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Application area

Scanning network traffic
» Very large, or endless
Little ability to back-up

v

v

Many streams
Packetized

v

v

Patterns usually expressed as regex’s

v

> 3000 patterns combined into one

v

Most implementations based on finite automata

Done roughly two dozen such implementations
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Construct an FA from a regular expression

Lots of solutions, most with some problems:
» Large intermediate data-structures (data bump)
> Unable to deal with extended regular operators
» Additional minimization step required
» States are information poor
> Not suitable pedagogically
» Nonincremental (batch)
» Sequential (not parallel)

Solution turns out to be incremental and parallel versions of
Brzozowski's construction
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Why incrementality?

profiles.pdf
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memory

Traditional: time On-demand: time
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Continuations (enroute to derivatives)

For language L and symbol a, define

c(L,a)={y:ay €L}

Some of you might write a=1L

We can use this to test x € L
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Computing continuations

What if we knew L is regular?

c(0, a) 0
c({e},a) =10
{e} ifa=b
c(ib}a {(Z) otherwise
c(LoU Ly, a) = c(Lo,a) Uc(Ly,a)

c(L1,a) ifeely
1) otherwise

c(LoL1,a) = c(Lo,a)L1 U {

C(Laaa) = C(L07a)L8
c(Lon Ly, a) = c(Lo,a) Nc(Ly,a)
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Language membership algorithm

To test x € L, we have a simple algorithm
LANGUAGE MEMBER(X, L)

1 while x # ¢

2 do

3 L+ ¢(L,x[0])
4 x < x[1...]

5 returne €L

Obviously impractical

(Could have been written as a functional program)
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Brzozowski's derivatives

For regex E and symbol a, derivative of E w.r.t. ais

d(0,a) =0
d(1,a)=0
1 f =b
d(b,a)y=4" %~
0 otherwise
d(E0+E1,a) = d(E07a)—|-d(E1,a)
d(E if Ep is ‘nullable’ =
d(EoEr, a) = d(Eo, a)E1 + (E1,a) if Eo |s. nullable’, n(Ep)
0 otherwise
d(Ej,a) = d(Eo, a)Ey
d(Eo&El, a) = d(Eo, a)&d(El, a)

Similarly, nullability can also be done inductively. fastar



Language membership algorithm revisited

If we now test language membership against a regex, we have
MEMBER(x, E)

1 while x # ¢

2 do

3 E < d(E, x[0])
4 x <+ x[1..]

5 return n(E)

Improving performance:
» Thanks to finiteness of derivatives, we can memoize d.
» Lazily builds a deterministic finite automaton (DFA).
» Derivatives are states and their right languages.

This is ‘lazy-Brzozowski'.
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Properties

A regex has a finite number of derivatives, provided we recognize
some identities

Eo+ Eg ~ Eg idempotence
Eo+E~E+E commutativity
Eo+ (1 + BE) ~ (B0 + E1) + B associativity

These are the bare-bones Brzozowski simplification rules.
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Example of memoization

Invoke MEMBER((a + b)*b, bab)
Processing first b yields memo d:

d((a+ b)*b, b) — (0 + 1)(a+ b)*b+1
——
state A state B

Second loop iteration, for a, adds to memo:

d((0+1)(a+ b)*b+1,2) — 0(a+ b)*b+ (1+0)(a+ b)*b+0

state B state C
Third loop iteration, for the second b adds:

d(0(a+b)"b+ (1 +0)(a+ b)*b +0,b) = 0(a + b)"b + (1 +0)(a -

state C state C

We have the beginnings of a 4-state DFA. fastar



Example, redone with simplification

What if we have some regex identities? (for all regex’s E)
OE,E0—0 O+E,E4+0—E 1E,E1— E
Invoke MEMBER((a + b)*b, bab) Processing first b yields memo d:

d((a+ b)*b,b) — (a+ b)*b+1
—— | —
state A state B

Second loop iteration, for a, adds to memo:

d((a+ b)*b+1,3) — (a+ b)*b
—— ——
state B state A

Third loop iteration, for the second b, directly goes from state A

to B.

Simplification allows merging equivalent states. fastar



Implementation choices

Usually

1.

Regex’s (derivatives) are stored as strings

States are information rich

. Derivatives are

mapped to integers, then
eventually thrown away

States are information poor

Fast transition lookup based on integers
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Enriched representations

Is there no way to be information rich and efficient?

Let's have a look at a graph representation of d for a few cases

d(Eo + Eq, a) = d(Eo, a) + d(El, a)

d(Ei,a) if Egis ‘nullable’, n(Ep)

d(EoEr,a) = d(Eo,a)Er + .
0 otherwise

d(E5,a) = d(Eo, a)E]
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d(Ey + E;1,a) = d(Ey, a) + d(Ey, a)

4

Al f\E o)

\ Ci(ﬁo’a) o\(E, ; o.)

O[(EQ,OJ O\(E\,Q>
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d(EoEy, a) =

A(E ) + {d(El,a) f Eo s "nulable’ n(Eo)
otherwise

For simplicity n(Ep) case only:

)
A ‘ ) a) & A(E.,0)
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New implementation

Information rich and efficient?
1. Change representation: Parse trees for derivatives

» Parse DAG nodes are states
» d is a node operation

2. New invariant: No duplicate expressions

» RHS’s of d are full of common subexpressions
» Use these to further compress away redundancy

With node sharing, we have parse DAG's
3. Optimize: Use simplification rules

> Never build ugly regex's
Get arbitrarily & asymptotically close to minimal
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Parse tree for (a+ b)*b
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Parse DAG for (a+ b)*b
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Multiple regex’s (a + b)*b and c(a + b)*b
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Multiple regex’s with sharing
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Multiple regex’s (a + b)*b and c(a + b)*b
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Multiple regex’s (a + b)*b and c(a + b)*b
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Multiple regex’s with sharing
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Multiple regex’s with sharing
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Properties of the algorithm

Some really exciting properties

>

>

>

Annotations of the states is interesting

Can get arbitrarily close to minimal DFA

Smaller memory consumption ‘bump’

Global sharing of structures, across many regex’s/DFA’s
Lazy/incremental or eager

Shrinking (LRU) is possible by throwing away nodes (and
rebuilding later)

Approximate DFA is done by aggressive common
subexpression elimination
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Ongoing and future work

» We have a CSP specification of Brzozowski's construction
Implementation is efficient

> Lots of work on combining Brzozowki's two algorithms
Construction & the double-reversal minimization algorithm

derivatives; reverse, determinize; reverse; determinize

done as: reverse; derivatives; reverse

» Extend this to transducers, weighted automata
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