Complement on Free and Ideal Languages

Peter Mlynárčik

Slovak Academy of Science, Košice, Slovakia

Advisor: Galina Jirásková

DCFS 2015, Waterloo, Canada

Image: A matrix and a matrix

< A

Outline

Basic Notions and Known Facts

2 Free Languages

→ Ξ → -

Finite Automata

Definition	Example	
Nondeterministic finite automaton (NFA) is a five-tuple $A = (Q, \Sigma, \delta, s, F)$ • exactly one initial state s	$\xrightarrow{a,b}_{a} \xrightarrow{a,b}_{2} \xrightarrow{a,b}_{3}$	
• transition function $\delta: Q imes \Sigma o 2^Q$	• $\delta(0,a) = \{0,1\}$	
Definition	• $L_{3a} = \{w \in \{a, b\}^* \mid a \in \{a, b\}^* \mid a \in \{a, b\}^*$	
The nondeterministic state complexity of L is the number of states of minimal NFA for L . We use denotation $nsc(L)$.	• $\operatorname{nsc}(L_{3a}) \leq 4$	

・ 同 ト ・ ヨ ト ・ ヨ

э

Fooling-Set Lower-Bound Method for NFAs

Definition (Fooling-Set)

A set of pairs of strings $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is called a fooling set for a language L if for all i, j in $\{1, 2, \dots, n\}$, (F1) $x_i y_i \in L$, and (F2) if $i \neq j$, then $x_i y_j \notin L$ or $x_j y_i \notin L$.

Example

 $\{(\varepsilon, aaa), (a, aa), (aa, a), (aaa, \varepsilon)\}$ is a fooling set for L_{3a}

・ロト ・ 同ト ・ ヨト ・ 日

Fooling-Set Lower-Bound Method for NFAs

Lemma (Birget, 1993)

Let \mathcal{F} be a fooling set for a language L. Then every NFA for L has at least $|\mathcal{F}|$ states.

Example

 $L_{3a} = \{w \in \{a,b\}^* \mid w \text{ has an } a \text{ in the 3rd position from the end } \}$

 $\{(\varepsilon, aaa), (a, aa), (aa, a), (aaa, \varepsilon)\}$ is a fooling set for L_{3a} .

• a fooling set for L_{3a} with four elements $\implies \operatorname{nsc}(L_{3a}) \ge 4$.

• there is an NFA for L_{3a} with four states $\implies \operatorname{nsc}(L_{3a}) \leq 4$.

Hence $\operatorname{nsc}(L_{3a}) = 4$.

Finite Automata

Definition

The deterministic finite automaton (DFA) is a five-tuple $A = (Q, \Sigma, \delta, s, F)$

• transition function $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$

Definition

The (deterministic) state complexity of L is the number of states of minimal DFA for L. We use denotation sc(L).

NFA \longrightarrow DFA (Rabin, Scott 1959)

Every NFA with n states has an equivalent DFA with at most 2^n states (subset construction).

Example (NFA-to-DFA)

• in this case $sc(L_{3a}) = 8$

(日) (同) (目) (日)

Complement

Definition

Let $L \subseteq \Sigma^*$. The complement of L is $L^c = \Sigma^* \setminus L$.

DFA case - construction of DFA for complement

- Let A be DFA accepting a language L.
- Let DFA A^c be automaton constructed from A by interchanging final and nonfinal states.
- Then A^c accepts the complement of L.
- A is minimal $\iff A^c$ is minimal.

(日) (同) (三) (三)

Complement: DFA case

In DFA case, the number of states of minimal DFA for complement remains the same, that is,

$$\operatorname{sc}(L) = \operatorname{sc}(L^c)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Complement: NFA case

It is not possible to get an NFA for complement from a given NFA in the same way like in DFA case:

< 112 ▶

Complement: NFA case

There are *n*-state NFA languages whose complement requires 2^n nondeterministic states:

- Sakoda, Sipser (1978): $|\Sigma| = 2^n$
- Birget (1993): $|\Sigma| = 4$

Theorem (Galina Jirásková, 2005)

Let $L \subseteq \Sigma^*$ and $\operatorname{nsc}(L) = n$. Then $\operatorname{nsc}(L^c) \leq 2^n$, and the bound is tight if $|\Sigma| \geq 2$.

・ロト ・ 同ト ・ ヨト ・ 日

Complement: NFA case

Proof Idea.

- upper bound: for every L with nsc(L) = n, there is an NFA for L^c with at most 2ⁿ states
- lower bound: there is a binary L with nsc(L) = n, such that every NFA for L^c has at least 2^n states;
 - L witness language

• tight upper bound: lower bound and upper bound are the same

< 152 ▶

Free Languages

Definition

- w = uxv
 - *u* is a prefix of *w*
 - v is a suffix of w
 - x is a factor of w
- $w = u_0 v_1 u_1 v_2 u_2 \cdots v_m u_m$
 - $v_1v_2\cdots v_m$ is a subword of w

Definition

- L is prefix-free iff
 w ∈ L ⇒ no proper prefix of w in L
- suffix-, factor-, subword-free defined similarly

Example

- w = WATERLOO
 - WATER is a prefix of w
 - LOO is a suffix of w
 - ATE is a factor of w
 - ARLOO is a subword of w

Example

• {*WATER*, *WATERLOO*} is not prefix-free.

•
$$L \subseteq \{a, b\}^* \Rightarrow L \cdot c$$

is prefix-free.

Motivation and History

Motivation and History

- prefix codes (Huffman coding)
- country calling codes
- Han, Salomaa (2009, 2010): suffix-free (DFA, NFA)
- Han, Salomaa, Wood (2009): prefix-free (DFA, NFA)
- Brzozowski et al. (2009,2014): ideal, closed, factor-free, subword-free (DFA)
- Jirásková, Mlynárčik (DCFS2014): prefix-free, suffix-free
 - $|\Sigma| \ge 3$: tight upper bound 2^{n-1}
 - $|\Sigma| = 2$: upper bound for prefix-free $2^{n-1} 2^{n-3} + 1$
 - $|\Sigma| = 1$: $\operatorname{nsc}(L) = n \Longrightarrow \operatorname{nsc}(L^c) \in \Theta(\sqrt{n})$

(日) (同) (日) (日) (日)

Complement on Free Languages

Theorem (Suffix-Free Language - Binary Case)

- upper bound: $\operatorname{nsc}(L^c) \le 2^{n-1} 2^{n-3} + 2$
- lower bound: $2^{\lfloor \frac{n}{2} \rfloor 1}$

(tight upper bound 2^{n-1} , if $|\Sigma| \ge 3$ (DFCS 2014))

Proof Idea - Upper Bound

2
$$L^R$$
 - prefix-free - NFA A^R (reverse of A) - n states.

3
$$(L^R)^c$$
 - NFA N - at most $2^{n-1} - 2^{n-3} + 1$ states (DCFS 2014).

$$(L^R)^c = (L^c)^R \Rightarrow \mathsf{NFA} \mathsf{N} .$$

Ic - NFA N^R (reverse of N) - at most 2ⁿ⁻¹ - 2ⁿ⁻³ + 2 states (with unique initial state).

Complement on Free Languages

Proof Idea - Lower Bound

Using homomorphism h from ternary language to binary one:

- ternary *n*-state NFA for *L*
- suffix-free
- \mathcal{F} fooling set for L^c , $|\mathcal{F}| = 2^{n-1}$ (DFCS 2014)

- binary 2*n*-state NFA for *h*(*L*)
- suffix-free
- {(h(x), h(y)) | (x, y) ∈ F}
 f. set for h(L)^c of size 2ⁿ⁻¹

 \implies lower bound: $2^{\lfloor \frac{n}{2} \rfloor - 1}$

Complement on Free Languages

Prefix-Free Language - Binary Case

- upper bound: $nsc(L^c) \le 2^{n-1} 2^{n-3} + 1$ (DFCS 2014)
- lower bound: $2^{\lfloor \frac{n}{2} \rfloor 1}$

(tight upper bound 2^{n-1} , if $|\Sigma| \ge 3$ (DFCS 2014))

Factor-Free Language

- For $|\Sigma| \ge 3$, tight upper bound: $2^{n-2} + 1$
- For $|\Sigma| = 2$,
 - upper bound: nsc(L^c) ≤ 2ⁿ⁻² 2ⁿ⁻⁴ + 1
 lower bound: Ω(2^{n/2})
 - lower bound: $\Omega(2^{\frac{1}{2}})$

Subword-Free Language

- upper bound: $\operatorname{nsc}(L^c) \leq 2^{n-2} + 1$
- tight for $|\Sigma| \ge 2^{n-2}$

Complement on Free Languages-Unary

Every free unary language L can contain only one string.

$$L = \{a^n\} \Longrightarrow L^c = \{a^k \mid k \neq n\}$$

Theorem (Unary Free Language)

Let L be a unary prefix-free or suffix-free or factor-free or subword-free language with nsc(L) = n. Then $nsc(L^c) = \Theta(\sqrt{n})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complement on Ideal Languages

Right Ideal: $L = L\Sigma^*$

Left Ideal: $L = \Sigma^* L$

Complement on Ideal Languages

Unary Ideal

if
$$\operatorname{nsc}(L) = n$$
, then $\operatorname{nsc}(L^c) = n - 1$

$L \longrightarrow L^{c}$

Summary - Nondeterministic Complexity of Complementation on Free Languages and Ideal Languages

CLASS	nsc	$ \Sigma $	$ \Sigma = 2$
suffix-free	2^{n-1}	3; <mark>not</mark> 2	$\geq 2^{\frac{n}{2}}$
prefix-free	2^{n-1}	3; <mark>not</mark> 2	$\geq 2^{\frac{n}{2}}$
factor-free	$2^{n-2} + 1$	3; <mark>not</mark> 2	$\geq 2^{\frac{n}{2}}$
subword-free	$2^{n-2} + 1$	$2^{n-2};$ less?	?
unary-free	$\Theta(\sqrt{n})$		
right-ideal	2^{n-1}	2	
left-ideal	2^{n-1}	2	
two sided-ideal	2 ⁿ⁻²	2	
all sided-ideal	2^{n-2}	$2^{n-2};$ less?	?
unary-ideal	n-1		

→ Ξ →

Open Questions

- possibility of improving the bounds for binary cases for prefix-, suffix- and factor-free languages, there is still large gap between $2^{\lfloor \frac{n}{2} \rfloor 1}$ and $2^{n-1} 2^{n-3} + 1$ $(2^{n-2} 2^{n-4} + 1)$ remains still open
- complement on subword-free and all-sided ideals: smaller alphabets

conjecture: all-sided ideals for binary alphabet - linear upper bound

イロト イポト イヨト イヨト

THANK YOU FOR THE ATTENTION !

ĎAKUJEM ZA POZORNOSŤ ! KIITOS HUOMIOTA ! KOSZONOM A FIGYELMET ! СПАСИБО ЗА ВНИМАНИЕ ! DANKE ! MERCI! GRAZIE ! OBRIGADO ! GAMSAHABNIDA ! ARIGATO ! DHAN'YAVADA !

イロト イポト イヨト イヨト

. . .