Complement on Free and Ideal Languages

Peter Mlynárčik

Slovak Academy of Science, Košice, Slovakia
Advisor: Galina Jirásková
DCFS 2015, Waterloo, Canada

Outline

(1) Basic Notions and Known Facts
(2) Free Languages
(3) Ideal Languages

4 Open Questions

Finite Automata

Definition

Nondeterministic finite automaton (NFA) is a five-tuple $A=(Q, \Sigma, \delta, s, F)$

- exactly one initial state s
- transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Definition

The nondeterministic state complexity of L is the number of states of minimal NFA for L. We use denotation nsc(L).

Example

$$
\begin{aligned}
& \text { (3,b } \delta(0, a)=\{0,1\} \\
& L_{3 a}=\left\{w \in\{a, b\}^{*}\right. \\
& w \text { has an a in the 3rd } \\
& \text { position from the end }\} \\
& \text { nsc }\left(L_{3 a}\right) \leq 4
\end{aligned}
$$

Fooling-Set Lower-Bound Method for NFAs

Definition (Fooling-Set)

A set of pairs of strings $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is called a fooling set for a language L if for all i, j in $\{1,2, \ldots, n\}$,
(FL) $x_{i} y_{i} \in L$, and
(F2) if $i \neq j$, then $x_{i} y_{j} \notin L$ or $x_{j} y_{i} \notin L$.

Example

$L_{3 a}$:

$\{(\varepsilon, a a a),(a, a a),(a a, a),(a a a, \varepsilon)\}$ is a fooling set for $L_{3 a}$

Fooling-Set Lower-Bound Method for NFAs

Lemma (Birget, 1993)

Let \mathcal{F} be a fooling set for a language L.
Then every NFA for L has at least $|\mathcal{F}|$ states.

Example

$L_{3 a}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has an a in the 3rd position from the end $\}$

$$
\{(\varepsilon, a a a),(a, a a),(a a, a),(a a a, \varepsilon)\}
$$ is a fooling set for $L_{3 a}$.

- a fooling set for $L_{3 a}$ with four elements $\Longrightarrow \operatorname{nsc}\left(L_{3 a}\right) \geq 4$.
- there is an NFA for $L_{3 a}$ with four states $\Longrightarrow \operatorname{nsc}\left(L_{3 a}\right) \leq 4$.

Hence $\operatorname{nsc}\left(L_{3 a}\right)=4$.

Finite Automata

Definition

Example (NFA-to-DFA)

The deterministic finite automaton (DFA) is a five-tuple $A=(Q, \Sigma, \delta, s, F)$

- transition function $\delta: Q \times \Sigma \rightarrow Q$

Definition

The (deterministic) state complexity of L is the number of states of minimal DFA for L. We use denotation $\operatorname{sc}(L)$.

NFA \longrightarrow DFA (Rabin, Scott 1959)

Every NFA with n states has an equivalent DFA with at most 2^{n} states (subset construction).

Language $L_{3 a}$

- a DFA constructed by subset construction
- in this case $\operatorname{sc}\left(L_{3 a}\right)=8$

Complement

Definition

Let $L \subseteq \Sigma^{*}$. The complement of L is $L^{c}=\Sigma^{*} \backslash L$.

DFA case - construction of DFA for complement

- Let A be DFA accepting a language L.
- Let DFA A^{c} be automaton constructed from A by interchanging final and nonfinal states.
- Then A^{c} accepts the complement of L.
- A is minimal $\Longleftrightarrow A^{c}$ is minimal.

Complement: DFA case

In DFA case, the number of states of minimal DFA for complement remains the same, that is,

$$
\mathrm{sc}(L)=s c\left(L^{c}\right)
$$

Example (DFA - ab)

Example (DFA - no $a b$)

Complement: NFA case

It is not possible to get an NFA for complement from a given NFA in the same way like in DFA case:

Example (NFA - $a b$)

NFA case - construction NFA for complement

- NFA A - accepting a language L
- DFA B - DFA constructed from A by subset construction
- DFA B^{c} - automaton constructed from DFA B by interchanging final and nonfinal states, it accepts L^{c}
- if $\operatorname{nsc}(L)=n$, then $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n}$

Example (NFA -F $\leftrightarrow F^{c}$)

Complement: NFA case

There are n-state NFA languages
whose complement requires 2^{n} nondeterministic states:

- Sakoda, Sipser (1978): $|\Sigma|=2^{n}$
- Birget (1993): $|\Sigma|=4$

Theorem (Galina Jirásková, 2005)

Let $L \subseteq \Sigma^{*}$ and $\operatorname{nsc}(L)=n$.
Then $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n}$, and the bound is tight if $|\Sigma| \geq 2$.

Complement: NFA case

Proof Idea.

- upper bound: for every L with $\operatorname{nsc}(L)=n$, there is an NFA for L^{c} with at most 2^{n} states
- lower bound: there is a binary L with $\operatorname{nsc}(L)=n$, such that every NFA for L^{c} has at least 2^{n} states; L - witness language

- tight upper bound: lower bound and upper bound are the same

Free Languages

Definition

$w=U X V$

- u is a prefix of w
- v is a suffix of w
- x is a factor of w
$w=u_{0} v_{1} u_{1} v_{2} u_{2} \cdots v_{m} u_{m}$
- $v_{1} v_{2} \cdots v_{m}$ is a subword of w

Definition

- L is prefix-free iff $w \in L \Rightarrow$ no proper prefix of w in L
- suffix-, factor-, subword-free defined similarly

Example

$w=$ WATERLOO

- WATER is a prefix of w
- LOO is a suffix of w
- ATE is a factor of w
- ARLOO is a subword of w

Example

- \{WATER, WATERLOO\} is not prefix-free.
- $L \subseteq\{a, b\}^{*} \Rightarrow L \cdot c$ is prefix-free.

Motivation and History

Motivation and History

- prefix codes (Huffman coding)
- country calling codes
- Han, Salomaa (2009, 2010): suffix-free (DFA, NFA)
- Han, Salomaa, Wood (2009): prefix-free (DFA, NFA)
- Brzozowski et al. $(2009,2014)$: ideal, closed, factor-free, subword-free (DFA)
- Jirásková, Mlynárčik (DCFS2014): prefix-free, suffix-free
- $|\Sigma| \geq 3$: tight upper bound 2^{n-1}
- $|\Sigma|=2$: upper bound for prefix-free $2^{n-1}-2^{n-3}+1$
- $|\Sigma|=1: \operatorname{nsc}(L)=n \Longrightarrow \operatorname{nsc}\left(L^{c}\right) \in \Theta(\sqrt{n})$

Complement on Free Languages

Theorem (Suffix-Free Language - Binary Case)

- upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-1}-2^{n-3}+2$
- lower bound: $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$
(tight upper bound 2^{n-1}, if $|\Sigma| \geq 3$ (DFCS 2014))

Proof Idea - Upper Bound

(1) L-suffix-free - NFA $A-n$ states.
(2) L^{R} - prefix-free - NFA A^{R} (reverse of A) - n states.
(3) $\left(L^{R}\right)^{c}-$ NFA N - at most $2^{n-1}-2^{n-3}+1$ states (DCFS 2014).
(3) $\left(L^{R}\right)^{c}=\left(L^{c}\right)^{R} \Rightarrow$ NFA N .
(5) $L^{c}-$ NFA N^{R} (reverse of N) - at most $2^{n-1}-2^{n-3}+2$ states (with unique initial state).

Complement on Free Languages

Proof Idea - Lower Bound

Using homomorphism h from ternary language to binary one:

$$
h: c \rightarrow 00, a \rightarrow 10, b \rightarrow 11
$$

- ternary n-state NFA for L
- suffix-free
- \mathcal{F} - fooling set for L^{c}, $|\mathcal{F}|=2^{n-1}$ (DFCS 2014)

- binary $2 n$-state NFA for $h(L)$
- suffix-free
- $\{(h(x), h(y)) \mid(x, y) \in \mathcal{F}\}$
- f. set for $h(L)^{c}$ of size 2^{n-1}
\Longrightarrow lower bound: $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$

Complement on Free Languages

Prefix-Free Language - Binary Case

- upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-1}-2^{n-3}+1$ (DFCS 2014)
- lower bound: $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$
(tight upper bound 2^{n-1}, if $|\Sigma| \geq 3$ (DFCS 2014))

Factor-Free Language

- For $|\Sigma| \geq 3$, tight upper bound: $2^{n-2}+1$
- For $|\Sigma|=2$,
- upper bound: $\mathrm{nsc}\left(L^{c}\right) \leq 2^{n-2}-2^{n-4}+1$
- lower bound: $\Omega\left(2^{\frac{n}{2}}\right)$

Subword-Free Language

- upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-2}+1$
- tight for $|\Sigma| \geq 2^{n-2}$

Complement on Free Languages-Unary

Every free unary language L can contain only one string.

$$
L=\left\{a^{n}\right\} \Longrightarrow L^{c}=\left\{a^{k} \mid k \neq n\right\}
$$

Theorem (Unary Free Language)

Let L be a unary prefix-free or suffix-free or factor-free or subword-free language with $\operatorname{nsc}(L)=n$. Then $\mathrm{nsc}\left(L^{c}\right)=\Theta(\sqrt{n})$.

Complement on Ideal Languages

Right Ideal: $L=L \Sigma^{*}$

upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-1}$ tight for $|\Sigma| \geq 2$

Two-Sided Ideal: $L=\Sigma^{*} L \Sigma^{*}$
upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-2}$ tight for $|\Sigma| \geq 2$

Left Ideal: $L=\Sigma^{*} L$

upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-1}$ tight for $|\Sigma| \geq 2$

All-Sided Ideal: $L=L ш \Sigma^{*}$

ω is shuffle operation
upper bound: $\operatorname{nsc}\left(L^{c}\right) \leq 2^{n-2}$
tight for $|\Sigma| \geq 2^{n-2}$

Complement on Free and Ideal Languages

Complement on Ideal Languages

Unary Ideal
 if $\operatorname{nsc}(L)=n$, then $\operatorname{nsc}\left(L^{c}\right)=n-1$

$L \longrightarrow L^{c}$
L:

L^{c} :

Fooling set contains $n-1$ pairs:
$\left\{\left(\varepsilon, a^{n-2}\right),\left(a^{1}, a^{n-3}\right), \ldots,\left(a^{i}, a^{n-2-i}\right), \ldots,\left(a^{n-2}, \varepsilon\right)\right\}$

Summary - Nondeterministic Complexity of

Complementation on Free Languages and Ideal Languages

CLASS	nsc	$\|\boldsymbol{\Sigma}\|$	$\|\boldsymbol{\Sigma}\|=\mathbf{2}$
suffix-free	2^{n-1}	3;not 2	$\geq 2^{\frac{n}{2}}$
prefix-free	2^{n-1}	$3 ;$ not 2	$\geq 2^{\frac{n}{2}}$
factor-free	$2^{n-2}+1$	$3 ;$ not 2	$\geq 2^{\frac{n}{2}}$
subword-free	$2^{n-2}+1$	$2^{n-2} ;$ less?	$?$
unary-free	$\Theta(\sqrt{n})$		
right-ideal	2^{n-1}	2	
left-ideal	2^{n-1}	2	
two sided-ideal	2^{n-2}	2	
all sided-ideal	2^{n-2}	$2^{n-2} ;$ less?	$?$
unary-ideal	$n-1$		

Open Questions

- possibility of improving the bounds for binary cases for prefix-, suffix- and factor-free languages, there is still large gap between $2^{\left\lfloor\frac{n}{2}\right\rfloor-1}$ and $2^{n-1}-2^{n-3}+1\left(2^{n-2}-2^{n-4}+1\right)$ remains still open
- complement on subword-free and all-sided ideals: smaller alphabets
conjecture: all-sided ideals for binary alphabet - linear upper bound

THANK YOU FOR THE ATTENTION!

