Brzozowski's Automata Algorithms

Incrementality and Parallelism

Bruce W. Watson
with Tinus Strauss, Derrick G. Kourie and Loek Cleophas

FASTAR Research Group
Stellenbosch University, South Africa
bruce@fastar.org

Brzozowski 80, University of Waterloo, 24 June 2015

fastar



Application area

Scanning network traffic
» Very large, or endless
Little ability to back-up

v

v

Many streams
Packetized

v

v

Patterns usually expressed as regex’s

v

> 3000 patterns combined into one

v

Most implementations based on finite automata

Done roughly two dozen such implementations

fastar



Construct an FA from a regular expression

Lots of solutions, most with some problems:
» Large intermediate data-structures (data bump)
> Unable to deal with extended regular operators
» Additional minimization step required
» States are information poor
> Not suitable pedagogically
» Nonincremental (batch)
» Sequential (not parallel)

Solution turns out to be incremental and parallel versions of
Brzozowski's construction

fastar



Why incrementality?

profiles.pdf

4

memory

Traditional: time On-demand: time

fastar



Continuations (enroute to derivatives)

For language L and symbol a, define

c(L,a)={y:ay €L}

Some of you might write a=1L

We can use this to test x € L

fastar



Computing continuations

What if we knew L is regular?

c(0, a) 0
c({e},a) =10
{e} ifa=b
c(ib}a {(Z) otherwise
c(LoU Ly, a) = c(Lo,a) Uc(Ly,a)

c(L1,a) ifeely
1) otherwise

c(LoL1,a) = c(Lo,a)L1 U {

C(Laaa) = C(L07a)L8
c(Lon Ly, a) = c(Lo,a) Nc(Ly,a)

fastar



Language membership algorithm

To test x € L, we have a simple algorithm
LANGUAGE MEMBER(X, L)

1 while x # ¢

2 do

3 L+ ¢(L,x[0])
4 x < x[1...]

5 returne €L

Obviously impractical

(Could have been written as a functional program)

fastar



Brzozowski's derivatives

For regex E and symbol a, derivative of E w.r.t. ais

d(0,a) =0
d(1,a)=0
1 f =b
d(b,a)y=4" %~
0 otherwise
d(E0+E1,a) = d(E07a)—|-d(E1,a)
d(E if Ep is ‘nullable’ =
d(EoEr, a) = d(Eo, a)E1 + (E1,a) if Eo |s. nullable’, n(Ep)
0 otherwise
d(Ej,a) = d(Eo, a)Ey
d(Eo&El, a) = d(Eo, a)&d(El, a)

Similarly, nullability can also be done inductively. fastar



Language membership algorithm revisited

If we now test language membership against a regex, we have
MEMBER(x, E)

1 while x # ¢

2 do

3 E < d(E, x[0])
4 x <+ x[1..]

5 return n(E)

Improving performance:
» Thanks to finiteness of derivatives, we can memoize d.
» Lazily builds a deterministic finite automaton (DFA).
» Derivatives are states and their right languages.

This is ‘lazy-Brzozowski'.
fastar



Properties

A regex has a finite number of derivatives, provided we recognize
some identities

Eo+ Eg ~ Eg idempotence
Eo+E~E+E commutativity
Eo+ (1 + BE) ~ (B0 + E1) + B associativity

These are the bare-bones Brzozowski simplification rules.

fastar



Example of memoization

Invoke MEMBER((a + b)*b, bab)
Processing first b yields memo d:

d((a+ b)*b, b) — (0 + 1)(a+ b)*b+1
——
state A state B

Second loop iteration, for a, adds to memo:

d((0+1)(a+ b)*b+1,2) — 0(a+ b)*b+ (1+0)(a+ b)*b+0

state B state C
Third loop iteration, for the second b adds:

d(0(a+b)"b+ (1 +0)(a+ b)*b +0,b) = 0(a + b)"b + (1 +0)(a -

state C state C

We have the beginnings of a 4-state DFA. fastar



Example, redone with simplification

What if we have some regex identities? (for all regex’s E)
OE,E0—0 O+E,E4+0—E 1E,E1— E
Invoke MEMBER((a + b)*b, bab) Processing first b yields memo d:

d((a+ b)*b,b) — (a+ b)*b+1
—— | —
state A state B

Second loop iteration, for a, adds to memo:

d((a+ b)*b+1,3) — (a+ b)*b
—— ——
state B state A

Third loop iteration, for the second b, directly goes from state A

to B.

Simplification allows merging equivalent states. fastar



Implementation choices

Usually

1.

Regex’s (derivatives) are stored as strings

States are information rich

. Derivatives are

mapped to integers, then
eventually thrown away

States are information poor

Fast transition lookup based on integers

fastar



Enriched representations

Is there no way to be information rich and efficient?

Let's have a look at a graph representation of d for a few cases

d(Eo + Eq, a) = d(Eo, a) + d(El, a)

d(Ei,a) if Egis ‘nullable’, n(Ep)

d(EoEr,a) = d(Eo,a)Er + .
0 otherwise

d(E5,a) = d(Eo, a)E]

fastar



d(Ey + E;1,a) = d(Ey, a) + d(Ey, a)

4

Al f\E o)

\ Ci(ﬁo’a) o\(E, ; o.)

O[(EQ,OJ O\(E\,Q>

fastar



d(EoEy, a) =

A(E ) + {d(El,a) f Eo s "nulable’ n(Eo)
otherwise

For simplicity n(Ep) case only:

)
A ‘ ) a) & A(E.,0)

fastar




fastar



New implementation

Information rich and efficient?
1. Change representation: Parse trees for derivatives

» Parse DAG nodes are states
» d is a node operation

2. New invariant: No duplicate expressions

» RHS’s of d are full of common subexpressions
» Use these to further compress away redundancy

With node sharing, we have parse DAG's
3. Optimize: Use simplification rules

> Never build ugly regex's
Get arbitrarily & asymptotically close to minimal

fastar



Parse tree for (a+ b)*b

far



Parse DAG for (a+ b)*b

T
N

f ®

tar



Multiple regex’s (a + b)*b and c(a + b)*b

AV /]

S 0 060 0 6 6 ot



Multiple regex’s with sharing

@A gj fastar



Multiple regex’s (a + b)*b and c(a + b)*b

fastar



Multiple regex’s (a + b)*b and c(a + b)*b

fastar



Multiple regex’s with sharing

fastar



Multiple regex’s with sharing

fastar



Properties of the algorithm

Some really exciting properties

>

>

>

Annotations of the states is interesting

Can get arbitrarily close to minimal DFA

Smaller memory consumption ‘bump’

Global sharing of structures, across many regex’s/DFA’s
Lazy/incremental or eager

Shrinking (LRU) is possible by throwing away nodes (and
rebuilding later)

Approximate DFA is done by aggressive common
subexpression elimination

fastar



Ongoing and future work

» We have a CSP specification of Brzozowski's construction
Implementation is efficient

> Lots of work on combining Brzozowki's two algorithms
Construction & the double-reversal minimization algorithm

derivatives; reverse, determinize; reverse; determinize

done as: reverse; derivatives; reverse

» Extend this to transducers, weighted automata

fastar



	Introduction
	Some simple problems
	Continuations
	Efficiency of derivatives
	Regex matching revisited — building a DFA
	New DFA construction algorithm
	Closing comments

