# Universal Disjunctive Concatenation and Star 

Nelma Moreira ${ }^{1} \quad$ Giovanni Pighizzini $^{2} \quad$ Rogério Reis ${ }^{1}$
${ }^{1}$ Centro de Matemática \& Faculdade de Ciências
Universidade do Porto, Portugal
${ }^{2}$ Dipartimento di Informatica
Università degli Studi di Milano, Italy

## DCFS 2015

Waterloo, Ontario, Canada
June 25-27, 2015

## Motivation

## Don't care Automata (dcDFA)



$$
\mathcal{L}^{\ominus}(A), \mathcal{L}^{\oplus}(A)
$$

## Operations over dcDFAs.

Union (disjunction):

|  | + | - | $?$ |
| :---: | :---: | :---: | :---: |
| + | + | + | + |
| - | + | - | $?$ |
| $?$ | + | $?$ | $?$ |

## Motivation

## Don't care Automata (dcDFA)



$$
\mathcal{L}^{\ominus}(A), \mathcal{L}^{\oplus}(A)
$$

## Operations over dcDFAs.

For other operations, like concatenation, is much less clear, and much more interesting.

## Motivation

Suppose that we have two dcDFAs $A$ and $B$ with completely defined behaviour, i.e.,

$$
\mathcal{L}^{\oplus}(A) \cup \mathcal{L}^{\ominus}(A)=\mathcal{L}^{\oplus}(B) \cup \mathcal{L}^{\ominus}(B)=\Sigma^{\star}
$$

We want that

$$
\begin{aligned}
& w \in \mathcal{L}^{\oplus}(A B) \Leftrightarrow \exists u, v \in \Sigma^{\star} w=u v \wedge u \in \mathcal{L}^{\oplus}(A) \wedge v \in \mathcal{L}^{\oplus}(B) \\
& w \in \mathcal{L}^{\ominus}(A B) \Leftrightarrow \forall u, v \in \Sigma^{\star} w=u v \Rightarrow u \notin \mathcal{L}^{\oplus}(A) \vee v \notin \mathcal{L}^{\oplus}(B) \\
& w \in \mathcal{L}^{\ominus}(A B) \Leftrightarrow \forall u, v \in \Sigma^{\star} w=u v \Rightarrow u \in \mathcal{L}^{\ominus}(A) \vee v \in \mathcal{L}^{\ominus}(B)
\end{aligned}
$$

In general, for two dcDFAs $A$ and $B$, we want to define

$$
\mathcal{L}^{\oplus}(A B)=\mathcal{L}^{\oplus}(A) \mathcal{L}^{\oplus}(B) \quad \mathcal{L}^{\ominus}(A B)=\mathcal{L}^{\ominus}(A) \odot \mathcal{L}^{\ominus}(B)
$$

## Universal Disjunctive Concatenation (๑)

Let $L_{1}$ and $L_{2}$ be languages over an alphabet $\Sigma$.

$$
L_{1} \odot L_{2}=\left\{w \in \Sigma^{\star} \mid \forall x_{1}, x_{2}, w=x_{1} x_{2} \Rightarrow x_{1} \in L_{1} \vee x_{2} \in L_{2}\right\}
$$

## Example 1

$$
\mathcal{L}\left(\left(a b^{\star} a+b\right)^{\star}\right) \odot \mathcal{L}\left(a(a+b)^{\star}\right)=\mathcal{L}\left((a a+b)^{\star}\right)
$$

## Example 2

$$
\begin{gathered}
\Sigma=\{a\} \quad \mathcal{L}\left(a^{\star}\right) \odot \mathcal{L}\left(a^{\star}\right)=\mathcal{L}\left(a^{\star}\right) \\
\Sigma=\{a, b\} \quad \mathcal{L}\left(a^{\star}\right) \odot \mathcal{L}\left(a^{\star}\right)=\mathcal{L}\left(a^{\star}+a^{\star} b a^{\star}\right)
\end{gathered}
$$

## Theorem

The class of Regular Languages is closed under the operation ©.

$$
\overline{L \odot M}=\{w \mid \exists u, v w=u v \wedge u \notin L \wedge v \notin M\}=\bar{L} \bar{M}
$$

$$
L \odot M=\overline{\bar{L} \bar{M}}
$$

## Some properties of $\odot$ :

- $(L \odot M) \odot N=L \odot(M \odot N) \quad$ (associativity)
- $\Sigma^{+} \odot L=L \odot \Sigma^{+}=L \quad\left(\Sigma^{+}\right.$is the unit element)
- $\left(L \neq \Sigma^{+} \neq M\right) \Rightarrow L \odot M \neq \Sigma^{+} \quad$ (no non-trivial inverses)
- $(\varepsilon \notin L) \Rightarrow(L \odot M \subseteq M) \wedge(M \odot L \subseteq M)$
- $(\emptyset \odot L=\mathrm{s}(L)) \wedge(L \odot \emptyset=\mathrm{p}(L))$
$s(L)$ interior suffix-closed of $L$ $\mathrm{p}(L)$ interior prefix-closed of $L$
- $\operatorname{pref}(L) \subseteq L \Rightarrow L \subseteq L \odot M$
- $\operatorname{pref}(L) \subseteq \operatorname{pref}(L) \odot L$
- $\varepsilon \notin L \Rightarrow \operatorname{pref}(L) \odot L=\operatorname{pref}(L)$
- $\operatorname{pref}_{+}(L) \odot L=L$
- $\operatorname{suff}(L) \subseteq L \Rightarrow L \subseteq M \odot L$
- $\operatorname{suff}(L) \subseteq L \odot \operatorname{suff}(L)$
- $\varepsilon \notin L \Rightarrow L \odot \operatorname{suff}(L)=\operatorname{suff}(L)$
- $L \odot \operatorname{suff}_{+}(L)=L$
- $(\operatorname{pref}(L) \subseteq L) \wedge(\operatorname{suff}(M) \subseteq M) \Rightarrow L M \subseteq L \odot M$


## Theorem

$$
(s c(M)=m \wedge s c(N)=n) \Rightarrow s c(M \odot N) \leq m 2^{n-1}
$$

direct consequence of state complexity for concatenation [Yu, Zhuang \& Salomaa, 1994]
$L_{n}$

$$
\left(a(a+b)^{n-1}\right)^{\star}\left(\varepsilon+a(a+b)^{<n}\right)+\left(b(a+b)^{n-1}\right)^{\star}\left(\varepsilon+b(a+b)^{<n}\right)
$$

## Theorem

- The minimum DFA accepting $L_{n}$ has $2 n+2$ states

$L_{n}$

$$
\left(a(a+b)^{n-1}\right)^{\star}\left(\varepsilon+a(a+b)^{<n}\right)+\left(b(a+b)^{n-1}\right)^{\star}\left(\varepsilon+b(a+b)^{<n}\right)
$$

## Theorem

- The minimum DFA accepting $L_{n}$ has $2 n+2$ states
- $s\left(L_{n}\right)=\left\{x^{k} y \mid x \in\{a, b\}^{n}, k \geq 0, y \in \operatorname{pref}(x)\right\}$

Every non-empty word of $L_{n}$ is of the form $a w_{1} a w_{2} a \cdots a w_{m} a w^{\prime}$ or $b w_{1} b w_{2} b \cdots b w_{m} b w^{\prime}$ with $w_{i} \in\{a, b\}^{n-1}$ and $w^{\prime} \in\{a, b\}^{\star}$ with $\left|w^{\prime}\right|<n$.
Thus a word $w \in s\left(L_{n}\right)$ if and only if each two symbols in $w$ at a distance $n$ are identical, and the proposition is trivially true.
$L_{n}$

$$
\left(a(a+b)^{n-1}\right)^{\star}\left(\varepsilon+a(a+b)^{<n}\right)+\left(b(a+b)^{n-1}\right)^{\star}\left(\varepsilon+b(a+b)^{<n}\right)
$$

## Theorem

- The minimum DFA accepting $L_{n}$ has $2 n+2$ states
- $\mathrm{s}\left(L_{n}\right)=\left\{x^{k} y \mid x \in\{a, b\}^{n}, k \geq 0, y \in \operatorname{pref}(x)\right\}$
- Every NFA accepting $\mathrm{s}\left(L_{n}\right)$ has, at least, $2^{n}$ states

Consider $S=\left\{x \mid x \in\{a, b\}^{n}\right\}$. We have $x x \in s\left(L_{n}\right)$ and if $x \neq y$ then $x y \notin \mathrm{~s}\left(L_{n}\right)$. Thus $S$ constitutes a "fooling set" for $\mathrm{s}\left(L_{n}\right)$ and any NFA accepting $L_{n}$ must have $|S|=2^{n}$ states.

## Theorem

For every even $m$, there exists a minimal DFA $B$ over a binary alphabet, with $m=|B|$, such that the minimum number of states of an NFA accepting $\emptyset \odot \mathcal{L}(B)$ can be as large as $2^{(m-2) / 2}$.

It is enough to consider $L_{n}$ as the right operand. Given that $\emptyset \odot L_{n}=\mathrm{s}\left(L_{n}\right)$ and that any NFA accepting $\mathrm{s}\left(L_{n}\right)$ has, at least $2^{n}$ states. Thus making $m=2 n+2$ (the size of the smallest DFA accepting $L_{n}$ ) the size of the NFA accepting $s\left(L_{n}\right)$ is, at least, $2^{(m-2) / 2}$.

## Theorem

Let $A^{\prime}$ and $A^{\prime \prime}$ be two NFAs with $m$ and $n$ states ( $m, n \geq 1$ ), respectively. There exists an NFA $A$ with no more than $2^{m+n}$ states that accepts $\mathcal{L}\left(A^{\prime}\right) \odot \mathcal{L}\left(A^{\prime \prime}\right)$.

If $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$ and $A^{\prime \prime}=\left\langle Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, i^{\prime \prime}, F^{\prime \prime}\right\rangle$ are DFAs.

$$
\begin{gathered}
A=\left\langle Q^{\prime} \times 2^{Q^{\prime \prime}}, \Sigma, \delta, i, F\right\rangle \\
i= \begin{cases}\left(i^{\prime}, \emptyset\right) & \text { if } i^{\prime} \in F^{\prime} \\
\left(i^{\prime},\left\{i^{\prime \prime}\right\}\right) & \text { otherwise }\end{cases} \\
\delta((s, \alpha), \sigma)= \begin{cases}\left(\delta^{\prime}(s, \sigma), \delta^{\prime \prime}(\alpha, \sigma)\right) & \text { if } \delta^{\prime}(s, \sigma) \in F^{\prime} \\
\left(\delta^{\prime}(s, \sigma), \delta^{\prime \prime}(\alpha, \sigma) \cup\left\{i^{\prime \prime}\right\}\right) & \text { otherwise }\end{cases} \\
F= \begin{cases}F^{\prime} \times 2^{F^{\prime \prime}} & \text { if } i^{\prime \prime} \notin F^{\prime \prime} \\
F^{\prime} \times 2^{F^{\prime \prime}} \cup Q^{\prime} \times 2^{F^{\prime \prime}} & \text { otherwise }\end{cases}
\end{gathered}
$$

## Theorem

Let $A^{\prime}$ and $A^{\prime \prime}$ be two NFAs with $m$ and $n$ states ( $m, n \geq 1$ ), respectively. There exists an NFA $A$ with no more than $2^{m+n}$ states that accepts $\mathcal{L}\left(A^{\prime}\right) \odot \mathcal{L}\left(A^{\prime \prime}\right)$.
$A$ is a DFA, and $\left\{(q, \alpha) \mid q \notin F^{\prime}, i^{\prime \prime} \notin \alpha\right\}$ has only non-reachable states. Thus $A$ as at most $m 2^{n}-(m-f) 2^{n-1}$ states, with $f=\left|F^{\prime}\right|$.

## Theorem

Let $A^{\prime}$ and $A^{\prime \prime}$ be two NFAs with $m$ and $n$ states ( $m, n \geq 1$ ), respectively. There exists an NFA $A$ with no more than $2^{m+n}$ states that accepts $\mathcal{L}\left(A^{\prime}\right) \odot \mathcal{L}\left(A^{\prime \prime}\right)$.

If $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$, a DFA, and $A^{\prime \prime}=\left\langle Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, I^{\prime \prime}, F^{\prime \prime}\right\rangle$, an NFA.

$$
\begin{aligned}
A & =\left\langle Q^{\prime} \times 2^{Q^{\prime \prime}}, \Sigma, \delta, I, F\right\rangle \\
I & = \begin{cases}\left\{\left(i^{\prime}, \emptyset\right)\right\} & \text { if } i^{\prime} \in F^{\prime} \\
\left\{\left(i^{\prime},\left\{i^{\prime \prime}\right\}\right) \mid i^{\prime \prime} \in I^{\prime \prime}\right\} & \text { otherwise }\end{cases} \\
\operatorname{next}(\alpha, \sigma) & =\left\{\gamma \in 2^{\left.Q^{\prime \prime} \mid \exists f: \alpha \rightarrow \gamma \text { s.t. }(f(r)=s) \Rightarrow s \in \delta^{\prime \prime}(r, \sigma)\right\}}\right. \\
\delta((q, \alpha), \sigma) & = \begin{cases}\left\{\left(\delta^{\prime}(q, \sigma), \beta\right) \mid \beta \in \operatorname{next}(\alpha, \sigma)\right\} & \text { if } \delta^{\prime}(q, \sigma) \in F^{\prime} \\
\left\{\left(\delta(q, \sigma), \beta \cup\left\{i^{\prime \prime}\right\}\right) \mid i^{\prime} \in I^{\prime \prime}, \beta \in \operatorname{next}(\alpha, \sigma)\right\} \quad \text { otherwise }\end{cases} \\
F & = \begin{cases}F^{\prime} \times 2^{F^{\prime \prime}} & \text { if } I^{\prime \prime} \cap F^{\prime \prime}=\emptyset \\
Q^{\prime} \times 2^{F^{\prime \prime}} & \text { otherwise }\end{cases}
\end{aligned}
$$

## Theorem

Let $A^{\prime}$ and $A^{\prime \prime}$ be two NFAs with $m$ and $n$ states ( $m, n \geq 1$ ), respectively. There exists an NFA $A$ with no more than $2^{m+n}$ states that accepts $\mathcal{L}\left(A^{\prime}\right) \odot \mathcal{L}\left(A^{\prime \prime}\right)$.

If both $A^{\prime}$ and $A^{\prime \prime}$ are NFAs, we can use the subset construction to get $A^{\prime}$ as a DFA, and proceed as in the case before. The number of states of the resulting NFA will be bounded by

$$
2^{m+n}
$$

## Universal Disjunctive Star

Let $L \subseteq \Sigma^{\star}$, define $L^{\odot 0}=\Sigma^{+}$, and

$$
\begin{gathered}
L^{\odot k}=L^{\odot k-1} \odot L, \quad k>0 \\
L^{\circledast}=\bigcap_{k \geq 0} L^{\odot k}
\end{gathered}
$$

$$
w \in L^{\circledast} \Leftrightarrow \forall k>0, \forall\left\{w_{i} \mid i \leq k\right\},\left(w=w_{1} w_{2} \cdots w_{k}\right) \Rightarrow \exists j w_{j} \in L
$$

## Properties of $\circledast$ :

- $\varepsilon \in L \Rightarrow \forall i \geq 0, \Sigma^{<i} \subseteq L^{\odot i}$
- $w \in \Sigma^{i}, w \in L^{\odot i} \Rightarrow \forall j>i, w \in L^{\odot j}$
- $w \in \Sigma^{i} \wedge \varepsilon \notin L, w \in L^{\odot i} \Leftrightarrow \forall j>i, w \in L^{\odot j}$
- $w \in L^{\circledast} \Leftrightarrow \forall 0 \leq i \leq|w|, w \in L^{\odot i}$
- $L^{\circledast}=\overline{(\bar{L})^{\star}}$
- $L^{\circledast}=(L \backslash\{\varepsilon\})^{\circledast}$


## Theorem

$$
s c\left(L^{\circledast}\right) \leq 2^{n-1}+2^{n-2}
$$

The bound is tight.

## Theorem

Given an NFA A, with $|A|=n \geq 1$, there exists an NFA $A^{\prime}$, with no more than $2^{n}$ states, such that $\mathcal{L}\left(A^{\prime}\right)=\mathcal{L}(A)^{\circledast}$.

First let us suppose that $A=\langle Q, \Sigma, \delta, i, F\rangle$ is a DFA and that $i \notin F$.

$$
\begin{aligned}
A^{\prime} & =\left\langle 2^{Q}, \Sigma, \delta^{\prime},\{i\}, 2^{F}\right\rangle \\
\delta^{\prime}(\alpha, \sigma) & = \begin{cases}\delta(\alpha, \sigma) & \text { if } \delta(\alpha, \sigma) \subseteq F \\
\delta(\alpha, \sigma) \cup\{i\} & \text { otherwise }\end{cases}
\end{aligned}
$$

To test if $w \in L^{\circledast}$, automata $A$ needs to check that for every non null factorisation $\left\{w_{i} \mid 0 \leq i \leq h\right\}, w=w_{0} w_{1} \cdots w_{h}$ there exists a $w_{i} \in L$. $A$ has already read $u=u_{0} u_{1} \cdots u_{l}$ and next symbol is $\sigma$
i) $u_{0}, u_{1}, \ldots, u_{I} \sigma$
ii) $u_{0}, u_{1}, \ldots, u_{l}, \sigma$
$\delta\left(i, u_{l}\right) \in F$ then all factorisations of $w$, starting with $u_{0}, u_{1}, \ldots, u_{l}$ will have a factor successfully in $L$.

## Theorem

Given an NFA $A$, with $|A|=n \geq 1$, there exists an NFA $A^{\prime}$, with no more than $2^{n}$ states, such that $\mathcal{L}\left(A^{\prime}\right)=\mathcal{L}(A)^{\circledast}$.

Suppose $A=\langle Q, \Sigma, \delta,\{i\}, F\rangle$, an NFA, and $i \notin F$

$$
\begin{aligned}
A^{\prime}= & \left\langle 2^{Q}, \Sigma, \delta^{\prime},\{i\}, 2^{F}\right\rangle \\
\operatorname{next}(\alpha, \sigma)= & \left\{\gamma \mid \exists f: \alpha \rightarrow 2^{\gamma}, \gamma=\bigcup_{r \in \alpha} f(r) \wedge\right. \\
& \wedge \forall r \in \alpha(\emptyset \neq f(r) \subseteq \delta(r, \sigma))\} \\
\delta^{\prime}(\alpha, \sigma)= & \{\gamma \mid \gamma \in \operatorname{next}(\alpha, \sigma) \wedge \gamma \subseteq F\} \cup \\
& \cup\{\gamma \cup\{i\} \mid \gamma \in \operatorname{next}(\alpha, \sigma) \wedge \gamma \nsubseteq F\}
\end{aligned}
$$

## Theorem

Given an NFA $A$, with $|A|=n \geq 1$, there exists an NFA $A^{\prime}$, with no more than $2^{n}$ states, such that $\mathcal{L}\left(A^{\prime}\right)=\mathcal{L}(A)^{\circledast}$.

Given an NFA with $n$ states, accepting the language $L$, by adding one single state we can transform it into this special form, with just one initial (non-final) state, accepting $L \backslash\{\varepsilon\}$. Thus $\left|A^{\prime}\right| \leq 2^{n+1}$. But, in the automaton construction, no states $\alpha \in 2^{Q}$ s.t. $i \in \alpha \neq\{i\}$ are reachable, and $\emptyset$ is not reachable as well. Thus

$$
\left|A^{\prime}\right| \leq 2^{n}
$$

## Conclusions (I)

- $s c(A \odot B) \leq m 2^{n-1}$ (this bound is tight)
- $n s c(A \odot B) \leq 2^{m+n}$ (there is a witness that shows that the exponential $n s c$ is unavoidable)
- $\operatorname{sc}\left(A^{\circledast}\right) \leq 2^{n-1}+2^{n-2}$
- $n s c\left(A^{\circledast}\right) \leq 2^{n}$


## Conclusions (II)

For the non-deterministic state complexity of operations over dcNFA:

- Complementation is trivial
- For disjunction $C=A \cup B$, we consider $C^{\oplus}=A^{\oplus} \cup B^{\oplus}$, and $C^{\ominus}=A^{\ominus} \cap B^{\ominus}$. Thus $C$ is polynomial w.r.t. $|A|$ and $|B|$.
- For concatenation $C=A B, C^{\oplus}$ can be build with a size $|A|+|B|$, but because $C^{\ominus}=A^{\ominus} \odot B^{\ominus}$, the exponential blow is unavoidable.
- The same happens for the Kleene star $C=A^{\star}$, where $C^{\oplus}=\left(A^{\oplus}\right)^{\star}$ and $C^{\ominus}=\left(A^{\ominus}\right)^{\circledast}$.


## Thank You!

