On Simulation Costs of Unary Limited Automata

Martin Kutrib Matthias Wendlandt

Institut für Informatik, Universität Giessen Arndtstr. 2, 35392 Giessen, Germany {kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Limited Automata

- → A k-limited automaton is a linear bounded automaton that may rewrite each tape square only in the first k visits, where k is a fixed constant.
- → Afterwards the squares can still be visited any number of times, but without rewriting their contents.

Former Results

- → Hennie machines are linear bounded automata that are only allowed to visit any tape square a constant number of times. The accepted language is regular (Hennie, 1965).
- → It is shown that even linear-time computations cannot accept non-regular languages (Hennie, 1965).
- → This result has been improved to O(n log n) time in (Hartmanis, 1968).

Former Results – Limited Automata

- → Limited automata have been firstly studied in (Hibbard, 1967).
- → It is shown that the nondeterministic variant characterizes the context-free languages provided k ≥ 2.
- → For the deterministic variant it has been shown that if k = 2, then the accepted family of languages is equal to the deterministic context-free languages (Pighizzini and Pisoni, 2013).
- → There is a tight and strict hierarchy of language classes depending on k for the deterministic variant (Hibbard, 1967).
- One-limited automata, deterministic and nondeterministic, can accept only regular languages.

Former Results – Descriptional Complexity

Among other results, Pighizzini and Pisoni (2013) showed:

- → The trade-off between 1-LA and DFA is $2^{n \cdot 2^{n^2}}$.
- → The trade-off between 1-DLA and DFA is $n \cdot (n+1)^n$.
- → These results imply an exponential trade-off between 1-LA and 1-DLA.

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, s_0, F \rangle$.

 \boldsymbol{S} is the finite, nonempty set of internal states

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, s_0, F \rangle$.

 $\boldsymbol{\Sigma}$ is the finite set of input symbols

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, s_0, F \rangle$.

 Γ is the finite set of tape symbols partitioned into $\Gamma_k \cup \Gamma_{k-1} \cup \cdots \cup \Gamma_0$ where $\Gamma_0 = \Sigma$

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, s_0, F \rangle$.

 $\triangleright \notin \Gamma$ is the left and $\lhd \notin \Gamma$ is the right endmarker

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, \mathbf{s_0}, F \rangle$.

 $s_0 \in S$ is the initial state

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, s_0, F \rangle$.

 $F\subseteq S$ is the set of accepting states

A deterministic k-limited automaton (k-DLA, for short) is a system $M = \langle S, \Sigma, \Gamma, \delta, \rhd, \lhd, s_0, F \rangle$.

 $\delta:S\times (\Gamma\cup\{\rhd,\lhd\})\to S\times (\Gamma\cup\{\rhd,\lhd\})\times\{-1,1\}$

For each $(s',y,d)=\delta(s,x)$ with $x\in\Gamma_i,$

→ if
$$i = k$$
 then $x = y$,

- → if i < k and d = 1 then $y \in \Gamma_j$ with $j = \min\{\lceil \frac{i}{2} \rceil \cdot 2 + 1, k\}$, and
- → if i < k and d = -1 then $y \in \Gamma_j$ with $j = \min\{\lceil \frac{i+1}{2} \rceil \cdot 2, k\}$.

An input is accepted if the automaton halts at some time in an accepting state, otherwise it is rejected.

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

\triangleright	a	a	a	a	a	a	a	a	\triangleleft
------------------	---	---	---	---	---	---	---	---	-----------------

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

\triangleright	a	a	a	a	a	a	a	a	\triangleleft
------------------	---	---	---	---	---	---	---	---	-----------------

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

\triangleright	a_1	a	a	a	a	a	a	a	\triangleleft
------------------	-------	---	---	---	---	---	---	---	-----------------

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

\triangleright	a_1	a'_1	a	a	a	a	a	a	\triangleleft
------------------	-------	--------	---	---	---	---	---	---	-----------------

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

\triangleright	a_1	a'_1	a_1	a	a	a	a	a	\triangleleft
------------------	-------	--------	-------	---	---	---	---	---	-----------------

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a \quad a \quad a \quad a \quad \triangleleft$$

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a_1 \quad a \quad a \quad a \quad \lhd$$

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a \quad a \quad \lhd$$

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a_1 \quad a_1' \quad a_1 \quad a \quad \triangleleft$$

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad a_1 \quad a_1' \quad \triangleleft$$

The language $L_{n,k} = \{a^{n^{k+1}}\}$ is accepted by a sweeping k-limited automaton with n + 2 states and 2k + 1 tape symbols.

$$\triangleright \quad \underline{a'_2} \quad \underline{a'_2} \quad \underline{a_2} \quad \underline{a'_2} \quad \underline{a'_2} \quad \underline{a'_2} \quad \underline{a'_2} \quad \underline{a_2} \quad \underline{a'_2} \quad \triangleleft$$

The Landau Function

As is often the case in connection with unary languages, the Landau function

$$F(n) = \max\{ \operatorname{lcm}(c_1, c_2, \dots, c_l) \mid c_1, c_2, \dots, c_l \ge 1$$

and $c_1 + c_2 + \dots + c_l = n \},$

is used.

The Landau Function

The following approximation of the Landau function is often used:

 $F(n) \in e^{\Theta(\sqrt{n \cdot \ln n})}$

A closer look (Ellul 2004) shows that

$$F(n) \in \Omega\left(e^{\sqrt{n \cdot \ln(n)}}\right) \quad \text{ and } \quad F(n) \in e^{\sqrt{n \cdot \ln(n)}(1+o(1))}$$

Theorem

Let $n \ge 2$ be a prime number. Then there is a unary 4n-state and n+1 tape symbol 1-DLA M, such that $n \cdot F(n)$ states are necessary for any 2NFA to accept the language L(M).

 $\operatorname{lcm}(c_1, c_2, \dots, c_l) = F(n)$

 $|w| \equiv l - 1 \mod c_1$ $|w| \equiv l - 2 \mod c_2$ test: ···· $|w| \equiv 0 \mod c_l$ $|w| \equiv 0 \mod l$

 $\operatorname{lcm}(c_1, c_2, \dots, c_l) = F(n)$

 $|w| \equiv l - 1 \mod c_1$ $|w| \equiv l - 2 \mod c_2$ test: \cdots $|w| \equiv 0 \mod c_l$ $|w| \equiv 0 \mod l$

 $\operatorname{lcm}(c_1, c_2, \dots, c_l) = F(n)$

Corollary

Let $n \ge 2$ be a prime number. Then there is a unary 4n-state and n + 1-tape-symbol 1-DLA M, such that $n \cdot F(n)$ states are necessary for any 2DFA, 1DFA, or 1NFA to accept the language L(M).

Summary

Theorem

Theorem

Theorem

$$\geq n \leq n \cdots$$

Theorem

Theorem

Let $k \ge 1$ and $n \ge 2$ be integers. Then there is a unary sweeping (n+2)-state, (2k+1)-tape-symbol k-DLA M, so that n^{k+1} states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language L(M).

Summary

Theorem

Let $k, n \ge 2$ be integers so that n is prime. Then there is a unary sweeping (n + 1)-state, 2k-tape-symbol k-DLA M, so that $n \cdot F(n)^k$ states are necessary for any 1DFA to accept the language L(M).

→ The idea of the proof is to use an adapted technique of one-way k-head finite automata.

Summary

Simulation Costs of rotating *k*-DLA

Simulation Costs of rotating *k*-DLA

Theorem

Let $k, n \ge 1$ be integers and M be a unary *n*-state rotating k-DLA. Then $O(n^{k+1})$ states are sufficient for a (sweeping) 2DFA to accept the language L(M). The 2DFA can effectively be constructed from M.

→ The idea of the proof is that simulate the behaviour in the first k sweeps of M in one.

Simulation Costs of rotating *k*-DLA

Theorem

Let $k \ge 1$ and $n \ge 2$ be integers. Then there is a unary rotating (n+2)-state, (2k+1)-tape-symbol k-DLA M, so that n^{k+1} states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language L(M).

Summary

Open Questions

- → Is it possible to improve the upper bound for 1-DLA to DFA in the unary case?
- → What is the upper bound between k-DLA and 1DFA, 2DFA in the unary case?
- → How is the relation between sweeping and non-sweeping k-DLA.

Thank you for your attention!