lotomi
 polynomials. See, for example,

Se
tion VII, Example 18.

� Also note that if R = 1Q, then (using Corollary 4.2 below) the radius of 
onvergen
e

of a k{regular power series is 1, and su
h a series either represents a rational fun
tion or

has the unit 
ir
le as a natural boundary.

IV. Rational series and k{regular sequen
es.

At �rst glan
e, it might seem that there is no relationship between k{regular power

series and the theory of ZZ{rational formal series, as des
ribed in [SS℄, [BR℄ [E, Chap. V℄.

For

P

n�0

2

n

X

n

is ZZ{rational, but is not k{regular. Similarly,

P

n�0

e

1

(n)X

n

is k{regular,

but is not ZZ{rational. (Here e

1

(n) 
ounts the number of 1's in the base{k expansion of n).

Nevertheless, there is a relationship whi
h 
an be roughly des
ribed as follows: 2{

regular power series are the \binary" analogue of ZZ{rational formal series in one variable.

Alternatively, ZZ{rational series in one variable are the \unary" analogue of k{regular power

series.

In this se
tion, we develop this relationship between k{regular sequen
es and ZZ{

rational formal series. From this, we get a ma
hine model for the k{regular sequen
es.

This model plays the same role as the ordinary �nite automaton does for k{automati


sequen
es. We also prove that all k{regular sequen
es 
an be 
omputed qui
kly.

We introdu
e some notation that will be used throughout this se
tion. Let k be �xed

and de�ne � = f0; 1; : : : ; k�1g. We need a way to uniquely asso
iate integers with strings

giving their base{k representation. If

n =

X

0�i<e

a

i

k

i

;

and a

e�1

6= 0, then we say that the string a

e�1

a

e�2

: : : a

1

a

0

is the standard base{k repre-

sentation of n. Note that the standard representation of 0 is the empty string. The set of

all standard representations is just �+ (� � 0)�

�

.

First, we prove a useful lemma:

Lemma 4.1.

Let fS(n)g

n�0

be a sequen
e with entries in R. Then fS(n)g

n�0

is (R

0

; k){regular

if and only if there exist matri
es M

0

, M

1

; : : : ;M

k�1

with entries in R

0

and ve
tors �, �

with entries in R su
h that

S(n) = �M

a

0

M

a

1

: : :M

a

e�1

�;

where a

e�1

a

e�2

: : : a

1

a

0

is the standard base{k representation of n.

13



Proof.

Suppose S(n) is k{regular. Then by Theorem 2.2 (e), we know that there exist

matri
es M

0

; : : :M

k�1

su
h that

V (kn+ a) =M

a

V (n);

where

V (n) =

0

B

�

S

1

(n)

.

.

.

S

r

(n)

1

C

A

;

and S(n) = S

1

(n). Hen
e by setting � = V (0) and � = [1 0 0 � � � 0℄, we see that

V (n) = �M

a

0

M

a

1

: : :M

a

e�1

�

for all n � 0.

Now suppose S(n) = �M

a

0

: : :M

a

e�1

� for all n � 0, where a

e�1

� � � a

0

is the standard

base{k representation of n. De�ne V (n) =M

a

0

� � �M

a

e�1

� and

V (n) =

0

B

�

v

1

(n)

.

.

.

v

r

(n)

1

C

A

:

Then

V (kn+ a) =M

a

M

a

0

� � �M

a

e�1

� =M

a

V (n);

ex
ept possibly when n = 0 and a = 0. (This spe
ial 
ase arises be
ause the standard

representation of kn is the string a

e�1

� � � a

1

a

0

0, for n � 1, but not for n = 0.) In this 
ase,

by setting v

0

= V (0) �M

0

V (0) we see

V (kn) =M

0

V (n) + U(n)v

0

for all n � 0, where U(n) denotes the sequen
e that is 1 when n = 0 and 0 otherwise.

Then by Theorem 2.2 (d), we see that ea
h of the sequen
es v

1

(n); : : : ; v

r

(n) is k{

regular. But then S(n) = �V (n) is k{regular, by Theorem 2.5.

Corollary 4.2. Suppose fS(n)g

n�0

is a (ZZ; k){regular sequen
e with values in 1Q. Then

there exist an integer r and a (ZZ; k){regular sequen
e fT (n)g

n�0

with values in ZZ su
h

that S(n) = T (n)=r.

Proof. By Lemma 4.1, we have

S(n) = �M

a

0

M

a

1

� � �M

a

e�1

�

where a

e�1

� � � a

1

a

0

is the standard base{k representation of n. The matri
es M

i

have

integral entries, and the ve
tors � and � have rational entries. Let g be the least 
ommon

14



multiple of the denominators of entries in �, and g

0

be the least 
ommon multiple of the

denominators of entries in �. Then T (n) = (g�)M

a

0

M

a

1

� � �M

a

e�1

(g

0

�) is a (ZZ; k){regular

sequen
e with values in ZZ. The result follows by putting r = gg

0

.

Now we show how k{regular sequen
es are related to ZZ{rational formal series. Let

x

0

; x

1

; : : : ; x

k�1

be non-
ommuting variables. If w = w

1

� � �w

r

2 �

�

, then de�ne x

w

=

x

w

1

� � �x

w

r

. Let � be the map that sends n to x

a

0

x

a

1

: : : x

a

e�1

, where the standard base{k

representation of x is the string a

e�1

� � � a

1

a

0

.

Theorem 4.3.

fS(n)g

n�0

is k{regular if and only if the formal series

X

n�0

S(n)� (n)

is ZZ{rational.

For example, in the 
ase k = 2 we have

X

n�0

S(n)� (n) = S(0) + S(1)x

1

+ S(2)x

0

x

1

+ S(3)x

1

x

1

+ S(4)x

0

x

0

x

1

+ � � � :

Proof. Suppose fS(n)g

n�0

is k{regular. Then by Lemma 4.1, there exist matri
es

M

0

; : : : ;M

k�1

su
h that

S(n) = �M

a

0

� � �M

a

e�1

�:

But by the fundamental theorem for ZZ{rational formal series (see, e.g. [SS, Theorem 2.3℄),

T =

X

w2�

�

�M

w

�x

w

is ZZ{rational. This is essentially the series

P

n�0

S(n)� (n), but it also 
ontains terms that


orrespond to non-standard base{k representations of n. Let A be the set of standard base{

k representations (e. g. those not beginning with a 0). Then as above, A = �+(�� 0)�

�

,

and so A is regular. Let A

R

denote the set of reversals of strings in A; then A

R

is also

regular. Now

U = 
har A

R

=

X

w2A

R

x

w

is a ZZ{rational formal series (see, e. g. [SS, Corollary 5.4 (iii)℄). Then T�U (the Hadamard

produ
t) is equal to

P

n�0

S(n)� (n), and sin
e ZZ{rational series are 
losed under � (see,

e. g. [SS, Theorem 4.4℄), the result follows.

Now suppose

P

n�0

S(n)� (n) is ZZ{rational. Then again by the de�nition of � and the

fundamental theorem we have S(n) = �M

w

�, where w = a

0

a

1

� � � a

e�1

, and a

e�1

� � � a

1

a

0

is the standard base{k representation of n. This 
ompletes the proof.

15



Theorem 4.3 allows us to use the well-developed theory of ZZ{rational series to dis
uss

the properties of k{regular sequen
es, at least in some 
ases. We 
ontinue this below in

Se
tion V. Now, however, we sket
h a des
ription of our ma
hine model.

This model is essentially the same as that �rst given by S
h�utzenberger [S
h℄. However,

we repeat the des
ription for 
ompleteness.

Let us de�ne what we 
all a matrix ma
hine. It is a �nite-state ma
hine with auxiliary

storage in the form of a 
olumn ve
tor v 2 R

j1

for some j > 0. Here is how the ma
hine

operates: Suppose we are in state q. Upon reading a symbol a from the input, the ma
hine

�rst repla
es v with Mv, where M =M(q; a) is a j � j matrix. Then the ma
hine moves

to a new state Æ(q; a). The output is determined as follows: when the last input symbol is

read, we are in state q

0

. There is a row ve
tor �(q

0

), and the output is the s
alar �(q

0

)v.

Now 
onsider the 
ase where the input is the base{k representation of an integer n,

starting with the most signi�
ant digit, and the matrix ma
hine 
omputes S(n). We 
laim

this is pre
isely the 
lass of k{regular sequen
es. By Lemma 4.1, this equivalen
e is easily

seen in the 
ase of 1-state ma
hines. Thus to prove the equivalen
e it suÆ
es to prove the

following

Theorem 4.4 (S
h�utzenberger).

A matrix ma
hine with r states 
an be simulated by a matrix ma
hine with 1 state.

Proof.

To simplify the exposition we show how to do this in the 
ase where j, the size of the

ve
tors and matri
es involved, equals 1.

The idea is to repla
e the single element v by a ve
tor v

0

of size r. All of the entries

of v

0

will be zero, ex
ept for a single entry whi
h equals v. We 
ode the 
urrent state

by the position of v inside v

0

; if it is in position i, we are 
urrently in state i. Instead of

multiplying byM(q; a) we multiply by the matrix PQ, where Q

ii

=M(q

i

; a), 0 � i � r�1,

and P is a permutation matrix de�ned as follows:

P

ij

=

�

1; if Æ(q

j

; a) = q

i

0; otherwise.

Finally, �(q

i

) is the ve
tor 
onsisting of all ones.

The 
orre
tness of the 
onstru
tion is left to the reader. To extend this proof to the


ase j > 1, we repla
e all entries by blo
k matri
es.

Corollary 4.5.

The n-th term of a k{regular sequen
e 
an be 
omputed using O(log n) operations,

where an operation is an addition or multipli
ation of elements in the ring R.

Corollary 4.6.

The n-th term of a k{regular sequen
e over ZZ 
an be 
omputed in time polynomial

in log n.
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Remarks.

� At �rst glan
e, our matrix ma
hines would also seem to be similar to the linear

sequential ma
hines (LSM) of Harrison [Har1℄. This is not the 
ase, however. Our input

symbols a are 
hosen from an arbitrary alphabet �, while the LSM model uses k-tuples


hosen from a �eld. Our model allows a di�erent n � n matrix M(q; a) for every state

q and input symbol a, whereas the LSM model uses exa
tly two matri
es A and B and

de�nes a transition by

Æ(q; a) = Aq +Ba:

Our model allows the matri
es to 
ontain arbitrary ring elements, whereas the LSM model

uses a �eld. Finally, in our model we are only interested in the output asso
iated with the

�nal state, rather than the string of outputs asso
iated with ea
h state visited.

� We mention a 
onne
tion between (ZZ; k){regular sequen
es with values in ZZ and

the group �

k

(ZZ) of Morton and Mourant [MM℄. Indeed, every sequen
e fS(n)g

n�0

in

�

k

(ZZ) is k{regular, as it is easily seen that fS(n)g

n�0

2 �

k

(ZZ) if and only if the sequen
e

fS(n)� S(bn=k
)g

n�0

is periodi
.

V. The zero-set of a k{regular sequen
e.

Let fS(n)g

n�0

be a k{regular sequen
e. In this se
tion, we dis
uss the set

Q = fn j S(n) = 0g;

or, more pre
isely, the set Z(S) of strings of the standard base{k representations of elements

of Q. We 
all this set the zero-set of the sequen
e fS(n)g

n�0

.

We also dis
uss the set Z(S), the set of strings of the standard base{k representations

of n su
h that S(n) 6= 0. (This set is essentially the support of the asso
iated ZZ{rational

power series.) Note that

Z(S) + Z(S) = � + (� � 0)�

�

;

where � = f0; 1; : : : ; k � 1g.

Theorem 5.1. The set Z(S) is simultaneously in logarithmi
 spa
e and polynomial time.

The set Z(S) is also in the 
omplexity 
lass NC.

Proof.

The �rst statement follows immediately from results of Lipton and Zal
stein [LZ℄.

The se
ond statement is left to the reader.

Theorem 5.2. For �xed k � 2, it is unde
idable if a given k{regular sequen
e fS(n)g

n�0

has a zero term. In other words, it is unde
idable if Z(S) is nonempty.

Proof.

To spe
ify the k{regular sequen
e S(n), it is ne
essary to agree on a representation.

We assume we have been given the matri
es in Lemma 4.1 or Theorem 2.2 (e).

17



As in [SS, Theorem 12.1℄, we redu
e the problem of determining whether or not an

arbitrary multivariate polynomial equation

p(x

1

; x

2

; : : : x

r

)

has a solution in non-negative integers (Hilbert's tenth problem) to the problem of whether

Z(S) is nonempty. The result will then follow by the 
elebrated result of Davis-Matija
evi�
-

Putnam-Robinson [Dav℄.

Suppose we are given p(x

1

; x

2

; : : : ; x

r

). We en
ode this equation as a k{regular se-

quen
e as follows. First, we 
hoose f su
h that k

f

� r+1. We now represent the variable

x

j

by e

j

(n), the number of j's in the base{k

f

expansion of n. Clearly for ea
h r-tuple of

non-negative integers (b

1

; b

2

; : : : ; b

r

), there exists an n for whi
h

(e

1

(n); : : : ; e

r

(n)) = (b

1

; : : : ; b

r

):

Now S(n) = p(e

1

(n); e

2

(n); : : : ; e

r

(n)) is k

f

{regular and its matrix representation 
an

be 
omputed with a re
ursive algorithm. But by Theorem 2.9, S(n) is also k{regular;

furthermore, the 
orresponding matri
es are e�e
tively determinable. Clearly Z(S) is

nonempty if and only if p(x

1

; x

2

; : : : ; x

r

) has a solution in non-negative integers.

As in [SS, p. 124℄, we 
an also give a more expli
it example:

Theorem 5.3. There exists a k{regular sequen
e fS(n)g

n�0

su
h that neither Z(S) nor

Z(S) are 
ontext-free.

Proof.

De�ne S(n) = e

1

(n)

2

� e

0

(n). It is not hard to verify that fS(n)g

n�0

is k{regular.

(Indeed, it will follow from Theorem 6.1.)

Now suppose Z(S) is 
ontext-free. Then Z(S) \ 1

+

0

�

= f1

n

0

n

2

j n � 1g would also

be 
ontext-free. But this 
an easily seen to be false, using the pumping lemma.

Now suppose Z(S) is 
ontext-free. Then L

1

= Z(S) \ 1

+

0

�

= f1

n

0

r

j n � 1; r 6= n

2

g

would be 
ontext-free. By a theorem of Ginsburg and Spanier [GS, Theorem 6.2, Corollary

2℄, L

2

= 1

�

0

�

� L would be 
ontext free. But L

2

\ 1

+

0

+

= f1

n

0

n

2

j n � 1g, whi
h is not


ontext-free, a 
ontradi
tion.

VI. Some \Fourier" expansions.

For simpli
ity, all results and proofs in this se
tion assume k = 2.

We introdu
e some notation that will be used throughout this se
tion. Let n

(2)

denote

the string in A = � + 1(0 + 1)

�

that represents n in base 2. If s is a string in A, let v(S)

denote the integer represented by s. Let jsj denote the length of the string s. Let �(n) be

the integer obtained from n by deleting the most signi�
ant bit of its base{2 expansion.

Let m and n be integers; we write m su� n for the relation: the string m

(2)

is a suÆx of

the string n

(2)

. De�ne E = 1(0 + 1)

�

. Let P 2 E, and let e

P

(n) denote the number of

18



(possibly overlapping) o

urren
es of P in the base-k expansion of n. Let x

P

(n) be the

fun
tion that takes the value 1 if P is a suÆx of n

(2)

, and 0 otherwise.

Morton and Mourant proved [MM℄ that any sequen
e fS(n)g

n�0

taking values in ZZ

has a unique expansion as an in�nite sum, as follows:

S(n) = S(0) +

X

P2E

^

S(v(P ))e

P

(n):

Here the \Fourier" 
oeÆ
ients

^

S(m) are integers. We de�ne

^

S(0) = S(0), and 
all the

sequen
e f

^

S(n)g

n�0

the pattern transform of fS(n)g

n�0

.

In this se
tion, we prove the following result: a sequen
e is 2{regular if and only if its

pattern transform is 2{regular. First, however, we show that the sequen
es e

P

themselves

are 2{regular.

Theorem 6.1.

The sequen
e fe

P

(n)g

n�0

is 2{regular for any pattern P 2 E.

Proof.

Let us introdu
e the following notation: if w = w

1

w

2

� � �w

j

0

is a string and j � j

0

,

then

take(j;w) = w

1

w

2

� � �w

j

:

We 
laim that ea
h element of the 2{kernel 
an be written as a linear 
ombination of

the sequen
es e

P

(2

f

n+ a) for 0 � f < jP j and 0 � a < 2

f

and the 
onstant sequen
e 1.

Proof: Consider an element of the 2{kernel, e

P

(2

f

n + a); 0 � a < 2

f

. Then if

f � jP j � 1, this sequen
e is already in the list above. Otherwise, f � jP j. Then 2

f

n + a


an be written in base 2 as

n

(2)

a

0

where ja

0

j = f and v(a

0

) = a. Then

e

P

(2

f

n+ a) = e

P

(2

jP j�1

n+ 
) + e

P

(a);

where 
 = v(take(jP j � 1; a

0

)).

Now the �rst term on the right is in the list above, and the se
ond term is a 
onstant

multiple of the 
onstant sequen
e 1. Hen
e e

P

(2

f

n + a) is a ZZ{linear 
ombination of

elements in the list, and this 
ompletes the proof.

Corollary 6.2.

fe

P

(an + b)g

n�0

is 2{regular for all a; b � 0.

Theorem 6.3.

fS(n)g

n�0

is 2{regular if and only if f

^

S(n)g

n�0

is 2{regular.

First we prove two lemmas.
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Lemma 6.4.

For all n � 0 we have

S(2n) = S(n) +

X

m�1

m suff n

^

S(2m)

and

S(2n+ 1) = S(n) +

^

S(1) +

X

m�1

m suff n

^

S(2m+ 1):

Proof.

S(2n) = S(0) +

X

P

^

S(v(P ))e

P

(2n)

= S(0) +

^

S(v(1))e

1

(2n) +

X

P

^

S(v(P0))e

P0

(2n) +

X

P

^

S(v(P1))e

P1

(2n)

= S(0) +

^

S(1)e

1

(n) +

X

P

^

S(v(P0))e

P0

(n) +

X

P

^

S(v(P0))x

P

(n) +

X

P

^

S(v(P1))e

P1

(n)

= S(0) +

X

P

^

S(v(P ))e

P

(n) +

X

P

^

S(v(P0))x

P

(n)

= S(n) +

X

P

^

S(v(P0))x

P

(n)

= S(n) +

X

m�1

m suff n

^

S(2m):

The formula for S(2n + 1) is proved similarly; the extra term

^

S(1) 
omes from the

fa
t that

^

S(v(1))e

1

(2n+ 1) =

^

S(1)(e

1

(n) + 1) =

^

S(1)e

1

(n) +

^

S(1):

This 
ompletes the proof.

Lemma 6.5.

For all n � 1 we have

^

S(2n) = S(2n)� S(n) � S(2�(n)) + S(�(n)):

For all n � 1 we have

^

S(2n+ 1) = S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)):
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Proof.

Noti
e �rst that

fm � 1 j m su� ng = fm � 1 j (m su� n) and (m 6= n)g [ fng

= fm � 1 j m su� �(n)g [ fng;

the unions being disjoint.

Hen
e, using Lemma 6.4, we �nd

S(2n) � S(n) =

X

m�1

m suff n

^

S(2m)

=

^

S(2n) +

X

m�1

m suff �(n)

^

S(2m);

whi
h 
an be rewritten as:

^

S(2n) = (S(2n)� S(n)) � (S(2�(n)) � S(�(n))):

The se
ond formula is obtained in a slightly di�erent manner:

S(2n+ 1) � S(n) =

^

S(1) +

X

m�1

m suff n

^

S(2m+ 1)

=

^

S(2n + 1) +

^

S(1) +

X

m�1

m suff �(n)

^

S(2m+ 1);

whi
h 
an be rewritten as:

^

S(2n+ 1) = (S(2n+ 1)� S(n)�

^

S(1)) � (S(2�(n) + 1)� S(�(n)) �

^

S(1))

= S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)):

This 
ompletes the proof of Lemma 6.5.

We are now ready to prove Theorem 6.3:

Proof.

Suppose �rst that S is 2{regular and let fS

1

= S;S

2

; : : : ; S

r

g be a �nite set of gener-

ators for the ZZ{module generated by its 2{kernel. De�ne

U(n) =

�

1; if n = 0;

0; otherwise.

Consider the ZZ{module M generated by the S

j

(n), the S

j

(�(n)), and U(n); i. e.

M = hS

1

; S

2

; : : : ; S

r

; S

1

Æ �; S

2

Æ �; : : : ; S

r

Æ �;U;

^

Si:
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To prove that

^

S is 2{regular, it suÆ
es to prove that for ea
h sequen
e V (n) 
ontained

in the list of generators for M, the subsequen
es fV (2n)g

n�0

and fV (2n+ 1)g

n�0

are in

M.

For S

1

; : : : ; S

r

, this follows from the 2{regularity of S. By Lemma 6.5,

^

S(2n) = S(2n)� S(n) � S(2�(n)) + S(�(n)) +

^

S(0)U(n);

and so M 
ontains f

^

S(2n)g

n�0

. Similarly, Lemma 6.5 implies that

^

S(2n+ 1) = S(2n+ 1) � S(n)� S(2�(n) + 1) + S(�(n)) +

^

S(1)U(n);

hen
e M 
ontains f

^

S(2n + 1)g

n�0

.

For S

i

Æ �, we have S

i

(�(2n)) = S

i

(2�(n)). Similarly,

S

i

(�(2n+ 1)) =

�

S

i

(2�(n) + 1); if n � 1;

S

i

(0); if n = 0,

= S

i

(2�(n) + 1) + (S

i

(0) � S

i

(1))U(n);

showing that S

i

(2�(n) + 1) 
an be written as a linear 
ombination of generators.

Finally, we see that U(2n) = U(n), and U(2n + 1) = 0, for all n � 0.

Now suppose that

^

S is 2{regular. We wish to see that S is 2{regular.

Let

^

S

1

=

^

S;

^

S

2

; : : : ;

^

S

t

be a �nite set of generators for the ZZ{module generated by the

2{kernel of

^

S. Then there exist integers a

ij

and b

ij

su
h that

^

S

i

(2n) =

X

1�j�t

a

ij

^

S

j

(n);

and

^

S

i

(2n + 1) =

X

1�j�t

b

ij

^

S

j

(n):

De�ne

T

i

(n) =

X

m�1

m suff n

^

S

i

(m);

and 
onsider the ZZ{module N generated by S; T

1

; T

2

; : : : ; T

t

, and the 
onstant sequen
e 1.

This module 
ontains S. We must prove for ea
h of the generators V , the sequen
es

fV (2n)g

n�0

and fV (2n+ 1)g

n�0

are in N .

For S, this follows from Lemma 6.4:

S(2n) = S(n) +

X

m�1

m suff n

^

S(2m)

= S(n) +

X

m�1

m suff n

X

1�j�t

a

1j

^

S(m)

= S(n) +

X

1�j�t

a

1j

T

j

(n);
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similarly,

S(2n+ 1) = S(n) +

^

S(1) +

X

1�j�t

b

1j

T

j

(n):

For T

i

, we have:

T

i

(2n) =

X

m�1

m suff 2n

^

S

i

(m)

=

X

k�1

k suff n

^

S

i

(2k)

=

X

1�j�t

a

ij

T

j

(n);

and

T

i

(2n+ 1) =

X

m�1

m suff 2n+1

^

S

i

(m)

=

^

S

i

(1) +

X

k�1

k suff n

^

S

i

(2k + 1)

=

^

S

i

(1) +

X

1�j�t

b

ij

T

j

(n):

The result for the 
onstant sequen
e 1 is left to the reader!

Remarks.

� C. Reutenauer has pointed out the following simple proof of Theorem 6.3: Let

A = f�g [ f1; 2; : : : ; k � 1g�

�

. Then

S = (S; �) +

X

P2E

(

^

S;P )A P �

�

;

where L is the 
hara
teristi
 series of L. We have

S � (S; �) = A

^

S �

�

= A

^

S(� � �)

�1

;

and so

^

S = A

�1

(S � (S; �))(� ��):

However, it is not immediately 
lear how to obtain the expli
it formula in Lemma 6.5 from

this observation.

� It is possible to view Theorem 6.3 as a generalization of results of Cho�rut and

S
h�utzenberger [CS℄. They dis
ussed 
ounting fun
tions similar to our sum

X

P2E

^

S(v(P ))e

P

(n):
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However, be
ause they restri
ted their attention to �nite automata with 
ounters, they

were for
ed to put restri
tions on the set E.

� Theorem 6.3 is also a generalization of previous results of Allou
he, Morton, and

Shallit [AMS℄.

Our last result 
on
erns the pattern transform of fe

P

(an+ b)g

n�0

. We prove that, in

this 
ase, the 
oeÆ
ients

^

S(m) are bounded and in fa
t, are k{automati
.

Theorem 6.6.

Let

e

P

(an+ b) =

^

S(0) +

X

P2E

^

S(v(P ))e

P

(n):

Then

^

S(m) is a 2{automati
 sequen
e.

Proof.

By Corollary 6.2, we know that S(n) = e

P

(an + b) is 2{regular. Hen
e by Theorem

6.3,

^

S(n) is 2{regular. By Theorem 2.3, it suÆ
es to show that

^

S takes only �nitely many

values. By Lemma 6.5 it suÆ
es to prove that S(n) � S(�(n)) takes only �nitely many

values.

If n 6= 0 and s = jn

(2)

j, one has (an + b) � (a�(n) + b) = a(n � �(n)) = a2

s�1

.

Hen
e an + b and a�(n) + b have the same s � 1 �nal digits. Let x be �xed su
h that

max(a; b) < 2

x

; then an + b < 2

x+s

+ 2

x

< 2

x+s+1

; hen
e an + b has at most x + s + 1

digits.

Finally, the numbers an+b and a�(n)+b di�er in at most (x+s+1)� (s�1) = x+2

digits. Hen
e, for every P , je

P

(an+ b)� e

P

(a�(n)+ b)j is bounded by x+2, and the result

follows.

VII. Some examples.

Unless otherwise indi
ated, we assume k = 2 in the examples that follow. Sequen
e

numbers refer to Sloane's book [Sl℄.

Example 1.

By Theorem 6.1, we know the sequen
e fe

1

(n)g

n�0

is 2{regular. In fa
t, it satis�es

the relations e

1

(2n) = e

1

(n); e

1

(2n + 1) = e

1

(n) + 1. Hen
e its 2{kernel is generated by

e

1

(n) and the 
onstant sequen
e 1. (This is Sloane's sequen
e #41.)

Example 2.

De�ne A(n) =

P

1�j�n

e

1

(j), the total number of 1's in the base{2 expansion of the

�rst n integers. Then A(n) is 2{regular by the remark after Theorem 3.1. A(n) has been

extensively studied in the literature ([BS℄, [CL℄, [CY℄). It is Sloane's sequen
e #360.
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Example 3.

Consider the sequen
e

f
(n)g

n�0

= 0; 2; 6; 8; 18; 20; 24; 26; 54; 56; : : : ;

whi
h lists the numerators of the left endpoints of the Cantor set. (Alternatively, these are

the integers whose base{3 representations 
ontain no 1's; see [MFP℄.) Then it is easy to

see that 
(2n) = 3
(n) and 
(2n + 1) = 3
(n) + 2. Hen
e it is 2{regular. (Note, however,

that its 
hara
teristi
 sequen
e 101000101 � � � is a
tually 3{automati
.)

For a more general perspe
tive on su
h sequen
es, see [Mah2℄.

Example 4.

The sequen
e e

1

(3n) has been studied extensively by Newman, Slater, and Coquet

([N℄, [NS℄, [Coq℄). By Corollary 5.2 it is 2{regular. By Theorem 6.6 it has a 2{automati


pattern transform. In fa
t, we �nd

e

1

(3n) = 2e

1

(n) � 2e

11

(n) + e

111

(n) � 2e

1011

(n) + e

11011

(n) � 2e

101011

(n) + e

1101011

(n) � � � �

= 2e

1

(n) � 2

X

i�0

e

(10)

i

11

(n) +

X

i�0

e

11(01)

i

1

(n):

This expansion gives an alternative explanation to the observation [N℄ that the �rst few

values of e

1

(3n) are almost all even. See [AMS℄.

Example 5.

Let j be an integer � 0. The sequen
e fn

j

g

n�0

is 2{regular, as the module generated

by its 2{kernel is generated by the 
onstant sequen
e 1 and the sequen
es fng

n�0

, fn

2

g

n�0

,

: : :, fn

j

g

n�0

.

From Theorem 6.3, we know the 
orresponding pattern transforms are 2{regular.

Using Lemma 6.5, we �nd:

n = e

1

(n) + e

10

(n) + e

11

(n) + 2(e

100

(n) + � � � + e

111

(n))

+ 4(e

1000

+ � � �+ e

1111

(n)) + 8(e

10000

(n) + � � �+ e

11111

(n)) + � � �

Example 6.

Let w

R

denote the reverse of the string w. Consider the map whi
h takes every integer

to the integer represented by the reverse of its base{2 representation, i. e. r(n) = v(n

R

(2)

).

Then it is not diÆ
ult to show that [IMO℄ r(2n) = r(n), r(4n + 3) = 3r(2n + 1) � 2r(n),

r(8n+1) = 3r(4n+1)� 2r(2n+1), and r(8n+ 5) = 5r(2n+ 1)� 4r(n). Hen
e it follows

that the module generated by the 2{kernel of fr(n)g

n�0

is generated by its subsequen
es

fr(n)g

n�0

, fr(2n + 1)g

n�0

, and fr(4n + 1)g

n�0

.

Example 7.
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Let d(0) = 0, d(1) = 1, d(2n) = d(n), and d(2n+1) = d(n) + d(n+1). This sequen
e

forms the numerators of the entries in the Stern-Bro
ot tree (see [St℄, [GKP℄). It was also

studied by de Rham [R℄ and is Sloane's sequen
e #56. The �rst few terms are

0; 1; 1; 2; 1; 3; 2; 3; 1; 4; 3; 5; 2; 5; 3; 4; : : : :

It is easy to see that d(4n+1) = d(n) + d(2n+1), and d(4n+3) = 2d(2n+1)� d(n), and

it follows that d is 2{regular. Also see [Dij, pp. 215{216, 230{232℄.

A similar sequen
e is given by a(0) = 0, a(1) = 1, a(2n) = a(n), and a(2n + 1) =

a(n+ 1)� a(n). It satis�es a(4n+ 1) = a(2n+ 1)� a(n) and a(4n+ 3) = a(n) and hen
e

is 2{regular. See [Rez1℄, [Rez2℄.

Example 8.

De�ne �

2

(n) to be the exponent of the highest power of 2 that divides n. (This is

essentially Sloane's sequen
e #51.) Then if h(n) = �

2

(n + 1), we see that h(2n) = 0 and

h(2n+ 1) = h(n) + 1. Thus fh(n)g

n�0

is 2{regular.

Using Lemma 6.4, we �nd

�

2

(n+ 1) = e

1

(n) � (e

10

(n) + e

110

(n) + e

1110

(n) + � � �):

Example 9.

Using the remark after Theorem 3.1, we see that �

2

(n!) =

P

1�j�n

�

2

(j) is 2{regular.

Example 10.

Let the binary expansion of an integer n be written as

X

i�0

b

i

(n)2

i

;

where b

i

2 f0; 1g. De�ne g(n) =

P

i�0

(i + 1)b

i

(n). Then it is easy to see that g(2n) =

g(n) + e

1

(n) and g(2n+ 1) = g(n) + e

1

(n) + 1. Hen
e fg(n)g

n�0

is 2{regular.

Using Lemma 6.4, we 
an 
ompute the pattern transform of g(n). We �nd

g(n) =

X

P21(0+1)

�

e

P

(n):

Example 11.

Let f(n) = jn

(2)

j, i. e.

f(n) =

�

0; if n = 0;

1 + blog

2

n
; if n � 1.

Then we easily see that f(2n+1) = f(n)+1, f(4n) = 2f(2n)�f(n), and f(4n+2) = f(n)+

2. Hen
e the module generated by its 2-kernel is generated by ff(n)g

n�0

, ff(2n)g

n�0

,

and the 
onstant sequen
e 1. Using Lemma 6.4, we �nd

f(n) = e

1

(n) + e

10

(n) + e

100

(n) + e

1000

(n) + � � � :
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Example 12.

Let fB(n)g

n�0

be the sequen
e 0; 3; 5; 6; 9; 10; 12; 15; : : : ; the integers whose base{2

representation 
ontains an even number of 1's. (This is Sloane's sequen
e #952). Let

u(n) = e

1

(n) mod 2; then u(n) is the 
lassi
al Thue-Morse sequen
e and 1 � u(n) is

the 
hara
teristi
 sequen
e of B(n). We easily prove that B(2n) = 2B(n) � u(n) and

B(2n + 1) = 2B(n) + 3(1� u(n)); hen
e B is 2{regular.

Example 13.

Let fC(n)g

n�0

be the sequen
e ofMoser-de Bruijn ([Mos℄, [B2℄): 0; 1; 4; 5; 16; 17; 20; 21; : : :

It 
onsists of integers that 
an be written as the sum of distin
t powers of 4. This is Sloane's

sequen
e #1315. Note that C(2n) = 4C(n) and C(2n + 1) = 4C(n) + 1; hen
e C is 2{

regular. See [LMP℄. In [BM℄ it is shown that the 
hara
teristi
 sequen
e of C(n) gives a

binary number su
h that its binary expansion and the binary expansion of its re
ipro
al

are expli
itly known. Its 
ontinued fra
tion is also expli
itly known.

Similarly, the sequen
e of Loxton-van der Poorten [LP1℄

0; 1; 3; 4; 5; 11; 12; 13; 15; 16; 17; 19; 20; 21; 43; 44; : : :

of positive integers that 
an be represented in base 4 using only the digits �1; 0; 1 is

3{regular.

Example 14.

Let G(n) = 2

e

1

(n)

. This is Gould's sequen
e [G℄, and Sloane's sequen
e #109. It

satis�es G(2n) = G(n); G(2n+ 1) = 2G(n) and hen
e is 2{regular.

Glaisher [Gl℄ showed that G(n) 
ounts the number of odd binomial 
oeÆ
ients in row

n of Pas
al's triangle.

More generally, let p be a prime and let G

p

(n) be the number of binomial 
oeÆ
ients

in row n of Pas
al's triangle whi
h are not divisible by p. Then Fine [Fi℄ showed that

G

p

(n) =

Y

0�i�e

(a

i

+ 1)

where the base{p expansion of n is a

e

a

e�1

� � � a

1

a

0

. Of 
ourse, G

p

(n) is p{regular.

Now put H

p

(n) =

P

0�k�n

G

p

(k). Then H

p

(n) is also p{regular. The sequen
es

H

2

(n),

1; 3; 5; 9; 11; 15; 19; 27; 29; 33; 37; 45; 49; 57; : : :

and H

3

(n),

1; 3; 6; 8; 12; 18; 21; 27; 36; 38; 42; 48; 52; 60; 72; : : :

appear in [LM℄. Also see [HLVVM℄, [LMVV℄.

Example 15.

Let fb(n)g

n�0

be the sequen
e of numbers represented by binary Gray 
ode [Gr℄, [Gi℄:

0; 1; 3; 2; 6; 7; 5; 4; 12; 13; 15; 14; 10; 11; 9; 8; � � �
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Then it is easy to see that b(4n) = 2b(2n), b(4n+1) = 2b(2n)+1, b(4n+2) = 2b(2n+1)+1,

and b(4n+ 3) = 2b(2n + 1). Hen
e fb(n)g

n�0

is 2{regular.

Similarly, if 
(n) denotes the sum of the bits in the Gray 
ode representation of n,

then we �nd 
(2n+1) = 2
(n)� 
(2n)+1; 
(4n) = 
(2n); and 
(4n+2) = 
(2n+1)+1.

Hen
e f
(n)g

n�0

is 2{regular. See [FR℄.

Example 16.

Consider the sequen
e of latti
e points (x(n); y(n)) tra
ed out by paperfolding 
urves

with an ultimately periodi
 sequen
e of unfolding instru
tions [DMFP,MFS℄. Then fx(n)g

n�0

and fy(n)g

n�0

are 2{regular.

For example, 
onsider the sequen
e of latti
e points (x(n); y(n)) tra
ed out by the

spa
e-�lling 
urve with unfolding instru
tions RLRLRL � � �.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 � � �

x(n) = 0 0 1 1 0 0 1 1 2 2 3 3 2 2 1 1 � � �

y(n) = 0 1 1 2 2 3 3 2 2 3 3 4 4 3 3 4 � � �

Then the sequen
es satisfy the identities x(0) = 0, x(2) = 1, x(2n + 1) = x(2n),

x(4n) = 2x(n), x(8n+2) = �2x(n) +2x(2n) + x(4n+2), x(16n+6) = 2x(n) +x(4n+2),

x(16n + 14) = 2x(2n) + 2x(4n + 2) � x(8n + 6), and y(0) = 0, y(1) = 1, y(4n) = 2y(n),

y(4n+ 1) = y(4n+ 2) = 2y(n) � y(2n) + y(2n + 1), y(8n + 3) = y(8n + 7) = 2y(2n + 1).

Example 17.

Van der Corput's sequen
e '

2

(n) is de�ned as follows [Cor℄: if

n =

X

i�0

b

i

(n)2

i

;

where b

i

2 f0; 1g, then

'

2

(n) =

X

i�0

b

i

(n)2

�i�1

:

We see that '

2

(0) = 0, '

2

(2n) =

1

2

'

2

(n), and '

2

(2n + 1) =

1

2

+

1

2

'

2

(n). Hen
e the

sequen
e of rational numbers '

2

(n) is (1Q; 2){regular.

Also note that '

2

(n) = r(n)=2

f(n)

, where r(n) is the sequen
e of Example 6 and f(n)

is the sequen
e of Example 11.

Halton [Hal℄ generalized van der Corput's sequen
e to bases b � 2.

Example 18.

Let

1

(1 �X)(1�X

2

) � � � (1�X

j

)

=

X

n�0

P

j

(n)X

n

:

Then P

j

(n) enumerates the number of partitions of n into j or fewer parts. The sequen
e

P

3

(n) is Sloane's sequen
e #186; P

4

(n) is sequen
e #229; P

5

(n) is sequen
e #237, and

P

6

(n) is sequen
e #243.
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By Theorem 3.3, P

j

(n) is k{regular for all j � 1 and all k � 2. Note, however, that

the fun
tion P

1

(n) = lim

j!1

P

j

(n), whi
h 
ounts the number of unrestri
ted partitions,

is not k{regular, as it grows too qui
kly. Hen
e k{regular sequen
es are not 
losed under

taking simple limits.

Example 19.

Let w = w

0

w

1

w

2

� � � be an in�nite word over a �nite alphabet, and de�ne s

w

(n) to be

the number of distin
t subwords (European terminology: fa
tors) of length n in w. Then

s

w

(n)� s

w

(n� 1) is frequently k{automati
, and hen
e in these 
ases, s

w

(n) is k{regular.

For example, this is true when w is the �xed point of the Toeplitz substitution given by

0! 0010 and 1! 1010 [Rau℄; when w is the in�nite word of Thue-Morse, the �xed point

of the substitution given by 0 ! 01 and 1! 10 [Brl℄ [LV℄; and in a more general 
lass of

in�nite words given by iterated homomorphisms dis
ussed by Tapsoba [Tap℄.

Example 20.

It is well-known that n is a sum of three squares if and only if n is not of the form

4

a

(8k + 7). It is easily seen that the sequen
e

t(n) =

�

0; if n = 4

a

(8k + 7);

1; otherwise,

is 2{automati
. Hen
e the sequen
e

Q(n) =

X

1�k�n

t(k);

whi
h 
ounts the number of positive integers � n that are the sum of three squares, is

2{regular. See [Sh℄, [OS℄, [W℄.

Example 21.

An addition 
hain to n is a sequen
e of pairs of positive integers

(a

1

; b

1

); (a

2

; b

2

); : : : ; (a

r

; b

r

)

where (i) a

r

+ b

r

= n and (ii) for all s, either a

s

= 1, or a

s

= a

i

+ b

i

for some i < s, and

the same holds for b

s

. The 
ost of the addition 
hain is

P

1�i�r

a

i

b

i

. Denote the 
ost of

the minimum 
ost addition 
hain to n as 
(n). Then it 
an be shown [GYY℄ that 
(1) = 0,

and 
(2n) = 
(n) + n

2

, 
(2n+ 1) = 
(n) + n

2

+ 2n for n � 1. Hen
e 
(n) is 2{regular.

Example 22.

De�ne b(d;n) as the number of representations

n =

X

i�0

�

i

2

i

;
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where 0 � �

i

< d. Then b(2;n) = 1, b(3;n) = d(n + 1), where d(n) is the sequen
e of

Example 7, and b(4;n) = 1 + bn=2
. (See [Rez3℄). It is possible to show that b(d;n) is

2{regular for all d � 1. However, b(1;n) = lim

d!1

b(d;n) is not k{regular, as it is known

that

log b(1;n) �

1

log 4

(log n)

2

:

(See [Mah℄, [B1℄, [Kn1℄). Note that if f(X) =

P

n�0

(�1)

e

1

(n)

X

n

, and g(X) =

P

n�0

b(1;n)X

n

,

then 1=f(X) = g(X

2

)(1 + X), whi
h shows that f(X) is not invertible in the ring of 2{

regular power series. P. Dumas has pointed out [Dum℄ that the sequen
e fb(1;n) mod

2

M

g

n�0

is 2{automati
 for all M � 0.

Example 23.

Let �

3

(n) denote the exponent of the highest power of 3 that divides n, and s

3

(n)

denote the sum of the digits of n when expressed in base 3.

De�ne r(n) =

P

0�i<n

�

2i

i

�

. Then �

3

(r(n)) is 3{regular. This follows from the (not-

so-trivial) fa
t that

�

3

(r(n)) = �

3

(

�

2n

n

�

) + 2�

3

(n)

and the (trivial) fa
t that

�

3

(

�

2n

n

�

) = s

3

(n) �

1

2

s

3

(2n):

See [SS2℄.

Example 24.

As in Se
tion VI, let

�(n) =

�

0; if n = 0;

n� 2

blog

2

n


; if n > 0.

Then A. Liao (personal 
ommuni
ation) asked for the solution T (n) to the re
urren
e

T (n) = �(n) + T (�(n));

where f(0) = 0. We see that T (n) is 2{regular, as the identities T (2n) = 2T (n), T (4n+1) =

2T (n) + T (2n + 1), and T (4n + 3) = �2T (n) + 3T (2n + 1) + 1 
an easily be veri�ed by

indu
tion.

T (n) also has the following pleasant expansion as a sum of pattern sequen
es:

T (n) =

X

v(P )�3

�

�(P )

2

�

e

P

(n):
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Example 25.

The earliest referen
e to a non-trivial 
lass of k{regular sequen
es we have found is

from an 1822 paper of Charles Babbage [Bab℄, in whi
h he dis
usses sequen
es su
h as

�

2

u

n

= u

n+1

mod 10;

\whi
h is one of a 
lass of equations never hitherto integrated." By 
onsidering both sides

(mod 10), we see that the sequen
e fu

n

mod 10g

n�0

is ultimately periodi
 and therefore

u

n

is k{regular for all k � 2. This sequen
e was deemed to have \no intrinsi
 mathemati
al

signi�
an
e" by Dubbey [Dub, pp. 182℄.

Example 26.

Let e(0) = 0, e(1) = 1, and de�ne e(n) to be the least integer greater than e(n � 1)

su
h that the sequen
e e(0); : : : ; e(n) 
ontains no three terms in arithmeti
 progression.

The �rst few terms of this sequen
e are

0; 1; 3; 4; 9; 10; 12; 13; 27; 28; 30; 31; 36; 37; 39; 40; 81; : : :

and in general the sequen
e 
onsists of numbers that 
an be written as distin
t powers of

3. (Compare Example 13.) We have e(2n) = 3e(n) and e(2n+1) = 3e(n) +1, and so e(n)

is 2{regular. See [ET℄ and [Guy, p. 114℄.

Example 27.

Let k be an integer � 2, and put

f

k

(n) =

X

1�i�n

blog

k

i
:

Then f

k

(n) is k{regular. In fa
t, we have

f

k

(n) = (n+ 1)blog

k

n
 �

k

blog

k

n
+1

� k

k � 1

:

See [Kn3, Se
tion 1.2.4, Exer
ise 42 (b) ℄.

The number of 
omparisons required to sort n items in many sorting algorithms forms

a 2{regular sequen
e. The following examples illustrate this:

Example 28.

Merge sort, given a list of n integers, pro
eeds as follows: �rst the left half of the list

is sorted (re
ursively), then the right half is sorted, and �nally the two halves are merged

together. The number of 
omparisons needed to merge sort n items is given by T (1) = 0,

and

T (n) = T (bn=2
) + T (dn=2e) + n� 1;

for n � 2, and it is not diÆ
ult to see that T (n) is a 2{regular sequen
e.
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The resulting sequen
e

0; 1; 3; 5; 8; 11; 14; 17; 21; : : :

is Sloane's sequen
e #963. It was dis
ussed by Levitt, Green, and Goldberg [LGG℄, who

gave the following 
losed form:

T (n) = ndlog

2

ne � 2

dlog

2

ne

+ 1:

Also see [Kn2, Se
tion 5.3.1, Equation (3)℄.

Example 29.

Let 
(n) denote the number of key 
omparisons used to sort n elements by Bat
her's

method (see, for example, [Knu2, Se
tion 5.2.2℄). The �rst few terms of this sequen
e are

0; 1; 3; 5; 9; 12; 16; 19; 26; 31; 37; 41; 48; 53; 59; 63; : : :

De�ne a(n) = 
(n+ 1) � 
(n). Then it is shown in [Knu2, Se
tion 5.2.2, Exer
ises 14, 15℄

that a(2n) = a(n) + blog

2

(2n)
; a(2n + 1) = a(n) + 1 and hen
e a(n) is 2{regular. Hen
e


(n) is 2{regular.

Example 30.

Let F (n) denote the number of key 
omparisons in Ford-Johnson sorting. Here are

the �rst few values of this sequen
e:

0; 1; 3; 5; 7; 10; 13; 16; 19; 22; 26; 30; 34; 38; 42; 46; 50; : : :

It is Sloane's sequen
e #954. A. Hadian showed that

F (n) =

X

1�k�n

dlog

2

3n

4

e;

see [Kn2, Se
tion 5.3.1℄. It is easy to show that dlog

2

ne is a 2{regular sequen
e. Then by

Theorem 2.6 dlog

2

3ne� 2 = dlog

2

3n=4e is 2{regular. Finally, by Theorem 3.1, F (n) must

be 2{regular. Knuth [Kn2, Se
tion 5.3.1, Exer
ise 14℄ gives the following \
losed form" for

F (n):

F (n) = ndlog

2

3n

4

e � b2

blog

2

6n


=3
+ b

1

2

log

2

6n
:

Example 31.

Let k(n) denote the maximum number of key 
omparisons used by list-merge sorting;

see [Kn2, Se
tion 5.2.4℄. Here are the �rst few terms of this sequen
e

0; 1; 3; 5; 9; 11; 14; 17; 25; 27; 30; 33; 38; 41; 45; 49; : : :
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Then it is known that if the binary representation of n is

2

e

1

+ 2

e

2

+ � � �+ 2

e

t

;

then

k(n) = 1� 2

e

t

+

X

1�k�t

(e

k

+ k � 1)2

e

k

:

(See [Kn2, Se
tion 5.2.4, Exer
ises 14℄).

From this it is easy to see that k(2n) = 2k(n) + 2n � 1 for n � 1 and k(2n + 1) =

k(2n) + e

1

(n) + 2

�

2

(n)+1

� 1 for n � 1. Hen
e k(n) is a 2{regular sequen
e.

Example 32.

Similarly, the number of 
omparisons needed in many merging algorithms forms a 2{

regular sequen
e. For example, let M(m;n) denote the minimum number of 
omparisons

to merge m things with n. Then

M(1; n) = dlog

2

(n+ 1)e

and

M(2; n) = dlog

2

7

12

(n+ 1)e + dlog

2

14

17

(n + 1)e:

(See [Kn2, Se
tion 5.3.2℄.) While M(1; n) is easily seen to be 2{regular, we 
an prove that

M(2; n) is 2{regular using Theorems 2.6 and 2.7.

Example 33.

In analysis of a greedy heuristi
 for a mat
hing problem, Reingold and Tarjan [RT℄

de�ne a fun
tion f(n) for positive even arguments, and write

f(n) = min

2�t�n�2

t even

��1����>0

��1����>0

f�f(t) + �f(n� t)g:

Later they show that

f(2n) =

�

2

3

f(n); if n is even;

1

3

f(n + 1) +

1

3

f(n � 1); if n is odd.

They also give the following expli
it form for f(2n):

f(2n) = 1�

X

2�i�n

3

�dlog

2

ie

:

It follows from this that f(2n) is a (1Q; 2){regular sequen
e. The �rst few values of this

sequen
e are:

1; 2=3; 5=9; 4=9; 11=27; 10=27; 1=3; 8=27; � � �
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Example 34.

The Josephus problem is as follows: the numbers from 1 to n are written in a 
ir
le.

Starting with the number 1, every 2nd number that remains is 
rossed o� until only one

is left. The \survivor" is denoted J(n). The �rst few values of J(n) are as follows:

1; 1; 3; 1; 3; 5; 7; 1; 3; 5; 7; 9; 11; 13; 15; � � � :

This problem was dis
ussed by Graham, Knuth, and Patashnik [GKP, pp. 8{16℄, who

observed that J(2n) = 2J(n) � 1 and J(2n + 1) = 2J(n) + 1 for n � 1. It follows that

J(n) is 2{regular.

The same problem, where 2 is repla
ed by k and the result is the �rst un
rossed-

o� number en
ountered when there are only k � 1 numbers left, does not appear to be

k-regular in general. See [GKP, pp. 79{81℄.

We are grateful to P. Dumas for pointing out this example.

Example 35.

We show that the sequen
e of primes fp(n)g

n�0

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; : : :

is not k{regular. Suppose it were. Then using Lemma 4.1, we see that fp(k

n

)g

n�0

must

satisfy a linear re
urren
e. Then if

lim

n!1

p(k

n

)

nk

n

exists, it must be an algebrai
 number. But from the prime number theorem,

lim

n!1

p(k

n

)

nk

n

= log k;

whi
h is trans
endental, a 
ontradi
tion.

VIII. Some Open Problems.

1. Let R

0

= 1Q. Prove that if fS(n)g

n�0

is k

1

-regular and k

2

-regular, and k

1

and k

2

are multipli
atively independent, then the asso
iated power series

P

n�0

S(n)X

n

2 1Q[[X℄℄

is a rational fun
tion. In the 
ase where R

0

is �nite, this is a result of Cobham [Cob2℄.

2. Determine all the units of the ring of k-regular power series.

3. Obtain trans
enden
e results for the real numbers

P

n�0

S(n)p

�n

, where S(n) is

p-regular and

P

n�0

S(n)X

n

is not a rational fun
tion. See [LP2℄.
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