Generalization of the double-reversal method of finding a canonical residual finite state automaton

Hellis Tamm Institute of Cybernetics Tallinn University of Technology

DCFS 2015 Waterloo, ON, June 25-27, 2015

This work was supported by the ERDF funded CoE project EXCS and the Estonian Ministry of Education and Research institutional research grant IUT33-13.

医下子 医下

Residual finite state automata

- Residual finite state automata (RFSA), introduced by Denis, Lemay, and Terlutte in 2001, are a subclass of NFAs, where every state defines a residual language (a left quotient) of the language accepted by the automaton.
- Every regular language has a unique canonical RFSA that is a state-minimal RFSA.
- The size of the canonical RFSA is at least the size of a minimal NFA and at most the size of the minimal DFA.

Canonical RFSA

Let L be a regular language over Σ . The left quotient of a language L by a word w is the language $w^{-1}L = \{x \in \Sigma^* \mid wx \in L\}$.

Let $K = \{K_0, \ldots, K_{n-1}\}$ be the set of quotients of L.

A quotient K_i of L is prime if it is non-empty and if it cannot be obtained as a union of other quotients of L.

The canonical RFSA of *L* is the NFA $C = (K', \Sigma, \delta, I, F)$, where $K' \subseteq K$ is the set of prime quotients of *L*, Σ is an input alphabet, $I = \{K_i \in K' \mid K_i \subseteq L\}, F = \{K_i \in K' \mid \varepsilon \in K_i\}$, and $\delta(K_i, a) = \{K_j \in K' \mid K_j \subseteq a^{-1}K_i\}$ for every $K_i \in K'$ and $a \in \Sigma$.

Among all RFSAs of L, the canonical RFSA is minimal regarding to the number of states, with a maximal number of transitions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Obtaining the canonical RFSA: saturation

The saturation operation *S*, applied to an NFA $\mathcal{N} = (Q, \Sigma, \delta, I, F)$:

$$\mathcal{N}^{S} = (Q, \Sigma, \delta_{S}, I_{S}, F), \text{ where } I_{S} = \{q \in Q \mid L_{q,F}(\mathcal{N}) \subseteq L(\mathcal{N})\} \text{ and } \\ \delta_{S}(q, a) = \{q' \in Q \mid aL_{q',F}(\mathcal{N}) \subseteq L_{q,F}(\mathcal{N})\} \text{ for all } q \in Q \text{ and } a \in \Sigma.$$

- Saturation may add transitions and initial states to an NFA, without changing its language.
- If \mathcal{N} is an RFSA, then $\mathcal{N}^{\mathcal{S}}$ is an RFSA.
- If \mathcal{D} is a DFA, then \mathcal{D}^S is an RFSA.

Obtaining the canonical RFSA: reduction

For any state q of \mathcal{N} , let $R(q) = \{q' \in Q \setminus \{q\} \mid L_{q',F}(\mathcal{N}) \subseteq L_{q,F}(\mathcal{N})\}.$ A state q is erasable if $L_{q,F}(\mathcal{N}) = \bigcup_{q' \in R(q)} L_{q',F}(\mathcal{N}).$

If q is erasable, a reduction operator ϕ is defined as follows: $\phi(\mathcal{N},q) = (Q', \Sigma, \delta', I', F')$ where $Q' = Q \setminus \{q\}$, I' = I if $q \notin I$, and $I' = (I \setminus \{q\}) \cup R(q)$ otherwise, $F' = F \cap Q'$, $\delta'(q', a) = \delta(q', a)$ if $q \notin \delta(q', a)$, and $\delta'(q', a) = (\delta(q', a) \setminus \{q\}) \cup R(q)$ otherwise, for every $q' \in Q'$ and every $a \in \Sigma$.

If q is not erasable, let $\phi(\mathcal{N}, q) = \mathcal{N}$.

If \mathcal{N} is saturated and if q is an erasable state of \mathcal{N} , then $\phi(\mathcal{N}, q)$ is obtained by deleting q and its associated transitions from \mathcal{N} .

If \mathcal{N} is an RFSA, then $\phi(\mathcal{N}, q)$ is an RFSA.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

An NFA \mathcal{N} is reduced if there is no erasable state in \mathcal{N} .

Proposition. If an NFA \mathcal{N} is a reduced saturated RFSA of *L*, then \mathcal{N} is the canonical RFSA of *L*.

The canonical RFSA can be obtained from a DFA by using saturation and reduction operations.

Atoms of a regular language

Let K_0, \ldots, K_{n-1} be the quotients of L.

An atom of L is any non-empty language of the form

$$A=\widetilde{K_0}\cap\widetilde{K_1}\cap\cdots\cap\widetilde{K_{n-1}},$$

where \widetilde{K}_i is either K_i or $\overline{K_i}$.

Atoms of *L* are regular languages uniquely determined by *L*, they define a partition of Σ^* .

Atoms are pairwise disjoint, and every quotient of L (including L itself) is a union of atoms.

同 ・ ・ ヨ ・ ・ ヨ ・ ・ りゅう

Átomaton

Let $K_0 = L$ be the initial quotient of L.

- An atom is initial if it has K_0 (rather than $\overline{K_0}$) as a term.
- An atom is final if and only if it contains ε .
- There is exactly one final atom, the atom $\widehat{K_0} \cap \cdots \cap \widehat{K_{n-1}}$, where $\widehat{K_i} = K_i$ if $\varepsilon \in K_i$, $\widehat{K_i} = \overline{K_i}$ otherwise.

Átomaton

Let $K_0 = L$ be the initial quotient of L.

- An atom is initial if it has K_0 (rather than $\overline{K_0}$) as a term.
- An atom is final if and only if it contains ε.
- There is exactly one final atom, the atom $\widehat{K_0} \cap \cdots \cap \widehat{K_{n-1}}$, where $\widehat{K_i} = K_i$ if $\varepsilon \in K_i$, $\widehat{K_i} = \overline{K_i}$ otherwise.

Let $A = \{A_0, \ldots, A_{m-1}\}$ be the set of atoms of L, let I_A be the set of initial atoms, and let the final atom be A_{m-1} .

The átomaton of *L* is the NFA $\mathcal{A} = (\mathbf{A}, \Sigma, \alpha, \mathbf{I}_A, \{\mathbf{A}_{m-1}\})$, where $\mathbf{A} = \{\mathbf{A}_i \mid A_i \in A\}$, $\mathbf{I}_A = \{\mathbf{A}_i \mid A_i \in I_A\}$, and $\mathbf{A}_j \in \alpha(\mathbf{A}_i, a)$ if and only if $A_j \subseteq a^{-1}A_i$, for all $\mathbf{A}_i, \mathbf{A}_j \in \mathbf{A}$ and $a \in \Sigma$.

Let K_0, \ldots, K_{n-1} be the quotients of L, and let A_0, \ldots, A_{m-1} be the atoms of L.

For every atom A_i , we define the maximized atom M_i to be a union of atoms: $M_i = \bigcup \{A_h \mid A_h \subseteq \bigcap_{A_i \subseteq K_k} K_k\}.$

Since atoms are pairwise disjoint, and every quotient is a union of atoms, $M_i = \bigcap_{A_i \subset K_k} K_k$ holds.

通 とう きょう うちょう しょう

Maximized átomaton

Let $A = \{A_0, \ldots, A_{m-1}\}$ be the set of atoms of L, with the set of initial atoms $I_A \subseteq A$, and the final atom A_{m-1} .

Let $M = \{M_0, \ldots, M_{m-1}\}$ be the set of the maximized atoms of L, let $I_M = \{M_i \mid A_i \in I_A\}$, and $F_M = \{M_i \mid A_{m-1} \subseteq M_i\}$.

The maximized átomaton of *L* is the NFA defined by $\mathcal{M} = (\mathbf{M}, \Sigma, \mu, \mathbf{I}_M, \mathbf{F}_M)$, where $\mathbf{M} = \{\mathbf{M}_i \mid M_i \in M\}$, $\mathbf{I}_M = \{\mathbf{M}_i \mid M_i \in I_M\}$, $\mathbf{F}_M = \{\mathbf{M}_i \mid M_i \in F_M\}$, and $\mathbf{M}_j \in \mu(\mathbf{M}_i, a)$ if and only if $M_j \subseteq a^{-1}M_i$ for all $\mathbf{M}_i, \mathbf{M}_j \in \mathbf{M}$ and $a \in \Sigma$.

Maximized átomaton

Let $A = \{A_0, \ldots, A_{m-1}\}$ be the set of atoms of L, with the set of initial atoms $I_A \subseteq A$, and the final atom A_{m-1} .

Let $M = \{M_0, \ldots, M_{m-1}\}$ be the set of the maximized atoms of L, let $I_M = \{M_i \mid A_i \in I_A\}$, and $F_M = \{M_i \mid A_{m-1} \subseteq M_i\}$.

The maximized átomaton of *L* is the NFA defined by $\mathcal{M} = (\mathbf{M}, \Sigma, \mu, \mathbf{I}_M, \mathbf{F}_M)$, where $\mathbf{M} = \{\mathbf{M}_i \mid M_i \in M\}$, $\mathbf{I}_M = \{\mathbf{M}_i \mid M_i \in I_M\}$, $\mathbf{F}_M = \{\mathbf{M}_i \mid M_i \in F_M\}$, and $\mathbf{M}_j \in \mu(\mathbf{M}_i, a)$ if and only if $M_j \subseteq a^{-1}M_i$ for all $\mathbf{M}_i, \mathbf{M}_j \in \mathbf{M}$ and $a \in \Sigma$.

Recently, Myers, Adámek, Milius, and Urbat (2014) introduced a new canonical NFA, the distromaton, which appears to be the same NFA as the maximized átomaton.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Let \mathcal{A} be the átomaton of L, and let \mathcal{D} be the minimal DFA of L^R . **Proposition.** The maximized átomaton \mathcal{M} of L is isomorphic to \mathcal{D}^{SR} .

Proposition (Brzozowski and Tamm, 2011, 2014). The reverse \mathcal{A}^R of \mathcal{A} is the minimal DFA of \mathcal{L}^R .

Corollary. The maximized atomaton \mathcal{M} is isomorphic to \mathcal{A}^{RSR} .

Operation C

Denis, Lemay, and Terlutte (2001) introduced a modified subset construction operation C to be applied to an NFA:

Let $\mathcal{N} = (Q, \Sigma, \delta, I, F)$ be an NFA. Let Q_D be the set of states of the determinized version \mathcal{N}^D of \mathcal{N} . A state $s \in Q_D$ is coverable if there is a set $Q_s \subseteq Q_D \setminus \{s\}$ such that $s = \bigcup_{s' \in Q_s} s'$.

The NFA $\mathcal{N}^{C} = (Q_{C}, \Sigma, \delta_{C}, I_{C}, F_{C})$ is defined as follows: $Q_{C} = \{s \in Q_{D} \mid s \text{ is not coverable }\}, I_{C} = \{s \in Q_{C} \mid s \subseteq I\},$ $F_{C} = \{s \in Q_{C} \mid s \cap F \neq \emptyset\}, \text{ and } \delta_{C}(s, a) = \{s' \in Q_{C} \mid s' \subseteq \delta(s, a)\} \text{ for any } s \in Q_{C} \text{ and } a \in \Sigma.$

Applying the operation C to any NFA \mathcal{N} produces an RFSA \mathcal{N}^{C} .

This RFSA is not necessarily a canonical RFSA.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Another method to obtain the canonical RFSA

Theorem (Brzozowski, 1962). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is a DFA, then \mathcal{N}^D is a minimal DFA.

Brzozowski's double-reversal DFA minimization:

For any NFA \mathcal{N} of L, \mathcal{N}^{RDRD} is the minimal DFA of L.

Another method to obtain the canonical RFSA

Theorem (Brzozowski, 1962). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is a DFA, then \mathcal{N}^D is a minimal DFA.

Brzozowski's double-reversal DFA minimization:

For any NFA \mathcal{N} of L, \mathcal{N}^{RDRD} is the minimal DFA of L.

Theorem (Denis, Lemay, and Terlutte, 2001). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is an RFSA, then \mathcal{N}^C is a canonical RFSA.

For any NFA \mathcal{N} of L, \mathcal{N}^{RCRC} is the canonical RFSA of L.

So it seems that the operation C has a similar role for RFSAs as determinization D has for DFAs.

Brzozowski's theorem and its generalization

Theorem (Brzozowski, 1962). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is a DFA, then \mathcal{N}^D is a minimal DFA.

An NFA N is atomic if for every state q of N, the right language of q is a union of some atoms of L(N).

Theorem (Brzozowski and Tamm, 2011, 2014). For any NFA \mathcal{N} , \mathcal{N}^D is a minimal DFA if and only if \mathcal{N}^R is atomic.

Brzozowski's theorem and its generalization

Theorem (Brzozowski, 1962). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is a DFA, then \mathcal{N}^D is a minimal DFA.

An NFA N is atomic if for every state q of N, the right language of q is a union of some atoms of L(N).

Theorem (Brzozowski and Tamm, 2011, 2014). For any NFA \mathcal{N} , \mathcal{N}^D is a minimal DFA if and only if \mathcal{N}^R is atomic.

We want to generalize this:

Theorem (Denis, Lemay, and Terlutte, 2001). For an NFA \mathcal{N} without empty states, if \mathcal{N}^R is an RFSA, then \mathcal{N}^C is a canonical RFSA.

Theorem ? For any NFA \mathcal{N} , \mathcal{N}^{C} is a canonical RFSA if and only if ???.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Canonical left languages

Let \mathcal{D} be the minimal DFA of L, with the state set $Q = \{q_0, \ldots, q_{m-1}\}$. Let the quotients of L be Q_0, \ldots, Q_{m-1} .

The NFA \mathcal{D}^{S} is the saturated version of \mathcal{D} , and \mathcal{D}^{SE} is the NFA, obtained after removing all erasable states and their transitions from \mathcal{D}^{S} . Since \mathcal{D}^{SE} is saturated and reduced, it is the canonical RFSA for *L*.

We denote the canonical RFSA by C. For every state q_i of C, we denote the left language of q_i by L_i ; the right language of q_i is Q_i .

Since the canonical RFSA C is uniquely determined by L, so are L_i 's, and we call these L_i 's canonical left languages of L.

Since the canonical RFSA is a state-minimal RFSA with maximal number of transitions, left languages of the states of any state-minimal RFSA are subsets of corresponding canonical left languages.

Properties of canonical left languages

Let A_0, \ldots, A_{m-1} be the atoms of L^R , let M_0, \ldots, M_{m-1} be their maximized atoms, and let \mathcal{M} be the maximized atomaton of L^R .

Clearly, \mathcal{D}^{SE} is a subautomaton of \mathcal{D}^{S} . Since \mathcal{D}^{S} and \mathcal{M}^{R} are isomorphic, \mathcal{C} is isomorphic to a subautomaton of \mathcal{M}^{R} .

We can set a correspondence between L_i 's and those M_i 's which correspond to non-erasable states of \mathcal{D}^S .

The following properties hold for any canonical left languages L_i and L_j :

•
$$A_i^R \subseteq L_i \subseteq M_i^R$$
.

• If
$$A_i^R \cap L_j \neq \emptyset$$
, then $L_i \subseteq L_j$.

Main results

Let \mathcal{N} be an NFA, and let \mathcal{N}^{C} be the NFA obtained by applying the operation C to \mathcal{N} .

Proposition. The RFSA \mathcal{N}^{C} is a canonical RFSA if and only if for every state s_i of \mathcal{N}^{C} , the left language of s_i is L_i for some L_i .

Theorem. For any NFA \mathcal{N} of L, \mathcal{N}^{C} is a canonical RFSA if and only if the left language of every state of \mathcal{N} is a union of some canonical left languages L_i of L.