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Before starting my talk, 

let me show you …..



Where is the University of Fukui?

47 prefectures

Tokyo - Fukui:
3 hours 30 
minutes (by  
train) 

Osaka - Fukui:
1 hour 50 
minutes (by 
train) 



Fukui City

tadpole



Let’s get back to our main theme!



Synopsis of Today’s Talk

 This seminal talk is all about: 
• A state complexity measure of languages on 1-

way/2-way quantum finite automata. 
 I will explore 

• Basic properties of the quantum state complexity 
measure.

 I will demonstrate
• A new lower bound technique for the quantum state 

complexity. 

 homepage ↪ http://TomoyukiYamakami.ORG
 twitter ↪  tomoyamakami

Ciaoooooooo



1. Why Quantum?
2. Physical Representation of Quantum Bits
3. Quantum Entanglement
4. How to Obtain Quantum Information

I. Motivational Discussion



Why Do We Need Quantum?

• Limitations of the existing computers
• The existing computer will face physical difficulty in making 

computer chips smaller. 
• The existing computer may not solve a large number of 

important problems efficiently.
• Looking into physics

• Fundamentally, a computer is a physical object.
• The existing computer is based on classical physics 

whereas Nature obeys quantum mechanics.
• Realization of the fact that information is physical. 



What is a Qubit?
Unit of Quantum Information

• The elementary unit of classical information is bit. 

• Quantum bit (qubit) is used in quantum information theory.
• Dirac’s notation is used to describe those “qubits.” 

• Conventionally, we write |0 for bit 0 and |1 for bit 1.  

|1 - spin head down|0 - spin head up



Physical Representation of Quantum Bits

|1

|0
|φ = α|0 + β|1

|0 represents classical bit 0
|1 represents classical bit 1

A quantum bit (qubit) is a quantum analogue of a classical bit.

A qubit is a linear combination of |0 and |1.

nucleus

electron electron

atom

Two electronic 
levels in an atom



What is Quantum Entanglement? 

 0 11
2

0 1  

If Bob measures | and obtain |0, then 
Alice must obtain |0 after measurement.

If Bob measures | and obtain |1, then 
Alice must obtain |1 after measurement.

An EPR pair |

Bob’s 
qubit

Alice’s 
qubit



How to Obtain Quantum Information

✑ The measurement is 
the way to find out 
what is going on 
inside the quantum 
system.

✑ When a qubit is 
measured, quantum 
mechanics requires 
the result to be always 
a classical bit.

measurement

|0

|1

Sphere representation



1. Quantum Finite Automata
2. Examples
3. More Examples

II. Basics of Quantum Finite Automata



Probabilistic Finite Automata

Let’s review a “standard” model of 1-way/2-way 
probabilistic finite automaton (or simply, 1pfa or 2pfa).

¢ $

q

Head direction: 1-way/2-way

End-marker End-markerInfinite read-only input tape

M = (Q,,,q0,Qacc,Qrej)  = input alphabet

Inner state q  Q

… ….......

Qhalt = Qacc ⋃ Qrej ⊆ Q

 : a probabilistic 
transition function 



Formal Definition of PFAs

A 2pfa M = (Q,,,q0,Qacc,Qrej) has a read-only input tape and 
a special probabilistic transition function :

• Stochastic Requirement:  
• Endmarker condition:

• No tape head should move out of the region marked 
between ₵ and $.

: [0,1]Q Q D   


All probabilities sum up to 1.

 


  { ₵, $ } D = { -1, 0, +1 }

( , )
( , ) ( , , , ) 1

p d
q q p d     



Bounded-Error Probabilistic Computation
• A 2pfa produces accepting/rejection computation paths. 
•   [0,1/2) – an error bound

input  x

rejected accepted

input  x
2pfa M

probabilistic 
computation

probabilistic 
computation

M rejects x with prob.  1- M accepts x with prob.  1-

rejected accepted

or



1-Way/2-Way Quantum Finite Automata

• A qfa (quantum finite automaton) is similar to a pfa with a 
read-only input tape and a quantum transition function.

¢ $

q

Infinite read-only input tape

Inner state q  Q

…... …..

M = (Q,,,q0,Qacc,Qrej)
 = input alphabet
Qhalt = Qacc ⋃ Qrej ⊆ Q

 : a quantum transition function 

Head direction: 1-way/2-way

• For simplicity, the input tape is assumed to be circular.



Formal Definition of QFAs

A 2qfa M = (Q,,,q0,Qacc,Qrej) has a read-only input tape and 
a special probabilistic transition function :

• Time-evolution matrix: 

• Unitary Requirement:         is a unitary matrix.

: Q Q D C   


U is unitary  U(U*)T = (U*)TU = I 

 


  { ₵, $ } D = { -1, 0, +1 }

( )
( , )

, ( , , , ) , (mod 1)x
hp d

U q h q x p d p h d n   
( )xU



1-Way Quantum Finite Automata

 A 1qfa can be defined much simpler.
• A 1qfa M = (Q, , {U}, q0, Qacc, Qrej) 

• U is a time-evolution operator
• Pacc, Prej, Pnon are (projection) measurement operators.
• T = PnonU is a transition operator. 
• Tx = Tn T(n-1) ....... T2 T1 if   x = 12….n

initial quantum state

|0
|1 = 

U1 |0

|1’ = 
Pacc |1

U1

|1’’ = 
Prej |1

|1’’’ = 
Pnon |1 U2

Accept with 
prob. |||1’|| 

measurement

Reject with 
prob. |||1’’|| 



2BQFA

• L : language over alphabet ,   K : amplitude set  C

• L  2BQFAK 

M : 2qfa  [0,1/2)  s.t.
1. M has K-amplitudes
2. xL [ M accepts x with prob.  1-(n) ]
3. x* - L [ M rejects x with prob.  1-(n) ]

• 1BQFA  REG  2BQFA



1. Past Literature I, II
2. Quantum State Complexity I, II
3. Examples
4. Basic Properties

III. Quantum State Complexity



Past Literature I

• Conservative (or traditional) state complexity concerns
• the minimum number of inner states of M working on 

all inputs x*
• Ambanis, Freivalds (1998)

• Lp = {1n : n|p } for a fixed prime p
 O(log p) inner states on 1qfa
 At least p inner states on 1pfa

• Mereghetti, Palano, Pighizzini (2001)
• Freivalds, Ozols, Mančinska (2009)
• Yakaryilmaz, Say (2010)
• Zheng, Gruska, Qiu (2014)



Past Literature II

• Intrinsic (or non-traditional) state complexity concerns
• for each length nN, the minimum number of inner 

states of M working on inputs xn (or xn ) 

• Ambainis, Nayak, Ta-Shma, Vazirani (2002)
• Each Ln = { w0 | w{ 0,1 }*, |w0|  n } (nN) requires
 O(n) inner states on 1dfa 
 2(n) inner states on bounded-error 1qfa



Quantum State Complexity I

 We define quantum state complexity QSC
• M = (Q,,,q0,Qacc,Qrej) : either 1qfa or 2qfa   
• L : a language over ,   nN,   Ln = Ln

•  : N  [0,1/2)  error bound,  K : amplitude set C

• M recognizes L at n with error  using K 

1. M has K-amplitudes
2. xLn [ M accepts x with prob.  1-(n) ]
3. xn - Ln [ M rejects x with prob.  1-(n) ]

• No requirement is imposed on the outside of n.

• State complexity of M: sc(M) = |Q| (the # of inner states)



Quantum State Complexity II

• M = (Q,,,q0,Qacc,Qrej) : either 1qfa or 2qfa   
• L : a language over ,   nN,   
• Ln = Ln

• M recognizes L up to n with error  using K 

1. M has K-amplitudes
2. xLn [ M accepts x with prob.  1-(n) ]
3. xn - Ln [ M rejects x with prob.  1-(n) ]

• No requirement is imposed on the outside of n.

• State complexity of M: sc(M) = |Q| (the # of inner states)

Ln

n

L



Definition of 1QSC/2QSC

 We define 1QSCK,[L]() and 2QSCK, [L]().
• L : a language over ,   nN
•  : N  [0,1/2)  error bound,  K : amplitude set C

 1QSCK,[L](n) = minM { sc(M) : 1qfa M recognizes L at n }
 2QSCK,[L](n) = minM { sc(M) : 2qfa M recognizes L at n }

 1QSCK,[L](n) = minM { sc(M) : 1qfa M recognizes L up to n }
 2QSCK,[L](n) = minM { sc(M) : 2qfa M recognizes L up to n }

Relationships
• 1QSCK,[L](n)  1QSCK,[L](n),    2QSCK,[L](n)  2QSCK,[L](n)



Examples

• The following properties hold for alphabet  with ||2.

• PROOF: 
Since L2BQFA implies M:2qfa  [ M recognizes L with 
prob. 1-, the traditional state complexity of M equals O(1). 
Therefore, 2QSCC,[L](n) = O(1).

• L2BQFA over  (||2) 
[0,1/2) s.t. 2QSCC,[L](n) = O(1)



Basic Properties

• The following properties hold for alphabet  with ||2.

• An exponential gap between 1QSCC,[L](n) and 1QSCC,[L](n)

• 1  2QSCK,[L](n)  ||n + 1

• 2QSCK, [Lc ](n) = 2QSCK, [L](n), where Lc = *  L.

• 2QSCC,[L](n)  2QSCR,[L](n)  22QSCC,[L](n) 

• LREG (0,1/2) 
,(1 [ ]( ))

,1 [ ]( ) 2 CQSC L n
CQSC L n 


 



1. Union/Intersection
2. Advised Computation
3. Approximate Matrix Rank
4. Future Challenges

IV. Main Results



Union/Intersection (1QFAs)

• 1BQFA is not closed under union or intersection.

Proposition (upper bound)

 L1,L2  (0  (n) < (3-5)/2) ◉{ ,  }.

Let 1QSCC,[L1](n) = k1(n) and 1QSCC,[L2](n) = k2(n).

1QSCC,[L1◉L2](n)  8(n+3)k1(n)k2(n),

where 

• PROOF: By a direct simulation of minimal 1qfa’s M1 and M2
for L1 and L2, respectively.

2

( )(2 ( ))'( )
1 ( ) ( )

n nn
n n

 
 




 



Union/Intersection (2QFAs)

• It is not yet known whether 2BQFA is 
closed under union or intersection.

• In other words, we do not know that, 
for L1,L2 2BQFAC, 

• Proposition (upper bound)

L1,L2  2BQFAA over  (||2) 

where ◌{ ,  }.

L1
L2

*

2(log )
,0 1 22 [ ]( ) 2O n

AQSC L L n 

, 1 22 [ ]( ) (1)CQSC L L n O 



Advised Computation
• Input string  xn over an input alphabet 
• Advice alphabet 
• Advice string h(n), depending only on length n of x

• Two-track representation

x
¢ $

h(n)

Advice string h(n) is given in the lower track of the tape.

Damm and Holzer
(1995) defined 
“advice” in a quite 
different manner.

• Regarding advice, there are two important questions to ask.
1. How powerful is advice?
2. Is there any limitation of advice?

(*) Tadaki, Yamakami, and Lin. SOFSEM 2004, LNCS Vol.2932, 2004.



Track Notation for Advice
• More precisely, we use the following two-track representation 

of  [Tadaki-Yamakami-Lin04].

xi

wi

Each of them 
is treated as a  
new symbol.

xi

wi

¢ $
…..
…..

…..
…..

Upper track

Lower track

1 2

1 2

i n

i n

x xx xx
w ww ww
       

        
         

  1 2

1 2

i n

i n

x x x x x
w w w w w




 
 

new symbol

if

When written on an input tape:

(*) Tadaki, Yamakami, and Lin. SOFSEM 2004, LNCS Vol.2932, 2004.



Advised Language Families
Quantum computation with deterministic advice
• Let L be any language over an alphabet .

• L1BQFA/n
 M:1qfa  [0,½)  :advice alphabet  h:N* 
1. nN [ |h(n)| = n ].
2. xn [ xL  M accepts [x h(|x|)]T with prob  1-

 ].
• L2BQFA/n

 M:2qfa  [0,½)  :advice alphabet  h:N* 
1. nN [ |h(n)| = n ].
2. xn [ xL  M accepts [x h(|x|)]T with prob  1-

 ].

(*) Yamakami. LATA 2012, LNCS Vol.7183, 2012.



State Complexity vs. Advice

• Proposition

• This is compared to: 

L2BQFA/n over  (||2) [0,1/2)
s.t. 2QSCC,[L](n) = O(n)

L2BQFA over  (||2) [0,1/2)
s.t. 2QSCC,[L](n) = O(1)

A length-n advice 
string is somewhat 
equivalent to O(n) 
extra inner states. 



Approximate Matrix Rank
• L* :  a language over alphabet 

• ML: characteristic matrix for L 
x,y*    

• ML(n) :  a restriction of ML on strings (x,y) with |xy|  n

• Pn = (pxy)x,y with |xy|  n : a matrix 
s.t. pxy = acceptance probability of A on input xy

1  if  
( , )

0  if  L

xy L
M x y

xy L


  

FACT:  
Pn -approximates ML(n)    A recognizes Ln

with error prob  

This means that 
||Pn-ML(n)||  



State Complexity vs. Approximate Rank

• Theorem 

t: function on N  L  ,’ (0<’<<1/2), 

where  t’(n)=t(n)/(-’), 

• Corollary

L 2BQFA(t-time), where t(n) = 2n/6/n2

, '
( ( ))

2 [ ]( )
( )( ( ) 1)( 1)

t L
R

rank M n
QSC L n

t n t n n



  
   



Future Challenges

1. Explore more general properties of 1QSC/2QSC. 
• E.g., closure properties

2. Prove or disprove:
• For any L1,L2  2BQFA, L1◉L2  2BQFA, where ◉{ ,  }.

3. Discover new techniques to prove lower bounds of 2QSC. 
• E.g., diagonalization techniques





Q & A
I’m happy to take your question!



END

Thank you for listening!


