▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Groups whose Word Problem is a Petri Net Language (DCFS2015)

Gabriela Aslı Rino Nesin, Richard M. Thomas

University of Leicester, Department of Computer Science

26/06/2015

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Overview

- Characterisations of word problems
- Definitions
- Results
 - Virtually abelian to PNL
 - PNL to Virtually abelian

3 Relations with other classes of languages

Motivation and definitions ●000000	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Languages to groups		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The word problem of a finitely generated group is a formal language over an alphabet $\Sigma = X \cup X^{-1}$.

Motivation and definitions ●000000	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Languages to groups		

The word problem of a finitely generated group is a formal language over an alphabet $\Sigma = X \cup X^{-1}$.

Question

Given the class of language a word problem is in, what can we say about the algebraic structure of the group? For which classes of languages is there a nice correspondence?

(日) (日) (日) (日) (日) (日) (日) (日)

The word problem of a finitely generated group is a formal language over an alphabet $\Sigma = X \cup X^{-1}$.

Question

Given the class of language a word problem is in, what can we say about the algebraic structure of the group? For which classes of languages is there a nice correspondence?

This question has been answered for many "nice" classes of languages: *cones*. These are classes closed under intersections with regular languages, (monoid) homomorphisms and inverse (monoid) homomorphisms.

G a group, *H* a subgroup. The sets gH for $g \in G$ are either equal or disjoint with each other. If there are finitely many, then we say *H* has *finite index* in *G*.

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ヨ = のへで

G a group, *H* a subgroup. The sets gH for $g \in G$ are either equal or disjoint with each other. If there are finitely many, then we say *H* has *finite index* in *G*.

If *H* has property \mathcal{P} and has finite index in *G*, we say that *G* is *virtually* \mathcal{P} .

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ヨ = のへで

Motivation and definitions 00●0000	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Correspondences		

Motivation and definitions oo●oooo	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Correspondences		

• G has regular word problem \Leftrightarrow G is finite. [Anisimov 1971]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- G has regular word problem \Leftrightarrow G is finite. [Anisimov 1971]
- G has one-counter word problem \Leftrightarrow G is virtually cyclic (has a subgroup of finite index generated by a single element). [Herbst 1991]

- G has regular word problem \Leftrightarrow G is finite. [Anisimov 1971]
- G has one-counter word problem ⇔ G is virtually cyclic (has a subgroup of finite index generated by a single element). [Herbst 1991]
- G has context-free word problem ⇔ G is virtually free (has a subgroup of finite index which is free). [Muller and Schupp 1983]

- G has regular word problem \Leftrightarrow G is finite. [Anisimov 1971]
- G has one-counter word problem ⇔ G is virtually cyclic (has a subgroup of finite index generated by a single element). [Herbst 1991]
- G has context-free word problem ⇔ G is virtually free (has a subgroup of finite index which is free). [Muller and Schupp 1983]

One which is not a cone:

 G has a word problem which is a finite intersection of one-counter languages ⇔ G is virtually abelian (has a finite index subgroup which is abelian). [Holt, Owens, Thomas 2008]

Motivation and definitions	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Our theorem		

Our aim here is to add one more classification to this list:

Motivation and definitions 000●000	Results 000000	Relations with other classes of languages
Characterisations of word problems		
Our theorem		

Our aim here is to add one more classification to this list:

Theorem

A finitely generated group has a word problem which is a terminal Petri net language if and only if it is virtually abelian.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation and definitions

Results 000000 Relations with other classes of languages

Definitions 1 1

Terminal languages of Petri nets

The distribution of tokens at any time is given by *markings* $m \in \mathbb{N}^S$ where S is the set of places.

The terminal language of a Petri net P is the set of sequences of transitions leading from a fixed initial marking m_0 to a fixed finite set of terminal markings $M \subset \mathbb{N}^S$.

Motivation and definitions 0000000

Results 000000 Relations with other classes of languages

Definitions 1 1

Terminal languages of Petri nets

The distribution of tokens at any time is given by *markings* $m \in \mathbb{N}^S$ where S is the set of places.

The terminal language of a Petri net P is the set of sequences of transitions leading from a fixed initial marking m_0 to a fixed finite set of terminal markings $M \subset \mathbb{N}^S$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definitions

Properties of the class PNL

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

Definitions

Properties of the class PNL

Fortunately, the class *PNL* of terminal Petri net languages is almost a cone (closed under λ -free homomorphisms) and has other nice properties which imply the following properties for groups with a word problem in PNL (we will call this class of groups \mathcal{PNL}):

• Membership of a word problem in *PNL* does not depend on the generating set: we can therefore say *the* word problem of *G* is in *PNL*.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definitions

Properties of the class PNL

- Membership of a word problem in *PNL* does not depend on the generating set: we can therefore say *the* word problem of *G* is in *PNL*.
- \mathcal{PNL} contains all finite groups.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definitions

Properties of the class PNL

- Membership of a word problem in *PNL* does not depend on the generating set: we can therefore say *the* word problem of *G* is in *PNL*.
- $\bullet \ \mathcal{PNL}$ contains all finite groups.
- $\bullet \ \mathcal{PNL}$ is closed under direct products of groups.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definitions

Properties of the class PNL

- Membership of a word problem in *PNL* does not depend on the generating set: we can therefore say *the* word problem of *G* is in *PNL*.
- $\bullet \ \mathcal{PNL}$ contains all finite groups.
- $\bullet \ \mathcal{PNL}$ is closed under direct products of groups.
- $\bullet \ \mathcal{PNL}$ is closed under taking finitely generated subgroups.

Definitions

Properties of the class PNL

- Membership of a word problem in *PNL* does not depend on the generating set: we can therefore say *the* word problem of *G* is in *PNL*.
- $\bullet \ \mathcal{PNL}$ contains all finite groups.
- $\bullet \ \mathcal{PNL}$ is closed under direct products of groups.
- $\bullet \ \mathcal{PNL}$ is closed under taking finitely generated subgroups.
- $\bullet \ \mathcal{PNL}$ is closed under taking finite extensions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Virtually abelian to PNL

Classification of finitely generated abelian groups

A well-known result says

Theorem

Any finitely generated abelian group is expressible as a direct product

$$\mathbb{Z}^r imes \mathbb{Z}/a_1 \mathbb{Z} \ldots imes \mathbb{Z}/a_m \mathbb{Z}$$

where $a_i = p_i^{n_i}$ for some prime p_i and some natural numbers $n_i \ge 1$, $r, m \in \mathbb{N}$.

Virtually abelian to PNL

Classification of finitely generated abelian groups

A well-known result says

Theorem

Any finitely generated abelian group is expressible as a direct product

$$\mathbb{Z}^r imes \mathbb{Z}/a_1 \mathbb{Z} \ldots imes \mathbb{Z}/a_m \mathbb{Z}$$

where $a_i = p_i^{n_i}$ for some prime p_i and some natural numbers $n_i \ge 1$, $r, m \in \mathbb{N}$.

The word problem of a finite cyclic group $\mathbb{Z}/a_i\mathbb{Z}$ is regular, and hence a *PNL*.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへぐ

The word problem of \mathbb{Z} is also a *PNL*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The word problem of \mathbb{Z} is also a *PNL*:

So the word problem of any finitely generated abelian group (a direct product of such groups) is a *PNL*.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation and definitions

Results 00●000 Relations with other classes of languages

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Virtually abelian to PNL

Virtually abelian implies \mathcal{PNL}

Since \mathcal{PNL} is closed under finite extensions, the above gives us one direction of our result. We have proved:

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

Virtually abelian to PNL

Virtually abelian implies \mathcal{PNL}

Since \mathcal{PNL} is closed under finite extensions, the above gives us one direction of our result. We have proved:

Theorem

Any virtually abelian finitely generated group is in \mathcal{PNL} .

Relations with other classes of languages

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

Virtually abelian to PNL

Virtually abelian implies \mathcal{PNL}

Since \mathcal{PNL} is closed under finite extensions, the above gives us one direction of our result. We have proved:

Theorem

Any virtually abelian finitely generated group is in \mathcal{PNL} .

Now let's prove the converse.

The *growth rate* of a group can partially determine its algebraic structure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

PNL to Virtually abelian

Polynomial growth

The *growth rate* of a group can partially determine its algebraic structure.

Definition

The growth of a group G is the function sending a natural number n to the number of elements of G representable by a sequence of symbols (from Σ) of length at most n.

(日) (日) (日) (日) (日) (日) (日) (日)

PNL to Virtually abelian

Polynomial growth

The *growth rate* of a group can partially determine its algebraic structure.

Definition

The growth of a group G is the function sending a natural number n to the number of elements of G representable by a sequence of symbols (from Σ) of length at most n.

Theorem

All groups with growth bounded by a polynomial are virtually nilpotent (a superclass of the virtually abelian groups)

PNL to Virtually abelian

Polynomial growth

The *growth rate* of a group can partially determine its algebraic structure.

Definition

The growth of a group G is the function sending a natural number n to the number of elements of G representable by a sequence of symbols (from Σ) of length at most n.

Theorem

All groups with growth bounded by a polynomial are virtually nilpotent (a superclass of the virtually abelian groups)

It turns out that groups in \mathcal{PNL} have polynomial growth.

The Heisenberg group is a very special virtually nilpotent group: it embeds into any infinite virtually nilpotent group which is not virtually abelian.

The Heisenberg group is a very special virtually nilpotent group: it embeds into any infinite virtually nilpotent group which is not virtually abelian.

Therefore to show that groups in \mathcal{PNL} are virtually abelian, it is enough to show that the Heisenberg group does not have a *PNL* word problem.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The Heisenberg group is a very special virtually nilpotent group: it embeds into any infinite virtually nilpotent group which is not virtually abelian.

Therefore to show that groups in \mathcal{PNL} are virtually abelian, it is enough to show that the Heisenberg group does not have a PNL word problem.

The Heisenberg group is the the group $H = \langle a, b, c | ac = ca, bc = cb, ab = cba \rangle$. If its word problem W were in *PNL*, so would $W \cap \{a^n b^n (a^{-1})^n (b^{-1})^n c^k | k, n \in \mathbb{N}\} = \{a^n b^n (a^{-1})^n (b^{-1})^n c^{n^2} | n \in \mathbb{N}\}$, meaning Petri nets could multiply.

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ● ● ● ● ● ● ●

This is a consequence of the undecidability of Hilbert's 10th problem [Matiyasevich 1970]:

• If we could multiply with Petri nets, we could model Diophantine equations and their solutions in the set of reachable markings.

This is a consequence of the undecidability of Hilbert's 10th problem [Matiyasevich 1970]:

- If we could multiply with Petri nets, we could model Diophantine equations and their solutions in the set of reachable markings.
- The reachability problem for Petri nets is decidable [Mayr 1981].

Petri nets can't multiply

This is a consequence of the undecidability of Hilbert's 10th problem [Matiyasevich 1970]:

- If we could multiply with Petri nets, we could model Diophantine equations and their solutions in the set of reachable markings.
- The reachability problem for Petri nets is decidable [Mayr 1981].

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

This is a clear contradiction.

Petri nets can't multiply

This is a consequence of the undecidability of Hilbert's 10th problem [Matiyasevich 1970]:

- If we could multiply with Petri nets, we could model Diophantine equations and their solutions in the set of reachable markings.
- The reachability problem for Petri nets is decidable [Mayr 1981].

This is a clear contradiction. As a corollary of this and the normal forms for elements of the word problem of H, we have:

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem

 $H \notin \mathcal{PNL}$

and we have proved our result.

Relations with other classes of languages

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Groups: the great equalizer

There are many relations between *PNL* and other classes of languages which do not hold for languages in general, but do hold in the case where we only consider word problems of groups:

Relations with other classes of languages

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Groups: the great equalizer

There are many relations between *PNL* and other classes of languages which do not hold for languages in general, but do hold in the case where we only consider word problems of groups:

• $OC \nsubseteq PNL$ but $\mathcal{OC} \subset \mathcal{PNL}$.

(日) (日) (日) (日) (日) (日) (日) (日)

Groups: the great equalizer

There are many relations between *PNL* and other classes of languages which do not hold for languages in general, but do hold in the case where we only consider word problems of groups:

- $OC \nsubseteq PNL$ but $\mathcal{OC} \subset \mathcal{PNL}$.
- $\bigcap_{fin} OC \nsubseteq PNL$ and $PNL \nsubseteq \bigcap_{fin} OC$ but $\mathcal{PNL} = \bigcap_{fin} \mathcal{OC}$.

(日) (日) (日) (日) (日) (日) (日) (日)

Groups: the great equalizer

There are many relations between *PNL* and other classes of languages which do not hold for languages in general, but do hold in the case where we only consider word problems of groups:

- $OC \nsubseteq PNL$ but $\mathcal{OC} \subset \mathcal{PNL}$.
- $\bigcap_{fin} OC \nsubseteq PNL$ and $PNL \nsubseteq \bigcap_{fin} OC$ but $\mathcal{PNL} = \bigcap_{fin} \mathcal{OC}$.
- $PNL \nsubseteq coCF$ but $\mathcal{PNL} \subset coCF$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Future work

• We suspect that the co-one-counter groups are also virtually abelian, but as yet have not managed to prove it.

Future work

- We suspect that the co-one-counter groups are also virtually abelian, but as yet have not managed to prove it.
- How many of these results transfer to Petri nets where λ -transitions are allowed?

(ロ)、<</p>

Thank you!