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Abstract A generalized continued fraction algorithm associates every real number
x with a sequence of integers; x is rational iff the sequence is finite. For a fixed
algorithm A, call a sequence of integers valid if it is the result of A on some input x0.
We show that, if the algorithm is sufficiently well behaved, then the set of all valid
sequences is accepted by a finite automaton.

1 Introduction

Simple continued fractions are finite expressions of the form

a0 +
1

a1 +
1

a2 + · · ·+ 1
an

,

usually abbreviated [a0,a1, . . . ,an], or infinite expressions of the form

a0 +
1

a1 +
1

a2 + · · ·
,
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usually abbreviated [a0,a1, . . .]. The latter expression is defined as the limit as n→
∞, if it exists, of the corresponding finite expression ending in an. The ai are called
the partial quotients of the continued fraction.

The standard bracket notation above for continued fractions conflicts with the
standard notation [x,y] for closed intervals of the real line. We abuse notation by
using both and trust that the reader can disambiguate if necessary.

The simple continued fraction algorithm, on the other hand, is the following
algorithm that, given a real number x, produces a finite sequence of partial quotients
a0,a1, . . . ,an or infinite sequence of partial quotients a0,a1, . . . , such that x =
[a0,a1, . . . ,an] or x = [a0,a1, . . .].

Algorithm SCF(x); outputs (a0,a1, . . .):
SCF1. Set x0← x; set i← 0.
SCF2. Set ai← �xi�.
SCF3. If ai = xi then stop. Otherwise set xi+1← 1/(xi− ai); set i← i+ 1 and

go to step SCF2.

For example,

SCF(
52
43

) = (1,4,1,3,2)

SCF(π) = (3,7,15,1,292, . . .)

SCF(
√

2) = (1,2,2,2, . . .)

SCF(e) = (2,1,2,1,1,4,1,1,6,1,1,8, . . .)

In the literature, these two different concepts

• The function mapping (a0, . . . ,an) to the rational number [a0, . . . ,an], or
(a0,a1, . . .) to the real number [a0,a1, . . . , ]; and

• The algorithm taking x as input and producing the ai

have, unfortunately, often been confused. This is probably due to two reasons:
the fact that the birth of continued fractions [4] long predates the appreciation of
algorithms as mathematical objects [10] and the fortunate happenstance that by
imposing some simple rules on the partial quotients, we can ensure that that there is
exactly one valid expansion for each real number.

The concept of “rules” that describe the set of possible outputs of a continued
fraction expansion has appeared before in many places. For example, Hurwitz [7]
used them to describe a nearest integer continued fraction algorithm in Z[i]. It is our
goal to formalize the concept and explain it in terms of automata theory.



Description of Generalized Continued Fractions by Finite Automata 323

As has long been known, if x is a real irrational number, then the set of outputs
produced by the SCF algorithm is exactly

{(a0,a1, . . .) : ∀i ai ∈ Z and ai ≥ 1 for i≥ 1 }.

On the other hand, if x is a rational number, then the set of outputs produced by the
SCF algorithm is exactly

{(a0,a1, . . . ,an) : ∀i ai ∈ Z and ai ≥ 1 for 1≤ i≤ n and an ≥ 2 if n≥ 1 }.

Hence, if we insist that in any expression [a0,a1, . . .], we must have

• ∀i ai ∈ Z;
• ai ≥ 1 for i≥ 1;
• If the expansion terminates with an, then an ≥ 2;

then the ambiguity between the function and the algorithm disappears. The question
remains about how we could discover rules like this. This becomes important
because there exist many other versions of the continued fraction algorithm, and
we would like to have a similar characterization of the outputs.

For example, the ceiling algorithm (CCF) replaces the use of the floor function
with the ceiling; that is, it replaces step SCF2 with

SCF2′. Set ai← �xi
.
For example,

CCF(
52
43

) = [2,−1,−3,−1,−3,−2]

CCF(π) = [4,−1,−6,−15,−1,−292, . . .]

CCF(
√

2) = [2,−1,−1,−2,−2− 2,−2,−2, . . .]

CCF(e) = [3,−3,−1,−1,−4,−1,−1,−6,−1,−1,−8, . . .]

The expansions produced by CCF include negative partial quotients, and obey
the following rules:

• ∀i ai ∈ Z.
• ai ≤−1 for i≥ 1.
• If the expansion ends with an and n≥ 1, then an �=−1.

Indeed, it is easy to see that if

SCF(−x) = [a0,a1,a2, . . .],

then
CCF(x) = [−a0,−a1,−a2, . . .].
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Yet another expansion is the so-called nearest integer continued fraction (NICF).
It is generated by an algorithm similar to SCF above, except that step SCF2 is
replaced by

SCF2′′. Set ai← �xi +
1
2�.

For example,

NICF(
52
43

) = (1,5,−4,−2)

NICF(π) = (3,7,16,−294, . . .)

NICF(
√

2) = (1,2,2,2,2, . . .)

NICF(e) = (3,−4,2,5,−2,−7,2,9,−2,−11, . . .)

The partial quotients generated by NICF satisfy the following rules:

• ∀i ai ∈ Z;
• ai ≤−2 or ai ≥ 2 for i≥ 1;
• If ai =−2 then ai+1 ≤−2;
• If ai = 2 then ai+1 ≥ 2; and
• If the expansion terminates with an, then an �= 2.

(Actually, the NICF is usually described slightly differently in the literature, but
our formulation is essentially the same. See [8].)

In this paper, we are concerned with the following questions:

1. Which functions f are suitable replacements for the floor function in algorithm
SCF (i.e., yield generalized continued fraction algorithms)?

2. Which of these functions correspond to generalized continued fraction al-
gorithms that have “easily describable” outputs (i.e., accepted by a finite
automaton)?

In this paper, we will answer question (1) by fiat, and then examine the
consequences for question (2). Before we do, however, we mention a useful
connection with another famous type of continued fraction.

2 Semiregular Continued Fractions

There is a close relationship between the continued fractions we study here and what
is called semiregular continued fractions in the literature. A semiregular continued
fraction is a finite or infinite expression of the form

b0 +
ε1

b1 +
ε2

b2 +
ε3

b3 + · · ·

(1)
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where

• bi ∈ Z;
• bi ≥ 1 for i≥ 1;
• εi =±1 for i≥ 1;
• bi + εi+1 ≥ 1 for i≥ 1.

It is easily seen that (1) is equivalent to

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

, (2)

where ai = ε1ε2 · · ·εibi for i≥ 0. This expresses a semiregular continued fraction in
the form that we study.

This connection extends to the convergents. Setting, as usual, p−1 = 1, q−1 = 0,
p0 = a0, and q0 = 1, and pn = an pn−1 + pn−2, qn = anqn−1 + qn−2, the theory
of continued fractions (or an easy induction) gives pn/qn = [a0, . . . ,an]. The
convergents to a semiregular continued fraction are defined similarly: p′−1 = 1,
q′−1 = 0, p′0 = b0, q′0 = 1, p′n = bn p′n−1 + εn p′n−2, and q′n = bnq′n−1 + εnq′n−2. If the
ai and bi are related as above, an easy induction gives

p′2n = ε2ε4 · · ·ε2n p2n

q′2n = ε2ε4 · · ·ε2nq2n

and

p′2n−1 = ε1ε3 · · ·ε2n−1 p2n−1

q′2n−1 = ε1ε3 · · ·ε2n−1q2n−1

for n≥ 1.
We will need the following classical results on semiregular continued fractions

(see, e.g., [13, 18, §37, 38, pp. 135–143]):

Theorem 2.1. Let

b0 +
ε1

b1 +
ε2

b2 +
ε3

b3 + · · ·
be a semiregular continued fraction obeying the rules above. Then

(a) The sequence p′n/q′n converges;
(b) limn→∞ |q′n|=+∞;
(c) For a given infinite sequence of signs (εi)i≥1, the expansion of a given irrational

real number exists and is unique, provided bi + εi+1 ≥ 2 infinitely often.
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3 Real Integer Functions and Finite Automata

Let f : R→ Z. We say f is a real integer function if

(a) | f (x)− x|< 1 for all x ∈ R;
(b) f (x+ j) = f (x)+ j for all x ∈ R, j ∈ Z.

Examples include the floor function f (x) = �x�, the ceiling function f (x) = �x
,
and the round function f (x) = �x+ 1

2�.
Real integer functions induce generalized continued fraction algorithms by

imitating algorithm SCF above:

Algorithm CF f (x); outputs (a0,a1, . . .):
CF1. Set x0← x; set i← 0.
CF2. Set ai← f (xi).
CF3. If ai = xi then stop. Otherwise set xi+1← 1/(xi− ai), i← i+ 1

and go to step CF2.

For each such expansion, we have an associated sequence of convergents pn and
qn, defined as in Sect. 2. The theory of continued fractions (or an easy induction)
gives pn/qn = [a0, . . . ,an] and furthermore x = [a0, . . . ,an,xn+1], for all n≥ 0.

Now we examine the properties of the expansion of rational numbers.

Theorem 3.2. Let f be an integer function and let x be a real number. The
algorithm CF f (x) terminates iff x is rational. Furthermore, if CF f (x) terminates,
with (a0,a1, . . .an) as output, then x = [a0,a1, . . . ,an].

Proof. Suppose x is rational. The algorithm successively replaces xi by xi+1.
Suppose i ≥ 1 and xi = p/q for p,q ∈ Z with q ≥ 1. If xi ∈ Z, that is, if q | p,
then xi = f (xi) and the algorithm terminates immediately. Then either ai = �xi�
or ai = �xi
. Since xi+1 = (xi − ai)

−1, we have either xi+1 = q/(p mod q) or
xi+1 = −q/((−p) mod q). In both cases we have have replaced a denominator of
q with a number strictly less than q. Thus after at most q− 1 steps, we will reach a
denominator of 1, and the algorithm terminates.

For the other direction, an easy induction gives x = [a0,a1, . . . ,an−1,xn]. If the
algorithm terminates, then xn = an and we have x = [a0,a1, . . . ,an], a rational
function of the integers a0, . . . ,an. ��

Next, we prove two useful lemmas. The first concerns occurrences of partial
quotients±1, and the second concerns convergents.

Lemma 3.3. Suppose f is an integer function and let ai and xi be defined as in the
algorithm CF f . Then

(a) If ai = 1 for i≥ 1, then xi+1 > 1 and ai+1 ≥ 1.
(b) If ai =−1 for i≥ 1, then xi+1 <−1 and ai+1 ≤−1.
(c) There exists no i such that ai+t = (−1)t2 for t ≥ 0.
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Proof. (a) Suppose ai = 1. Then there is a corresponding xi from the algorithm with
f (xi) = ai. Since i≥ 1, we have xi > 1 or xi <−1. Since |xi− f (xi)|< 1 by the
definition of integer function, we have |xi−1|< 1. It follows that 1 < xi < 2, so
xi+1 = 1/(xi− 1) satisfies xi+1 > 1. Since |xi+1− ai+1|< 1, we have ai+1 ≥ 1.

(b) Analogous to (a).
(c) It is easy to see that 1 = [2,−2,2,−2, . . .]. If there exists i such that ai+t =

(−1)t2 for t ≥ 0, then in the algorithm we have xi = ai− 1, a contradiction.
��

Lemma 3.4. If |qn| ≤ |qn−1| then |qn−2|< |qn−1| and either

(a) sgnqn−1 �= sgnqn−2 and an = 1; or
(b) sgnqn−1 = sgnqn−2 and an =−1.

In both cases we have |qn+1|> |qn|.
Proof. We verify this by induction. Consider the smallest index n such that
|qn| ≤ |qn−1|. Then necessarily |qn−2|< |qn−1|. Suppose sgnqn−1 �= sgnqn−2. Since
qn = anqn−1 + qn−2, if an ≤ −1 or an ≥ 2 then |qn| = |anqn−1 + qn−2| > |qn−1|, a
contradiction. So an = 1, and furthermore sgnqn−1 = sgnqn.

Now it follows from Lemma 3.3 that an+1 ≥ 1, so |qn+1| = |an+1qn + qn−1| ≥
|qn + qn−1|> |qn|.

The analogous analysis works if sgnqn−1 = sgnqn−2.
Since |qn+1| ≥ |qn|, if we let n′ be the smallest index n′ > n such that |qn′ | ≤

|qn′−1|, then n′ > n + 1 and |qn′−2| < |qn′−1|. Now we are in exactly the same
situation as above, with n′ replacing n, and the induction step proceeds in the same
way. ��

Next, we discuss the properties of the expansion of irrational numbers. We start
by characterizing those real numbers whose expansion has a given prefix.

For a list a = (a0,a1,a2, . . . ,an, . . .) containing at least n+ 1 elements, we let
prefn(a) = (a0, . . . ,an) be the prefix consisting of the first n+ 1 elements.

Theorem 3.5. Let f be an integer function, and a0,a1, . . . a sequence of integers.
Define S f (0) = f−1[0] and

S f (n) = (S f (n− 1)−1 ∩ f−1[an])− an = (S f (n− 1)−1− an) ∩ f−1[0]

for n≥ 1. Then

S f (n) = {ξ ∈R : prefn(CF f ([a0,a1, . . . ,an−1,an + ξ ])) = (a0,a1, . . . ,an)}

for n≥ 0.

Proof. By induction on n. The base case is n = 0. Here pref0(CF f ([a0 +ξ ])) = (a0)
iff f (a0 + ξ ) = a0 iff f (ξ ) = 0, and so ξ ∈ f−1[0], as required.

Now assume the result is true for n′ ≤ n; we prove it for n+ 1. By definition
S f (n+ 1) = (S f (n)−1− an+1) ∩ f−1[an+1]. Then
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ξ ∈ S f (n+ 1) ⇐⇒ ξ ∈ S f (n)
−1− an+1 and ξ ∈ f−1[0]

⇐⇒ an+1 + ξ ∈ S f (n)
−1 and ξ ∈ f−1[0]

⇐⇒ (an+1 + ξ )−1 ∈ S f (n) and ξ ∈ f−1[0]

⇐⇒ prefn(CF f ([a0, . . . ,an−1,an +(an+1+ ξ )−1]))

= (a0, . . . ,an) and ξ ∈ f−1[0]

⇐⇒ prefn(CF f ([a0, . . . ,an−1,an,an+1 + ξ ]))

= (a0, . . . ,an) and ξ ∈ f−1[0]

⇐⇒ prefn+1(CF f ([a0, . . . ,an−1,an,an+1 + ξ ])) = (a0, . . . ,an+1),

which completes the proof. ��
Corollary 3.6. Let f be an integer function, and let the sets S f (n) be defined as in
the previous theorem. Then for n≥ 0 we have

{x ∈ R : prefn(CF f (x)) = (a0,a1, . . . ,an)}= { pn + ξ pn−1

qn + ξ qn−1
: ξ ∈ S f (n)}.

Next, we prove an approximation theorem.

Theorem 3.7. Suppose prefn(CF f (x)) = (a0,a1, . . . ,an). Then

∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
≤
∣
∣
∣
∣

1
qn

∣
∣
∣
∣
.

Proof. From Corollary 3.6 we know that x= pn+ξ pn−1
qn+ξ qn−1

for some ξ ∈ S f (n). But each

S f (n) is a subset of f−1[0], so −1 < ξ < 1. Hence

∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
=

∣
∣
∣
∣

pn + ξ pn−1

qn + ξ qn−1
− pn

qn

∣
∣
∣
∣

=

∣
∣
∣
∣

ξ
qn(qn + ξ qn−1)

∣
∣
∣
∣

<

∣
∣
∣
∣

1
qn(qn + ξ qn−1)

∣
∣
∣
∣
.

Now suppose |qn| > |qn−1|. Then since |ξ | < 1, and the qi are integers, we have
|qn + ξ qn−1| ≥ 1.

Otherwise |qn| ≤ |qn−1|. Then from Lemma 3.4, we know that an =±1. Suppose
an = 1 (the case an = −1 is analogous). Then also from Lemma 3.4, we know that
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sgnqn−1 = sgnqn. Also from Lemma 3.3, we know that xn+1 > 1 and so ξ > 0.
Thus |qn + ξ qn−1| > |qn|. It follows that |qn(qn + ξ qn−1)| ≥ |qn|, which completes
the proof. ��
Theorem 3.8. If CF f (x) = (a0,a1, . . .) then limn→∞[a0,a1, . . . ,an] exists and
equals x.

Proof. Suppose CF f (x) = (a0,a1, . . .). Consider pn/qn = [a0, . . . ,an]. From Theo-
rem 3.7, we know that |x− pn

qn
| < | 1

qn
|. From Lemma 3.3 we know that the partial

quotients fulfill the rules corresponding to a semiregular continued fraction, and
hence from Theorem 2.1 we know that the sequence [a0, . . . ,an] converges to some
limit α . Since from Theorem 2.1 we also know that |qn|→+∞, it follows that x=α .

��
The main result of this paper is that the outputs of CF f are easily describable

in most of the interesting cases, including the examples SCF, CCF, and NICF
mentioned previously. Let us define more rigorously what we mean by “easily
describable.”

Call a finite sequence of integers valid if it is the result of CF f (x) for some
rational number x. We envision a deterministic finite automaton which reads a
purported finite expansion a = (a0,a1, . . .an) and reaches a final state on the last
input iff a is valid.

Definition 3.9. A finite automaton is a 5-tuple (Q,Σ,δ ,q0,F) where Q is a finite
set of states, Σ is an (not necessarily finite) input alphabet, q0 ∈Q is the initial state,
F ⊆Q is the set of final states, and δ is the transition function mapping Q×Σ to Q.
The transition function δ may be a partial function; i.e., δ (q,a) may be undefined
for some pairs q,a.

We extend δ to a function which maps Q×Σ∗ to Q in the obvious fashion.

The reader to whom these definitions are unfamiliar should consult [6].
The acceptance criterion for infinite expansions clearly needs to be different,

since in this case there is no “last” partial quotient. We address the case of infinite
expansions in Sect. 6.

One minor problem with this model is that the ai belong to Z, but in defining
finite automata we usually insist that our alphabet Σ be finite. We can get around
this in one of two ways: first, we could expand the definition of finite automata
so that there can be infinitely many transitions (but still only finitely many states).
However, such a model is too arbitrary, since allowing infinitely many transitions
allows us to accept a set of expansions that is not even recursively enumerable.
It suffices to allow only finitely many transitions, where each transition must be

• Either a single integer, or
• A set of the form {x ∈ Z : x≥ α}, or
• A set of the form {x ∈ Z : x≤ α}.

As an alternative, we could redefine our strings as numbers encoded in a
particular base. That this is equivalent is clear, since the base-k representation of sets
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like {x ∈ Z : x ≥ α} forms a regular language. So either approach is satisfactory,
but for simplicity we choose the first.

Notation. If A⊆ R is a set, then by A−1 we mean the set of reciprocals {x ∈ R−
{0} : x−1 ∈ A}. Thus, for example, [− 1

2 ,
1
2 ]
−1 = (−∞,−2] ∪ [2,∞) and [1,∞)−1 =

(0,1]. If f is a function, then by f−1[a] we mean, as usual, the set {x ∈ R : f (x) =
a}. If A is a set, then by A− a we mean the set {x : x+ a ∈ A}. We will say x is
quadratic if x is the real root of a quadratic equation with integer coefficients.

Definition 3.10. Let f be a real integer function. Then we say that the finite
automaton A = (Q,Z,δ ,q0,F) accepts the outputs of the algorithm CF f if
δ (q0,a0a1a2 · · ·an) ∈ F iff there exists x ∈Q such that CF f (x) = (a0,a1, . . . ,an).

The object of this paper is to prove the following theorem:

Theorem 3.11. Let f be an integer function and suppose f−1[0] is the finite union
of intervals. Then there exists a finite automaton accepting the outputs of CF f iff all
the endpoints of the intervals are rational or quadratic.

In Sect. 4, we will prove one direction of this theorem; in Sect. 5, we prove the
other.

Now we give these automata for the three continued fraction algorithms
discussed so far: SCF, CCF, and NICF (Figs. 1–3).

{x ∈ Z : x ≥ 2}

1
1

{x ∈ Z : x ≥ 2}

Z

q2q1q0

Fig. 1 Automaton for the
simple continued fraction
algorithm SCF

−1

{x ∈ Z  :  x ≤ −2}

−1
{x ∈ Z  :  x ≤ −2}

Z

q2q1q0

Fig. 2 Automaton for the
ceiling algorithm CCF

{x ∈ Z : x ≥ 3}

{x ∈ Z : x ≤− 3}

2

{x ∈ Z : x ≤− 3 or x ≥3}
q3

q2

q1q0

−2

2

−2
Z

Fig. 3 Automaton for the
nearest integer continued
fraction algorithm NICF
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Remark 12. No simple characterization seems to exist in the case where f is not the
finite union of intervals. In Sect. 5, we will give an example of an f that is accepted
by a finite automaton, but f−1[0] is not the finite union of intervals.

4 One Direction of the Theorem

We first prove the following theorem:

Theorem 4.12. Suppose f−1[0] is the finite union of intervals with rational or
quadratic endpoints. Consider all possible sets S0,S1, . . . , constructed in Theo-
rem 3.5, corresponding to all possible input sequences. Then among these there
are only finitely many distinct sets.

Proof. If S is a finite union of intervals, then S−1− a is also such a union. Hence
T = (S−1−a) ∩ f−1[0] is such a union. The endpoints e of intervals of T are either
those of f−1[0], or e = 1/d− f (1/d), where d is an endpoint of S. Since f (1/d)
equals either �1/d� or �1/d
, it will suffice to prove the following:

Lemma 4.14. Define s1 : x→ (1/x)−�1/x� and s2 : x→ (1/x)−�1/x
. Consider
the monoid u formed by the maps s1 and s2 under composition. Let u(x) be the orbit
of x under elements of u.

Then u(x) is finite iff x is rational or quadratic.

Proof. One direction is easy. Assume u(x) is finite. Then in particular the set

x,s1(x),s
(2)
1 (x), . . .

is finite. Hence we have s( j)
1 (x) = s(k)1 (x) for some j �= k. But it is easily proved by

induction that
x = [0,a0,a1, . . . ,an−1 + s(n)1 (x)]

for some sequence of integers a0,a1, . . .; hence there exist integers such that

x =
a j + b js

( j)
1 (x)

c j + d js
( j)
1 (x)

,

and similarly

x =
ak + bks(k)1 (x)

ck + dks(k)1 (x)
.

Thus we see that s( j)
1 (x) is the root of a quadratic equation, and so is either quadratic

or rational. Thus x itself is either quadratic or rational.
If x is rational, the other direction follows easily, using an argument exactly like

that in the proof of Theorem 3.2. If x is the root of a quadratic equation with integer
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coefficients, the result follows immediately from an old theorem of Blumer [3, Satz
IX, p. 50]; for a more recent proof, see [16, Theorem A, p. 225]. ��

This completes the proof of Theorem 4.12. ��
We can now prove one direction of Theorem 3.11. Given an integer function f

such that f−1[0] is the finite union of intervals with rational or quadratic endpoints,
we create a finite automaton A f as follows: the states of A f are the distinct sets S f (n)
constructed in Theorem 3.5 for all possible real numbers, together with a start state
q0. For convenience, we rename the states as q0,q1, . . . ,qt for some t ≥ 1. From our
results above, we know that the number of states is finite. We define δ (q0,a0) =
q1 = f−1[0] for all a0 ∈ Z and inductively define

δ (qi,a) = q j

where q j =(q−1
i ∩ f−1[a])−a, provided this set is nonempty. We say qi ∈F if 0∈ qi.

It remains to verify that (a) the automaton accepts CF f ; and (b) the transitions
can be characterized finitely, as discussed previously.

Corollary 4.15. δ (q0,a0a1 · · ·an) ∈ F iff there exists x ∈ Q such that CF f (x) =
(a0,a1, . . . ,an).

Proof. Assume δ (q0,a0a1 · · ·an)∈ F . Then by the definition of the set of final states
F , we must have 0∈ δ (q0,a0a1 · · ·an). By Theorem 3.2 the first n+1 outputs of the
algorithm CF f on input [a0,a1, . . . ,an] are precisely (a0,a1, . . . ,an). Hence we may
take x = [a0,a1, . . . ,an].

Now assume that there exists x ∈ Q such that CF f (x) = (a0,a1, . . . ,an). Then
from the definition of CF f , we see that xn = an; hence

0 = xn− an ∈ δ (q0,a0a1 · · ·an)

which shows that δ (q0,a0a1 · · ·an) is a final state. ��
The final step is to characterize the transitions. If the transition comes from q0,

then it is labeled Z, which we can write, for example, {x : x ≥ 0} together with
{x : x < 0}. Otherwise consider a transition of the form δ (qi,a) = q j where

q j = (q−1
i ∩ f−1[a])− a = (q−1

i − a)∩ f−1[0].

If qi is the finite union of intervals, then so is q−1
i and q−1

i −a. If q−1
i is bounded, then

as a ranges over all integers, there are only finitely many nonempty intersections
of (q−1

i − a) with f−1[0]. If q−1
i is unbounded, say on the positive axis, then the

intersection of (q−1
i − a) with f−1[0] is the same for all sufficiently large a. The

same result holds when q−1
i is unbounded on the negative axis. Hence there exists

α , β such that the transition on each x ≥ α is the same, and the transition on each
x≤ β is the same.
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Z

4

−1

q0 q1

q2

q3

{x ∈ Z : x ≤ −2 or x ≥ 5}
4

{x ∈ Z : x ≤ −2 or x ≥ 5}

−1

q4
{x ∈ Z : x ≤ −3 or x ≥5}

4

−2
−2

Fig. 4 Automaton corresponding to f−1[0] = [−
√

2
2 , 2−√2

2 )

Combining this observation with Lemma 4.14 completes the proof of one
direction of Theorem 3.11. ��

We now give some examples of the construction of the finite automaton.

Example 4.16. Let us obtain the description of the outputs for CF f for f (x) = �x+√
2

2 �. We find

q1 = f−1[0] = [−
√

2
2

,
2−√2

2
)

q2 = [−
√

2
2

,1−
√

2]

q3 = (
√

2− 2,
2−√2

2
)

q4 = [1−
√

2,
2−√2

2
).

The full automaton is given below in Fig. 4.

Example 4.17. Our next example corresponds to the integer function defined by
f−1[0] = (−1,− 1

2 ] ∪ {0} ∪ ( 1
2 ,1). We have

q1 = f−1[0]

q2 = {0} ∪ (
1
2
,1)

q3 = (−1,−1
2
]

q4 = (
1
2
,1).

This gives the automaton below (Fig. 5).
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q1

q2

q3

q4

Z

−2 1

1

−1,2

−1

2

q0
1

2−2

Fig. 5 Automaton generating
bounded partial quotients

These expansions were introduced by Lehner [11] and further studied by Dajani
and Kraaikamp [5]. An interesting feature of this expansion is that the partial
quotients all lie in the set {−2,−1,1,2}. For example, the expansion of 52

43 is
(2,−2,2,−1,−1,−2,2,−1,−1,−2). One undesirable aspect of these expansions

is their slow convergence; the expansion of of 1
2n is (1,

2n−1
︷ ︸︸ ︷

−2,2,−2,2, . . .). Another
undesirable aspect is that there exist infinite paths through the automaton (such as
(1,−2,2,−2,2,−2,2, . . .)) which do not correspond to the expansion of any real
x. However, this is essentially the only problematic case, as we will see below in
Theorem 6.14.

5 Completing the Proof of Theorem 3.11

Proof. We now wish to show that if f−1[0] consists of the finite union of intervals,
but one of those intervals has an endpoint that is not rational or quadratic, then no
finite automaton can accept CF f .

Assume that such an automaton A exists. Then we may assume that each
state is in fact reachable from q0; otherwise this state may be discarded without
affecting A. For each state q j, construct an input sequence a0a1 · · ·ai such that
δ (q0,a0a1 · · ·ai) = q j. Let us label each state q j with a subset of Q, L(q j), by the
following rule: If δ (q0,a0a1 · · ·ai) = q j, then

L(q j) = {x ∈Q : prefi(CF f ([a0,a1, . . . ,ai−1,ai + x])) = (a0,a1, . . . ,ai)}.

We need to show that this map is indeed well defined, in the sense that different
paths from q0 to q j give the same labels L(q j). Assume that

δ (q0,a0a1 · · ·ai) = q j
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and
δ (q0,b0b1 · · ·bk) = q j,

and there exists a rational number p such that

p ∈ S1 = {x ∈Q : CF f ([a0,a1, . . . ,ai−1,ai + x]) = (a0,a1, . . . ,ai, . . .)}

but

p �∈ S2 = {x ∈Q : CF f ([b0,b1, . . . ,bk−1,bk + x]) = (b0,b1, . . .bk, . . .)}.

Write CF f (p) = (0,ai+1, . . . ,an); by our definition of what it means to accept the
output of CF f , we know that

δ (q j,ai+1 · · ·an) = qr ∈ F,

a final state. Let y = [b0,b1, . . . ,bk,ai+1, . . .an]. Then since the automaton is in state
q j upon reading inputs b0b1 · · ·bk, we have

δ (q0,b0b1 · · ·bkai+1 · · ·an) = qr.

Hence CF f (y) = (b0,b1, . . . ,bk,ai+1, . . .an). But then y = [b0,b1, . . . ,bk + p] which
shows that indeed p ∈ S2, a contradiction.

Thus we may assume that sets Li = L(qi) are well defined. Let Ā denote the
closure of the set A in R, and consider the sets L̄i. I claim that since f−1[0] consists
of the finite union of intervals, so does each of the sets L̄i; this follows easily from
the definition of CF f . Suppose δ (qi,a) = q j; then the endpoints e of intervals of L̄ j

are those of f−1[0] or are related to the endpoints E of L̄i by the equation

e =
1
E
− a.

Since f−1[0] contains an endpoint which is not rational or quadratic, so must L̄0.
Hence there exists a transition δ (q0,a) = qi such that L̄i contains an endpoint which
is not rational or quadratic. Continuing in this fashion, and remembering that there
are only a finite number of states, we eventually return to a state previously visited,
which gives one of the two equations

e = [0,a1, . . . ,ak]

or
e = [0,a1, . . . ,ak + e]

which shows that e is rational or quadratic, contrary to assumption.
This completes the proof of Theorem 3.11. ��
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Now let us give an example of an f such that f−1[0] is not the finite union of
intervals, but nevertheless there is a finite automaton accepting CF f .

Let f (x) be defined by

f (x) =

{

�x�, if x is rational;

�x
, if x is irrational.

Then

f−1[0] = {x : x rational, 0≤ x < 1}∪{x : x irrational, −1 < x < 0}.
Clearly f−1[0] cannot be written as the finite union of intervals. Then it is easily
verified that the procedure of Sect. 4 generates a finite automaton with four states
that accepts CF f .

It may be of interest to remark that the automata accepting the result of CF f

may be arbitrarily complex. For example, it can be shown that the automaton
corresponding to

f−1[0] = [−Fn−1

Fn
,

Fn−2

Fn
)

has n+ 1 states. (Here Fn denotes the nth Fibonacci number.)

6 Infinite Expansions

So far we have just addressed the case of finite expansions, the ones arising from
rational number. In this section we handle irrational numbers. We say that an infinite
sequence (a0,a1, . . .) is valid for an integer function f if it is the output of the
algorithm CF f on some input x.

In the remainder of this section we assume that f is an integer function such that
f−1[0] consists of a finite union of intervals with rational or quadratic endpoints. We
construct the associated automaton A f as in Sect. 3. We would expect that infinite
paths through A f correspond in a 1-1 fashion with outputs of CF f . However, this is
not quite true; there can be certain infinite paths that do not correspond to any output
of CF f . By ruling these out, we can get the correspondence we desire.

Theorem 6.13. If CF f (x) = a = (a0,a1, . . .) and A f = (Q,Σ,δ ,q0,F), then
δ (q0,a0a1 · · ·an) exists for all n≥ 0.

Proof. By induction on n. Clearly this is true for n = 0, since there is a transition
labeled with each a ∈ Z leaving q0 to q1. Now assume the claim is true for all
n′ < n; we prove it for n. Now prefn(CF f (x)) = (a0,a1, . . . ,an) if and only if
prefn−1(CF f (x)) = (a0, . . . ,an−1) and xn = (xn−1− an−1)

−1 and an = f (xn). Let
q = δ (q0,a0 . . .an−1); then by definition we have a transition out of q labeled an if
and only if the set q−1 ∩ f−1[an] is nonempty. But xn ∈ q−1 ∩ f−1[an], so there is
indeed such a transition. ��
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Finally, we characterize the infinite paths through A f that correspond to the
expansion associated with some irrational number.

Theorem 6.14. Let a = (a0,a1, . . .) be an infinite path through A f that has no
infinite suffix of the form (2,−2,2,−2, . . .). Then there is an irrational real number
x such that CF f (x) = a.

Proof. Take an infinite path through A f labeled with (a0,a1, . . .). For each finite
prefix (a0,a1, . . . ,an), we can consider the continued fraction [a0, . . . ,an] and the
corresponding convergents pn,qn. Then CF f (pn/qn) = (a0,a1, . . . ,an). Further-
more, the pn/qn converge to x = [a0,a1, . . .] and |x− pn/qn|< |1/qn|.

From our correspondence with semiregular continued fractions given in Sect. 2,
the continued fraction [a0,a1, . . .] corresponds to a certain semiregular continued
fraction, with pattern of signs in the numerator dependent on the pattern of signs of
the ai, as given in the equivalence between (1) and (2). However, from Theorem 2.1,
for a given pattern of signs, an infinite semiregular continued fraction expansion
is unique, provided it obeys the rule that ai + εi+1 ≥ 2 infinitely often. We have
already seen that ai + εi+1 ≥ 1 for our expansions. The case where ai + εi+1 = 1
for all but finitely many i corresponds to (in our notation) an expansion that looks
like [. . . ,2,−2,2,−2, . . .] with an infinite suffix of (2,−2) repeating. However, by
hypothesis, our path A f has no such suffix. Therefore, it corresponds to a unique
real number x. ��

7 Variations

Exactly the same result holds for minor variations of our continued fraction
algorithm. For example, suppose we have some finite list of integer functions
f0, f1, . . . , fn−1 and apply them periodically, as follows:

Algorithm PSCF(x); outputs (a0,a1, . . .):
PSCF1. Set x0← x; set i← 0.
PSCF2. Set ai← fi mod n(x).
PSCF3. If ai = xi then stop. Otherwise set xi+1← 1/(xi−ai); set i← i+1 and

go to step PSCF2.

Then the analogous version of Theorem 3.11 holds. The only difference is that
the automaton needs to keep track of the current value of i, taken modulo n. For
example, suppose we let n = 2 and f0(x) = �x
 and f1(x) = �x�. The resulting
algorithm gives what is often called the reduced simple continued fraction expansion
in the literature. The corresponding automaton is given below (Fig. 6).
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{x ∈ Z : x ≥ 2}

Z

q2q1q0

{x ∈ Z : x ≤ −2}Fig. 6 Automaton for the
reduced simple continued
fraction algorithm

Because the signs of terms alternate, these continued fractions are often written
in the form

a0− 1

a1− 1
a2−·· ·

,

where ai ∈ Z and ai ≥ 2 for i≥ 1.
Another variation is to treat positive and negative numbers differently. For

example, we could define

f (x) =

{

�x+ 1
2�, if x≥ 0;

�x− 1
2
, if x < 0.

Our results, with small differences, also apply here.

8 Concluding Remarks

Our results apply to, for example, the α-continued fractions of Tanaka and Ito [17],
which correspond to the integer function f (x) = �x−α + 1�, where 1

2 ≤ α ≤ 1 is a
real number.

Several other writers have noted connections between finite automata and
continued fractions. One of the best-known papers is that of Raney, who showed
how to obtain the simple continued fraction for

β =
aα + b
cα + d

in terms of the continued fraction for α . See [2, 14] for more details.
Istrail considered the language consisting of all prefixes of the continued fraction

for x, and observed that this language is context-free and non-regular iff x is a
quadratic irrational [9].

Allouche discusses several applications of finite automata to number theory,
including continued fractions [1].

In this paper, we have been concerned with a different approach; namely,
describing the “set of rules” associated with a generalized continued fraction
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algorithm. One immediately wonders if similar theorems may be obtained for
continued fraction algorithms in Z[i], such as those discussed by Hurwitz [7] and
McDonnell [12].

In [15] the author proved that the McDonnell’s complex continued fraction
algorithm can be described by a finite automaton with 25 states. The corresponding
result for Hurwitz’s algorithm is not known.

Acknowledgements I am very grateful to the referee for many suggestions that considerably
improved the chapter.
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18. H. Tietze, Über Kriterien für Konvergenz und Irrationalität unendlichen Kettenbrüche. Math.
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