DCFS 2015

Ouantum State Complexity of Formal Languages

June 26, 2015. 14:30-15:00. Waterloo, Canada

Dr. Tomoyuki Yamakami University of Fukui, Fukui, JAPAN

© Tomoyuki Yamakami 2015

Before starting my talk, let me show you

Let's get back to our main theme!

Synopsis of Today's Talk

- □ This seminal talk is all about:
 - A state complexity measure of languages on 1way/2-way quantum finite automata.
- I will explore
 - Basic properties of the quantum state complexity measure.
- I will demonstrate
 - A new lower bound technique for the quantum state complexity.
- ✓ homepage ↔ http://TomoyukiYamakami.ORG
 ✓ twitter ↔ tomoyamakami

I. Motivational Discussion

1. Why Quantum?

- 2. Physical Representation of Quantum Bits
- 3. Quantum Entanglement
- 4. How to Obtain Quantum Information

Why Do We Need Quantum?

- Limitations of the existing computers
 - The existing computer will face physical difficulty in making computer chips smaller.
 - The existing computer may not solve a large number of important problems efficiently.
- Looking into physics
 - Fundamentally, a computer is a physical object.
 - The existing computer is based on classical physics whereas Nature obeys quantum mechanics.
 - Realization of the fact that information is physical.

What is a Qubit? Unit of Quantum Information

The elementary unit of classical information is bit.

- Quantum bit (qubit) is used in quantum information theory.
- Dirac's notation is used to describe those "qubits."
 - Conventionally, we write $|0\rangle$ for bit 0 and $|1\rangle$ for bit 1.

Physical Representation of Quantum Bits

A quantum bit (qubit) is a quantum analogue of a classical bit.

What is Quantum Entanglement?

How to Obtain Quantum Information

 The measurement is the way to find out what is going on inside the quantum system.

 When a qubit is measured, quantum mechanics requires the result to be always a classical bit.

II. Basics of Quantum Finite Automata

- 1. Quantum Finite Automata
- 2. Examples
- 3. More Examples

Probabilistic Finite Automata

Let's review a "standard" model of 1-way/2-way probabilistic finite automaton (or simply, 1pfa or 2pfa).

Formal Definition of PFAs

A 2pfa M = $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$ has a read-only input tape and a special probabilistic transition function δ :

$$\delta: Q \times \check{\Sigma} \times Q \times D \to [0,1]$$

$$\breve{\Sigma} = \Sigma \cup \{ \clubsuit, \$ \}$$
 D = { -1, 0,

Stochastic Requirement:
$$\forall (q,\sigma) \Big[\sum_{(p,d)} \delta(q,\sigma,p,d) = 1 \Big]$$

- Endmarker condition:
 - No tape head should move out of the region marked between C and S.

All probabilities sum up to 1.

+1 }

Bounded-Error Probabilistic Computation

- A 2pfa produces accepting/rejection computation paths.
- $\epsilon \in [0, 1/2)$ an error bound

1-Way/2-Way Quantum Finite Automata

• A qfa (quantum finite automaton) is similar to a pfa with a read-only input tape and a quantum transition function.

Infinite read-only input tape

• For simplicity, the input tape is assumed to be circular.

Formal Definition of QFAs

A 2qfa M = $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$ has a read-only input tape and a special probabilistic transition function δ :

$$\delta: Q \times \check{\Sigma} \times Q \times D \to C$$

$$\breve{\Sigma} = \Sigma \cup \{ \diamondsuit, \$ \}$$
 D = { -1, 0, +

• Time-evolution matrix:

$$U_{\delta}^{(x)}|q,h\rangle = \sum_{(p,d)} \delta(q,x_h,p,d)|p,h+d \pmod{n+1}$$

• Unitary Requirement: $U_{\delta}^{(x)}$ is a unitary matrix.

U is unitary $\Leftrightarrow U(U^*)^T = (U^*)^T U = I$

1-Way Quantum Finite Automata

□ A 1qfa can be defined much simpler.

- A 1qfa M = (Q, Σ , {U_{$\sigma}}_{<math>\sigma$}, q₀, Q_{acc}, Q_{rej})</sub> •
 - U_a is a time-evolution operator
 - P_{acc}, P_{rei}, P_{non} are (projection) measurement operators.
 - $T_{\sigma} = P_{non}U_{\sigma}$ is a transition operator.

•
$$T_x = T_{\sigma n} T_{\sigma(n-1)} \dots T_{\sigma 2} T_{\sigma 1}$$
 if $x = \sigma_1 \sigma_2 \dots \sigma_n$

initial quantum state

measurement

 $|\Psi_1^{"}\rangle =$

 $\mathsf{P}_{\mathsf{non}} | \Psi_1 \rangle$

 U_{σ^2}

2BQFA

- L : language over alphabet Σ , K : amplitude set \subseteq C
- $L \in 2BQFA_{K} \iff$
 - $\exists M : 2qfa \exists \epsilon \in [0, 1/2) \text{ s.t.}$
 - 1. M has K-amplitudes
 - 2. $\forall x \in L \text{ [M accepts x with prob. } \geq 1 \epsilon(n) \text{]}$
 - 3. $\forall x \in \Sigma^* L \text{ [M rejects x with prob. } \geq 1 \epsilon(n) \text{]}$
- $1BQFA \subseteq REG \subseteq 2BQFA$

III. Quantum State Complexity

- 1. Past Literature I, II
- 2. Quantum State Complexity I, II
- 3. Examples
- 4. Basic Properties

Past Literature I

- Conservative (or traditional) state complexity concerns
 - the minimum number of inner states of M working on all inputs $x \in \Sigma^*$
- Ambanis, Freivalds (1998)
 - $L_p = \{1^n : n|p\}$ for a fixed prime p
 - O(log p) inner states on 1qfa
 - At least p inner states on 1pfa
- Mereghetti, Palano, Pighizzini (2001)
- Freivalds, Ozols, Mančinska (2009)
- Yakaryilmaz, Say (2010)
- Zheng, Gruska, Qiu (2014)

Past Literature II

- Intrinsic (or non-traditional) state complexity concerns
 - for each length $n \in N$, the minimum number of inner states of M working on inputs $x \in \Sigma^n$ (or $x \in \Sigma^{\leq n}$)
- Ambainis, Nayak, Ta-Shma, Vazirani (2002)
 - Each L_n = { w0 | w \in { 0,1 }*, |w0| \leq n } (n \in N) requires
 - O(n) inner states on 1dfa
 - $> 2^{\Omega(n)}$ inner states on bounded-error 1qfa

Quantum State Complexity I

- We define quantum state complexity QSC
- $M = (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$: either 1qfa or 2qfa
- L : a language over Σ , $n \in \mathbb{N}$, $L_n = L \cap \Sigma^n$
- $\epsilon: N \rightarrow [0, 1/2)$ error bound, K : amplitude set $\subseteq C$
- M recognizes L at n with error ε using K \Leftrightarrow

1. M has K-amplitudes

2. $\forall x \in L_n$ [M accepts x with prob. $\geq 1 - \epsilon(n)$]

3. $\forall x \in \Sigma^n - L_n [M \text{ rejects } x \text{ with prob.} \ge 1 - \varepsilon(n)]$

- No requirement is imposed on the outside of Σ^n .
- State complexity of M: sc(M) = |Q| (the # of inner states)

Quantum State Complexity II

- $M = (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$: either 1qfa or 2qfa
- L : a language over Σ , $n \in \mathbb{N}$,
- $L_{\leq n} = L \cap \Sigma^{\leq n}$
- M recognizes L up to n with error ϵ using K \Leftrightarrow
 - 1. M has K-amplitudes
 - 2. $\forall x \in L_{\leq n}$ [M accepts x with prob. $\geq 1 \epsilon(n)$]
 - 3. $\forall x \in \Sigma^{\leq n} L_{\leq n}$ [M rejects x with prob. $\geq 1 \epsilon(n)$]

n

-<n

- No requirement is imposed on the outside of $\Sigma^{\leq n}$.
- State complexity of M: sc(M) = |Q| (the # of inner states)

Definition of 1QSC/2QSC

- □ We define $1QSC_{K,\epsilon}[L]()$ and $2QSC_{K,\epsilon}[L]()$.
- L : a language over Σ , $n \in \mathbb{N}$
- $\epsilon: N \rightarrow [0, 1/2)$ error bound, K : amplitude set $\subseteq C$

A 1QSC_{K,ε}[L](≤n) = min_M { sc(M) : 1qfa M recognizes L up to n }
 2QSC_{K ε}[L](≤n) = min_M { sc(M) : 2qfa M recognizes L up to n }

Relationships

 $\bullet \quad 1QSC_{K,\epsilon}[L](n) \leq 1QSC_{K,\epsilon}[L](\leq n), \quad 2QSC_{K,\epsilon}[L](n) \leq 2QSC_{K,\epsilon}[L](\leq n)$

• The following properties hold for alphabet Σ with $|\Sigma| \ge 2$.

• $\forall L \in 2BQFA \text{ over } \Sigma (|\Sigma| \ge 2)$ $\exists \epsilon \in [0, 1/2) \text{ s.t. } 2QSC_{C,\epsilon}[L](\le n) = O(1)$

 PROOF: Since L∈2BQFA implies ∃M:2qfa ∃ε [M recognizes L with prob. ≥1-ε, the traditional state complexity of M equals O(1). Therefore, 2QSC_{C,ε}[L](≤n) = O(1).

Basic Properties

- The following properties hold for alphabet Σ with $|\Sigma| \ge 2$.
- $1 \leq 2QSC_{K,\epsilon}[L](n) \leq |\Sigma|^n + 1$
- $2QSC_{K,\epsilon}[L^{c}](n) = 2QSC_{K,\epsilon}[L](n)$, where $L^{c} = \Sigma^{*} L$.
- $2QSC_{C,\epsilon}[L](n) \le 2QSC_{R,\epsilon}[L](n) \le 2 \bullet 2QSC_{C,\epsilon}[L](n)$
- An exponential gap between $1QSC_{C,\epsilon}[L](\leq n)$ and $1QSC_{C,\epsilon}[L](n)$

•
$$\exists L \in \mathsf{REG} \ \forall \varepsilon \in (0, 1/2)$$

 $1QSC_{C,\varepsilon}[L](\leq n) = 2^{\Omega(1QSC_{C,\varepsilon}[L](n))}$

IV. Main Results

- 1. Union/Intersection
- 2. Advised Computation
- 3. Approximate Matrix Rank
- 4. Future Challenges

Union/Intersection (1QFAs)

1BQFA is not closed under union or intersection.

```
\begin{aligned} & \text{Proposition (upper bound)} \\ & \forall \ L_1, L_2 \ \ \forall \epsilon \ (0 \leq \epsilon(n) < (3 \cdot \sqrt{5})/2) \ \forall \bullet \in \{ \ \cap, \cup \ \}. \\ & \text{Let } 1\text{QSC}_{C,\epsilon}[L_1](n) = k_1(n) \ \text{and } 1\text{QSC}_{C,\epsilon}[L_2](n) = k_2(n). \\ & 1\text{QSC}_{C,\epsilon}[L_1 \bullet L_2](n) \leq 8(n+3)k_1(n)k_2(n), \end{aligned}
\begin{aligned} & \text{where} \qquad \varepsilon'(n) = \frac{\varepsilon(n)(2 - \varepsilon(n))}{1 + \varepsilon(n) - \varepsilon(n)^2} \end{aligned}
```

 PROOF: By a direct simulation of minimal 1qfa's M₁ and M₂ for L₁ and L₂, respectively.

Union/Intersection (2QFAs)

- It is not yet known whether 2BQFA is closed under union or intersection.
- In other words, we do not know that, for $L_1, L_2 \in 2BQFA_C$,

 $2QSC_{C,\varepsilon}[L_1 \circ L_2](n) = O(1)$

• Proposition (upper bound)

 $\forall L_1, L_2 \in 2BQFA_A \text{ over } \Sigma (|\Sigma| \ge 2)$ $2QSC_{A,0}[L_1 \circ L_2](n) = 2^{O(\log^2 n)}$ where $0 \in \{ \cap, \cup \}.$

Advised Computation

- Input string $x \in \Sigma^n$ over an input alphabet Σ
- Advice alphabet Γ
- Advice string h(n), depending only on length n of x
- Two-track representation

Damm and Holzer (1995) defined "advice" in a quite different manner.

Advice string h(n) is given in the lower track of the tape.

- Regarding advice, there are two important questions to ask.
 - 1. How powerful is advice?
 - 2. Is there any limitation of advice?

(*) Tadaki, Yamakami, and Lin. SOFSEM 2004, LNCS Vol.2932, 2004.

Track Notation for Advice

 More precisely, we use the following two-track representation of [Tadaki-Yamakami-Lin04].

(*) Tadaki, Yamakami, and Lin. SOFSEM 2004, LNCS Vol.2932, 2004.

Advised Language Families

Quantum computation with deterministic advice

- Let L be any language over an alphabet Σ .
- L∈1BQFA/n
 - $\Leftrightarrow \exists M: 1qfa \exists \epsilon \in [0, \frac{1}{2}) \exists \Gamma: advice alphabet \exists h: N \rightarrow \Gamma^*$
 - 1. \forall n∈N [|h(n)| = n].
 - 2. $\forall x \in \Sigma^n [x \in L \leftrightarrow M \text{ accepts } [x h(|x|)]^T \text{ with prob } \ge 1 \epsilon].$
- L∈2BQFA/n
 - $\Leftrightarrow \exists M: 2qfa \exists \epsilon \in [0, \frac{1}{2}) \exists \Gamma: advice alphabet \exists h: N \rightarrow \Gamma^*$
 - 1. \forall n∈N [|h(n)| = n].
 - 2. $\forall x \in \Sigma^n [x \in L \leftrightarrow M \text{ accepts } [x h(|x|)]^T \text{ with prob } \geq 1 \epsilon].$

(*) Yamakami. LATA 2012, LNCS Vol.7183, 2012.

State Complexity vs. Advice

Proposition

 $\forall L \in 2BQFA/n \text{ over } \Sigma (|\Sigma| \ge 2) \exists \varepsilon \in [0, 1/2)$ s.t. $2QSC_{C,\varepsilon}[L](n) = O(n)$

• This is compared to:

 $\forall L \in 2BQFA \text{ over } \Sigma (|\Sigma| \ge 2) \exists \epsilon \in [0, 1/2)$ s.t. $2QSC_{C,\epsilon}[L](n) = O(1) \checkmark$ A length-n advice string is somewhat equivalent to O(n) extra inner states.

Approximate Matrix Rank

- $L \subseteq \Sigma^*$: a language over alphabet Σ
- M_L : characteristic matrix for L $\Leftrightarrow \forall x, y \in \Sigma^*$

$$M_{L}(x, y) = \begin{cases} 1 & \text{if } xy \in L \\ 0 & \text{if } xy \notin L \end{cases}$$

This means that
$$||P_n - M_L(n)||_{\infty} \le \varepsilon$$

- $M_L(n)$: a restriction of M_L on strings (x,y) with $|xy| \le n$
- P_n = (p_{xy})_{x,y} with |xy| ≤ n : a matrix
 s.t. p_{xy} = acceptance probability of A on input xy

FACT:

$$P_n \epsilon$$
-approximates $M_L(n) \Leftrightarrow A \text{ recognizes } L_{\leq n}$
with error prob $\leq \epsilon$

State Complexity vs. Approximate Rank

Theorem

 $\forall t: \text{ function on } N \ \forall L \ \forall \varepsilon, \varepsilon' (0 < \varepsilon' < \varepsilon < 1/2),$ $2QSC_{R,\varepsilon'}^{t}[L](\leq n) \geq \frac{\sqrt{rank^{\varepsilon}(M_{L}(n))}}{\sqrt{t'(n)}(t'(n)+1)(n+1)}$ where t'(n)=[t(n)/(\varepsilon-\varepsilon')],

Corollary

L $\not\subset$ 2BQFA(t-time), where t(n) = $2^{n/6}/n^2$

Future Challenges

1. Explore more general properties of 1QSC/2QSC.

- E.g., closure properties
- 2. Prove or disprove:
 - For any $L_1, L_2 \in 2BQFA$, $L_1 \circ L_2 \in 2BQFA$, where $\circ \in \{ \cap, \cup \}$.
- 3. Discover new techniques to prove lower bounds of 2QSC.
 - E.g., diagonalization techniques

Thank you for listening

Thank you for listening

Q&A

I'm happy to take your question!

END

Thank you for listening!

