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Limited Automata

- A k-limited automaton is a linear bounded automaton that
may rewrite each tape square only in the first £ visits, where k
is a fixed constant.

- Afterwards the squares can still be visited any number of
times, but without rewriting their contents.



Former Results

- Hennie machines are linear bounded automata that are only
allowed to visit any tape square a constant number of times.
The accepted language is regular (Hennie, 1965).

- It is shown that even linear-time computations cannot accept
non-regular languages (Hennie, 1965).

= This result has been improved to O(nlogn) time in
(Hartmanis, 1968).



Former Results — Limited Automata

Limited automata have been firstly studied in (Hibbard, 1967).

It is shown that the nondeterministic variant characterizes the
context-free languages provided k > 2.

For the deterministic variant it has been shown that if &k = 2,
then the accepted family of languages is equal to the
deterministic context-free languages (Pighizzini and Pisoni,
2013).

There is a tight and strict hierarchy of language classes
depending on k for the deterministic variant (Hibbard, 1967).

One-limited automata, deterministic and nondeterministic,
can accept only regular languages.



Former Results — Descriptional Complexity

Among other results, Pighizzini and Pisoni (2013) showed:

2
- The trade-off between 1-LA and DFA is 272" |
- The trade-off between 1-DLA and DFA is n - (n+ 1)".

- These results imply an exponential trade-off between 1-LA
and 1-DLA.



Limited Automata — Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = (5,3, T,0,>, <, s, F).

S is the finite, nonempty set of internal states
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Limited Automata — Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = (S, X,1',0,>, <, so, F').

I is the finite set of tape symbols partitioned into
INyUTlp_U--- Uy where I'g = X
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Limited Automata — Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = (S,3,T,0,>, <, sq, F).

F C S is the set of accepting states



Limited Automata — Definition

A deterministic k-limited automaton (k-DLA, for short) is a
system M = (S,3,T,0,>, <, s, F).

§:Sx TU{p,<}) = Sx (TU{>,<}) x{-1,1}



Limited Automata — Definition

For each (s',y,d) = 0(s,x) with z € T,
2 if it =k then x =y,
» if i <kand d =1 then y € I'; with j = min{[%] -2+ 1,k},
and
» if i <k and d = —1 then y € T; with j = min{[51] - 2, k}.



3-Limited Automaton — Example
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Limited Automata — Definition

An input is accepted if the automaton halts at some time in an
accepting state, otherwise it is rejected.



Example

The language L, = {a”“l} is accepted by a sweeping k-limited
automaton with n + 2 states and 2k + 1 tape symbols.
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Example

The language L, = {a”’Hl} is accepted by a sweeping k-limited
automaton with n + 2 states and 2k + 1 tape symbols.
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Simulation Costs of 1-DLA



The Landau Function

As is often the case in connection with unary languages, the
Landau function

F(n) = max{lem(ci,ca...,¢) | c1,¢9,...,¢0> 1

andci +co+---+¢=n},

is used.



The Landau Function

The following approximation of the Landau function is often used:

F(n) e e@(\/n~lnn)
A closer look (Ellul 2004) shows that

F(n)€Q<e "'ln<">) and  F(n) € eV/PRm(1+o(1)



Simulation Costs of 1-DLA

Theorem

Let n > 2 be a prime number. Then there is a unary 4n-state and
n + 1 tape symbol 1-DLA M, such that n - F/(n) states are
necessary for any 2NFA to accept the language L(M).



Simulation Costs of 1-DLA

lem(eq, e, ...,¢) = F(n)

w|=1—1mod ¢;
w| =1—2 mod ¢y
test: ---

w| =0 mod ¢

lw| =0 mod [




Simulation Costs of 1-DLA
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Simulation Costs of 1-DLA

lem(eq, e, ...,¢) = F(n)
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Simulation Costs of 1-DLA

Corollary

Let n > 2 be a prime number. Then there is a unary 4n-state and
n + 1-tape-symbol 1-DLA M, such that n - F'(n) states are
necessary for any 2DFA, 1DFA, or INFA to accept the
language L(M).



Summary

2NFA, 2DFA Sno(ntnr

>n-F(n)
Fn 1-DLA

INFA, 1IDFA Nl
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Simulation Costs of sweeping k-DLA

Theorem
Let k,n > 1 be integers and M be a unary n-state sweeping
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accept the language L(M). The 2DFA can effectively be
constructed from M.
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Simulation Costs of sweeping k-DLA

Theorem
Let £ > 1 and n > 2 be integers. Then there is a unary sweeping
(n + 2)-state, (2k + 1)-tape-symbol k-DLA M, so that n*+!
states are necessary for any 2NFA, 2DFA, 1NFA, or 1DFA to
accept the language L(M).



Summary

sweep—k:—DLA< k-2+glv+2 k-DLA

S
- <?
E n - F(n)
\4
<n- + 1)
2NFA, 2DFA o %”(m )
F(n) 1-DLA
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Simulation Costs of £.-DLA

Theorem
Let k,n > 2 be integers so that n is prime. Then there is a unary
sweeping (n + 1)-state, 2k-tape-symbol k-DLA M, so that
n- F(n)"’ states are necessary for any 1DFA to accept the
language L(M).

- The idea of the proof is to use an adapted technique of
one-way k-head finite automata.



Summary

sweep—k:—DLA< k2+gk+2 k-DLA
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Simulation Costs of rotating t-DLA

Theorem
Let k,n > 1 be integers and M be a unary n-state rotating
k-DLA. Then O(n**1) states are sufficient for a (sweeping) 2DFA
to accept the language L(M). The 2DFA can effectively be
constructed from M.

- The idea of the proof is that simulate the behaviour in the
first k sweeps of M in one.



Simulation Costs of rotating t-DLA

Theorem
Let £ > 1 and n > 2 be integers. Then there is a unary rotating
(n + 2)-state, (2k + 1)-tape-symbol k-DLA M, so that n*+!
states are necessary for any 2NFA, 2DFA, 1INFA, or 1DFA to
accept the language L(M).



Summary

sweep-k-DLA _ 2eseee k-DLA rot-k-DLA
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Open Questions

- |s it possible to improve the upper bound for 1-DLA to DFA
in the unary case?

- What is the upper bound between k-DLA and 1DFA,2DFA
in the unary case?

- How is the relation between sweeping and non-sweeping
k-DLA.



Thank you for your attention!



