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Limited Automata

Ü A k-limited automaton is a linear bounded automaton that
may rewrite each tape square only in the first k visits, where k
is a fixed constant.

Ü Afterwards the squares can still be visited any number of
times, but without rewriting their contents.



Former Results

Ü Hennie machines are linear bounded automata that are only
allowed to visit any tape square a constant number of times.
The accepted language is regular (Hennie, 1965).

Ü It is shown that even linear-time computations cannot accept
non-regular languages (Hennie, 1965).

Ü This result has been improved to O(n log n) time in
(Hartmanis, 1968).



Former Results – Limited Automata

Ü Limited automata have been firstly studied in (Hibbard, 1967).

Ü It is shown that the nondeterministic variant characterizes the
context-free languages provided k ≥ 2.

Ü For the deterministic variant it has been shown that if k = 2,
then the accepted family of languages is equal to the
deterministic context-free languages (Pighizzini and Pisoni,
2013).

Ü There is a tight and strict hierarchy of language classes
depending on k for the deterministic variant (Hibbard, 1967).

Ü One-limited automata, deterministic and nondeterministic,
can accept only regular languages.



Former Results – Descriptional Complexity

Among other results, Pighizzini and Pisoni (2013) showed:

Ü The trade-off between 1-LA and DFA is 2n·2
n2

.

Ü The trade-off between 1-DLA and DFA is n · (n+ 1)n.

Ü These results imply an exponential trade-off between 1-LA
and 1-DLA.



Limited Automata – Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = 〈S,Σ,Γ, δ,B,C, s0, F 〉.

S is the finite, nonempty set of internal states
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Limited Automata – Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = 〈S,Σ,Γ, δ,B,C, s0, F 〉.

Γ is the finite set of tape symbols partitioned into
Γk ∪ Γk−1 ∪ · · · ∪ Γ0 where Γ0 = Σ
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B /∈ Γ is the left and C /∈ Γ is the right endmarker



Limited Automata – Definition
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Limited Automata – Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = 〈S,Σ,Γ, δ,B,C, s0, F 〉.

F ⊆ S is the set of accepting states



Limited Automata – Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = 〈S,Σ,Γ, δ,B,C, s0, F 〉.

δ : S × (Γ ∪ {B,C})→ S × (Γ ∪ {B,C})× {−1, 1}



Limited Automata – Definition

For each (s′, y, d) = δ(s, x) with x ∈ Γi,

Ü if i = k then x = y,

Ü if i < k and d = 1 then y ∈ Γj with j = min{d i2e · 2 + 1, k},
and

Ü if i < k and d = −1 then y ∈ Γj with j = min{d i+1
2 e · 2, k}.



3-Limited Automaton – Example

B a b a b a a b a C
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3-Limited Automaton – Example
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3-Limited Automaton – Example

B a1 b3 a3 b2 a2 a b a C

q2



Limited Automata – Definition

An input is accepted if the automaton halts at some time in an
accepting state, otherwise it is rejected.



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a a a a a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a a a a a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a a a a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a a a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a1 a a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a1 a′1 a a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a1 a′1 a1 a a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a1 a′1 a1 a′1 a a C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
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Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a1 a′1 a1 a′1 a1 a′1 a1 a′1 C

n = 2, k = 2



Example

The language Ln,k = {ank+1} is accepted by a sweeping k-limited
automaton with n+ 2 states and 2k + 1 tape symbols.

B a′2 a′2 a2 a′2 a′2 a′2 a2 a′2 C

n = 2, k = 2



Simulation Costs of 1-DLA



The Landau Function

As is often the case in connection with unary languages, the
Landau function

F (n) = max{ lcm(c1, c2 . . . , cl) | c1, c2, . . . , cl ≥ 1

and c1 + c2 + · · ·+ cl = n },

is used.



The Landau Function

The following approximation of the Landau function is often used:

F (n) ∈ eΘ(
√
n·lnn)

A closer look (Ellul 2004) shows that

F (n) ∈ Ω
(
e
√

n·ln(n)
)

and F (n) ∈ e
√

n·ln(n)(1+o(1)).



Simulation Costs of 1-DLA

Theorem

Let n ≥ 2 be a prime number. Then there is a unary 4n-state and
n+ 1 tape symbol 1-DLA M , such that n · F (n) states are

necessary for any 2NFA to accept the language L(M).



Simulation Costs of 1-DLA

lcm(c1, c2, . . . , cl) = F (n)

B a a · · · a a a · · · a a a · · · a C

test:

|w| ≡ l − 1 mod c1

|w| ≡ l − 2 mod c2

· · ·
|w| ≡ 0 mod cl
|w| ≡ 0 mod l
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Simulation Costs of 1-DLA

lcm(c1, c2, . . . , cl) = F (n)
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Simulation Costs of 1-DLA

Corollary

Let n ≥ 2 be a prime number. Then there is a unary 4n-state and
n+ 1-tape-symbol 1-DLA M , such that n · F (n) states are

necessary for any 2DFA, 1DFA, or 1NFA to accept the
language L(M).



Summary

1-DLA

2NFA, 2DFA

1NFA, 1DFA

F (n)

≤ n · (n + 1)n

≥ n · F (n)

≤ n · (n + 1)n

≥ n · F (n)
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Simulation Costs of sweeping k-DLA

Theorem

Let k, n ≥ 1 be integers and M be a unary n-state sweeping

k-DLA. Then O(n
k2+3k+2

2 ) states are sufficient for a 2DFA to
accept the language L(M). The 2DFA can effectively be

constructed from M .
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Theorem

Let k, n ≥ 1 be integers and M be a unary n-state sweeping
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Simulation Costs of sweeping k-DLA

Theorem

Let k ≥ 1 and n ≥ 2 be integers. Then there is a unary sweeping
(n+ 2)-state, (2k + 1)-tape-symbol k-DLA M , so that nk+1

states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to
accept the language L(M).



Summary

k-DLAsweep-k-DLA

1-DLA

2NFA, 2DFA

1NFA, 1DFA

≤?
≥ n · F (n)

≤ n
k2+3k+2

2

≥ nk+1

F (n)

≤ n · (n + 1)n

≥ n · F (n)

≤ n · (n + 1)n

≥ n · F (n)



Simulation Costs of k-DLA

Theorem

Let k, n ≥ 2 be integers so that n is prime. Then there is a unary
sweeping (n+ 1)-state, 2k-tape-symbol k-DLA M , so that
n · F (n)k states are necessary for any 1DFA to accept the

language L(M).

Ü The idea of the proof is to use an adapted technique of
one-way k-head finite automata.



Summary

k-DLAsweep-k-DLA

1-DLA

2NFA, 2DFA

1NFA, 1DFA
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Simulation Costs of rotating k-DLA



Simulation Costs of rotating k-DLA

Theorem

Let k, n ≥ 1 be integers and M be a unary n-state rotating
k-DLA. Then O(nk+1) states are sufficient for a (sweeping) 2DFA

to accept the language L(M). The 2DFA can effectively be
constructed from M .

Ü The idea of the proof is that simulate the behaviour in the
first k sweeps of M in one.



Simulation Costs of rotating k-DLA

Theorem

Let k ≥ 1 and n ≥ 2 be integers. Then there is a unary rotating
(n+ 2)-state, (2k + 1)-tape-symbol k-DLA M , so that nk+1

states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to
accept the language L(M).



Summary

k-DLAsweep-k-DLA rot-k-DLA

1-DLA

2NFA, 2DFA

1NFA, 1DFA

≤?
≥ n · F (n)

≤ n
k2+3k+2

2

≥ nk+1

nk+1

F (n)

≤ n · (n + 1)n

≥ n · F (n)

≤ n · (n + 1)n

≥ n · F (n)

≤?

≥ n · F (n)k



Open Questions

Ü Is it possible to improve the upper bound for 1-DLA to DFA
in the unary case?

Ü What is the upper bound between k-DLA and 1DFA, 2DFA
in the unary case?

Ü How is the relation between sweeping and non-sweeping
k-DLA.



Thank you for your attention!


