On Simulation Costs of Unary Limited Automata

Martin Kutrib Matthias Wendlandt
Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
\{kutrib,matthias.wendlandt\}@informatik.uni-giessen.de

Limited Automata

$\rightarrow \mathrm{A} k$-limited automaton is a linear bounded automaton that may rewrite each tape square only in the first k visits, where k is a fixed constant.
\rightarrow Afterwards the squares can still be visited any number of times, but without rewriting their contents.

Former Results

\rightarrow Hennie machines are linear bounded automata that are only allowed to visit any tape square a constant number of times. The accepted language is regular (Hennie, 1965).
\rightarrow It is shown that even linear-time computations cannot accept non-regular languages (Hennie, 1965).
\rightarrow This result has been improved to $O(n \log n)$ time in (Hartmanis, 1968).

Former Results - Limited Automata

\rightarrow Limited automata have been firstly studied in (Hibbard, 1967).
\rightarrow It is shown that the nondeterministic variant characterizes the context-free languages provided $k \geq 2$.
\rightarrow For the deterministic variant it has been shown that if $k=2$, then the accepted family of languages is equal to the deterministic context-free languages (Pighizzini and Pisoni, 2013).
\rightarrow There is a tight and strict hierarchy of language classes depending on k for the deterministic variant (Hibbard, 1967).
\rightarrow One-limited automata, deterministic and nondeterministic, can accept only regular languages.

Former Results - Descriptional Complexity

Among other results, Pighizzini and Pisoni (2013) showed:
\rightarrow The trade-off between 1-LA and DFA is $2^{n \cdot 2^{n^{2}}}$.
\rightarrow The trade-off between 1-DLA and DFA is $n \cdot(n+1)^{n}$.
\rightarrow These results imply an exponential trade-off between 1-LA and 1-DLA.

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
S is the finite, nonempty set of internal states

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
Σ is the finite set of input symbols

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
Γ is the finite set of tape symbols partitioned into $\Gamma_{k} \cup \Gamma_{k-1} \cup \cdots \cup \Gamma_{0}$ where $\Gamma_{0}=\Sigma$

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
$\triangleright \notin \Gamma$ is the left and $\triangleleft \notin \Gamma$ is the right endmarker

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
$s_{0} \in S$ is the initial state

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
$F \subseteq S$ is the set of accepting states

Limited Automata - Definition

A deterministic k-limited automaton (k-DLA, for short) is a system $M=\left\langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$.
$\delta: S \times(\Gamma \cup\{\triangleright, \triangleleft\}) \rightarrow S \times(\Gamma \cup\{\triangleright, \triangleleft\}) \times\{-1,1\}$

Limited Automata - Definition

For each $\left(s^{\prime}, y, d\right)=\delta(s, x)$ with $x \in \Gamma_{i}$,
\rightarrow if $i=k$ then $x=y$,
\rightarrow if $i<k$ and $d=1$ then $y \in \Gamma_{j}$ with $j=\min \left\{\left\lceil\frac{i}{2}\right\rceil \cdot 2+1, k\right\}$, and
\rightarrow if $i<k$ and $d=-1$ then $y \in \Gamma_{j}$ with $j=\min \left\{\left\lceil\frac{i+1}{2}\right\rceil \cdot 2, k\right\}$.

3-Limited Automaton - Example

Limited Automata - Definition

An input is accepted if the automaton halts at some time in an accepting state, otherwise it is rejected.

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

\triangleright	a_{1}	a_{1}^{\prime}	a_{1}	a_{1}^{\prime}	a_{1}	a_{1}^{\prime}	a_{1}	a	\triangleleft

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

\triangleright	a_{1}	a_{1}^{\prime}	a_{1}	a_{1}^{\prime}	a_{1}	a_{1}^{\prime}	a_{1}	a_{1}^{\prime}	\triangleleft

$n=2, k=2$

Example

The language $L_{n, k}=\left\{a^{n^{k+1}}\right\}$ is accepted by a sweeping k-limited automaton with $n+2$ states and $2 k+1$ tape symbols.

\triangleright	a_{2}^{\prime}	a_{2}^{\prime}	a_{2}	a_{2}^{\prime}	a_{2}^{\prime}	a_{2}^{\prime}	a_{2}	a_{2}^{\prime}	\triangleleft

$n=2, k=2$

Simulation Costs of 1-DLA

The Landau Function

As is often the case in connection with unary languages, the Landau function

$$
\begin{gathered}
F(n)=\max \left\{\operatorname{lcm}\left(c_{1}, c_{2} \ldots, c_{l}\right) \mid c_{1}, c_{2}, \ldots, c_{l} \geq 1\right. \\
\text { and } \left.c_{1}+c_{2}+\cdots+c_{l}=n\right\},
\end{gathered}
$$

is used.

The Landau Function

The following approximation of the Landau function is often used:

$$
F(n) \in e^{\Theta(\sqrt{n \cdot \ln n})}
$$

A closer look (Ellul 2004) shows that

$$
F(n) \in \Omega\left(e^{\sqrt{n \cdot \ln (n)}}\right) \quad \text { and } \quad F(n) \in e^{\sqrt{n \cdot \ln (n)(1+o(1))}} .
$$

Simulation Costs of 1-DLA

Theorem

Let $n \geq 2$ be a prime number. Then there is a unary $4 n$-state and
$n+1$ tape symbol 1-DLA M, such that $n \cdot F(n)$ states are necessary for any 2 NFA to accept the language $L(M)$.

Simulation Costs of 1-DLA

$\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{l}\right)=F(n)$

$$
\begin{aligned}
&|w| \equiv l-1 \bmod c_{1} \\
&|w| \equiv l-2 \bmod c_{2}
\end{aligned}
$$

test:

$$
\begin{aligned}
& |w| \equiv 0 \bmod c_{l} \\
& |w| \equiv 0 \bmod l
\end{aligned}
$$

Simulation Costs of 1-DLA

$\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{l}\right)=F(n)$

$$
\begin{aligned}
&|w| \equiv l-1 \bmod c_{1} \\
&|w| \equiv l-2 \bmod c_{2}
\end{aligned}
$$

test:

$$
\begin{aligned}
& |w| \equiv 0 \bmod c_{l} \\
& |w| \equiv 0 \bmod l
\end{aligned}
$$

Simulation Costs of 1-DLA

$$
\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{l}\right)=F(n)
$$

$$
\begin{aligned}
&|w| \equiv l-1 \bmod c_{1} \\
&|w| \equiv l-2 \bmod c_{2}
\end{aligned}
$$

test:

$$
\begin{aligned}
& |w| \equiv 0 \bmod c_{l} \\
& |w| \equiv 0 \bmod l
\end{aligned}
$$

Simulation Costs of 1-DLA

Corollary

Let $n \geq 2$ be a prime number. Then there is a unary $4 n$-state and
$n+1$-tape-symbol 1-DLA M, such that $n \cdot F(n)$ states are necessary for any 2DFA, 1DFA, or 1NFA to accept the language $L(M)$.

Summary

Simulation Costs of k-DLA

Simulation Costs of sweeping k-DLA

Theorem

Let $k, n \geq 1$ be integers and M be a unary n-state sweeping k-DLA. Then $O\left(n^{\frac{k^{2}+3 k+2}{2}}\right)$ states are sufficient for a 2DFA to accept the language $L(M)$. The 2DFA can effectively be constructed from M.

Simulation Costs of sweeping k-DLA

Theorem

Let $k, n \geq 1$ be integers and M be a unary n-state sweeping k-DLA. Then $O\left(n^{\frac{k^{2}+3 k+2}{2}}\right)$ states are sufficient for a 2DFA to accept the language $L(M)$. The 2DFA can effectively be constructed from M.

Simulation Costs of sweeping k-DLA

Theorem

Let $k, n \geq 1$ be integers and M be a unary n-state sweeping k-DLA. Then $O\left(n^{\frac{k^{2}+3 k+2}{2}}\right)$ states are sufficient for a 2DFA to accept the language $L(M)$. The 2DFA can effectively be constructed from M.

$$
\leq n \quad \leq n \quad \cdots
$$

$$
<
$$

Simulation Costs of sweeping k-DLA

Theorem

Let $k, n \geq 1$ be integers and M be a unary n-state sweeping k-DLA. Then $O\left(n^{\frac{k^{2}+3 k+2}{2}}\right)$ states are sufficient for a 2DFA to accept the language $L(M)$. The 2DFA can effectively be constructed from M.

$$
\leq n^{2} \quad \leq n^{2} \quad \leq n^{2} \quad \leq n^{2}
$$

Simulation Costs of sweeping k-DLA

Theorem

Let $k \geq 1$ and $n \geq 2$ be integers. Then there is a unary sweeping $(n+2)$-state, $(2 k+1)$-tape-symbol k-DLA M, so that n^{k+1} states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language $L(M)$.

Summary

Simulation Costs of k-DLA

Theorem

Let $k, n \geq 2$ be integers so that n is prime. Then there is a unary sweeping $(n+1)$-state, $2 k$-tape-symbol k-DLA M, so that $n \cdot F(n)^{k}$ states are necessary for any 1DFA to accept the language $L(M)$.
\rightarrow The idea of the proof is to use an adapted technique of one-way k-head finite automata.

Summary

Simulation Costs of rotating k-DLA

Simulation Costs of rotating k-DLA

Theorem

Let $k, n \geq 1$ be integers and M be a unary n-state rotating k-DLA. Then $O\left(n^{k+1}\right)$ states are sufficient for a (sweeping) 2DFA to accept the language $L(M)$. The 2DFA can effectively be constructed from M.
\rightarrow The idea of the proof is that simulate the behaviour in the first k sweeps of M in one.

Simulation Costs of rotating k-DLA

Theorem

Let $k \geq 1$ and $n \geq 2$ be integers. Then there is a unary rotating $(n+2)$-state, $(2 k+1)$-tape-symbol k-DLA M, so that n^{k+1} states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language $L(M)$.

Summary

Open Questions

\rightarrow Is it possible to improve the upper bound for 1-DLA to DFA in the unary case?
\rightarrow What is the upper bound between k-DLA and 1DFA, 2DFA in the unary case?
\rightarrow How is the relation between sweeping and non-sweeping k-DLA.

Thank you for your attention!

