On Some Decision Problems for Stateless Deterministic Ordered Restarting Automata

Kent Kwee, Friedrich Otto

Fachbereich Elektrotechnik/Informatik Universität Kassel 34109 Kassel, Germany

DCFS 2015 Waterloo, Ontario, Canada June 25 - 27, 2015

Outline:

- 1 Introduction
- 2 Stateless Deterministic Ordered Restarting Automata
- 3 Simulating a stl-det-ORWW by an NFA
- 4 Decision Problems for stl-det-ORWW-Automata
- 5 Concluding Remarks

< 🗇 🕨 < 🖃 🕨

Characterizations of REG

Many different types of automata characterize the class REG:

- the deterministic finite-state acceptor (DFA)
- the nondeterministic finite-state acceptor (NFA)
- the alternating finite-state acceptor (AFA)
- the two-way finite-state acceptor (2NFA)
- the bounded-depth pushdown automaton (bdPDA)
- the R(1)-automaton
- the constant-visit Hennie machine
- the stateless det. ordered restarting automaton (stl-det-ORWW)

< 🗇 🕨 < 🖃 🕨

Characterizations of REG

Many different types of automata characterize the class REG:

- the deterministic finite-state acceptor (DFA)
- the nondeterministic finite-state acceptor (NFA)
- the alternating finite-state acceptor (AFA)
- the two-way finite-state acceptor (2NFA)
- the bounded-depth pushdown automaton (bdPDA)
- the R(1)-automaton
- the constant-visit Hennie machine
- the stateless det. ordered restarting automaton (stl-det-ORWW)

< 🗇 🕨 < 🖻 🕨

Characterizations of REG

Many different types of automata characterize the class REG:

- the deterministic finite-state acceptor (DFA)
- the nondeterministic finite-state acceptor (NFA)
- the alternating finite-state acceptor (AFA)
- the two-way finite-state acceptor (2NFA)
- the bounded-depth pushdown automaton (bdPDA)
- the R(1)-automaton
- the constant-visit Hennie machine

the stateless det. ordered restarting automaton (stl-det-ORWW)

< 🗇 🕨 < 🖃 🕨

Characterizations of REG

Many different types of automata characterize the class REG:

- the deterministic finite-state acceptor (DFA)
- the nondeterministic finite-state acceptor (NFA)
- the alternating finite-state acceptor (AFA)
- the two-way finite-state acceptor (2NFA)
- the bounded-depth pushdown automaton (bdPDA)
- the R(1)-automaton
- the constant-visit Hennie machine

the stateless det. ordered restarting automaton (stl-det-ORWW)

< 🗇 🕨 < 🖻 🕨

Characterizations of REG

Many different types of automata characterize the class REG:

- the deterministic finite-state acceptor (DFA)
- the nondeterministic finite-state acceptor (NFA)
- the alternating finite-state acceptor (AFA)
- the two-way finite-state acceptor (2NFA)
- the bounded-depth pushdown automaton (bdPDA)
- the R(1)-automaton
- the constant-visit Hennie machine
- the stateless det. ordered restarting automaton (stl-det-ORWW)

How succinctly do these automata represent a particular language, when we take the number of states as a measure for their size?

Various trade-offs have been established:

- NFA to DFA: 2ⁿ
- AFA to DFA: 2^{2ⁿ} (Chandra, Kozen, Stockmeyer, 1981)
- R(1) to DFA: 2ⁿ + 1 (Reimann, 2007)

stl-det-ORWW to DFA: between 2^{2^n} and $2^{2^{O(n^2 \cdot \log n)}}$ (Otto, 2014)

The succinctness of representing regular languages by stl-det-ORWW-automata is quite good, but there is still a huge gap between upper and lower bound.

• • • • • • • • • • • • •

How succinctly do these automata represent a particular language, when we take the number of states as a measure for their size?

Various trade-offs have been established:

- NFA to DFA: 2ⁿ
- AFA to DFA: 2^{2ⁿ} (Chandra, Kozen, Stockmeyer, 1981)
- R(1) to DFA: 2^{*n*} + 1 (Reimann, 2007)
- stl-det-ORWW to DFA: between 2^{2^n} and $2^{2^{O(n^2 \cdot \log n)}}$ (Otto, 2014)

The succinctness of representing regular languages by stl-det-ORWW-automata is quite good, but there is still a huge gap between upper and lower bound.

How succinctly do these automata represent a particular language, when we take the number of states as a measure for their size?

Various trade-offs have been established:

- NFA to DFA: 2ⁿ
- AFA to DFA: 2^{2ⁿ} (Chandra, Kozen, Stockmeyer, 1981)
- R(1) to DFA: 2^{*n*} + 1 (Reimann, 2007)

stl-det-ORWW to DFA: between 2^{2^n} and $2^{2^{O(n^2 \cdot \log n)}}$ (Otto, 2014)

The succinctness of representing regular languages by stl-det-ORWW-automata is quite good, but there is still a huge gap between upper and lower bound.

• • • • • • • • • • • •

How succinctly do these automata represent a particular language, when we take the number of states as a measure for their size?

Various trade-offs have been established:

- NFA to DFA: 2ⁿ
- AFA to DFA: 2^{2ⁿ} (Chandra, Kozen, Stockmeyer, 1981)
- R(1) to DFA: 2^{*n*} + 1 (Reimann, 2007)
- stl-det-ORWW to DFA: between 2^{2^n} and $2^{2^{O(n^2 \cdot \log n)}}$ (Otto, 2014)

The succinctness of representing regular languages by stl-det-ORWW-automata is quite good, but there is still a huge gap between upper and lower bound.

• • • • • • • • • • • • •

How succinctly do these automata represent a particular language, when we take the number of states as a measure for their size?

Various trade-offs have been established:

- NFA to DFA: 2ⁿ
- AFA to DFA: 2^{2ⁿ} (Chandra, Kozen, Stockmeyer, 1981)
- R(1) to DFA: 2^{*n*} + 1 (Reimann, 2007)
- stl-det-ORWW to DFA: between 2^{2^n} and $2^{2^{O(n^2 \cdot \log n)}}$ (Otto, 2014)

The succinctness of representing regular languages by stl-det-ORWW-automata is quite good, but there is still a huge gap between upper and lower bound.

• • • • • • • • • • • •

2. Stateless Det. Ordered Restarting Automata

Definition 1

A stateless deterministic ORWW-automaton (stl-det-ORWW) is a one-tape machine that is described by a 6-tuple $M = (\Sigma, \Gamma, \rhd, \lhd, \delta, >)$:

- \blacksquare Σ is a finite input alphabet,
- **Γ** is a finite tape alphabet containing Σ ,
- the symbols ▷, ⊲ ∉ Γ serve as markers for the left and right border of the work space, respectively,
- δ : ((($\Gamma \cup \{ \triangleright \}$) · Γ · ($\Gamma \cup \{ \triangleleft \}$)) $\cup \{ \triangleright \triangleleft \}$) $\rightarrow \{ \mathsf{MVR} \} \cup \Gamma \cup \{ \mathsf{Accept} \}$ is the transition function, and
- \blacksquare > is a partial ordering on Γ .

æ

イロト イヨト イヨト イヨト

æ

イロン イ理 とく ヨン イヨン

Definition 1 (cont.)

An input $w \in \Sigma^*$ is accepted by M, if there exists a computation of M which starts with the initial configuration $\triangleright w \triangleleft$, and which finally ends with executing an Accept instruction.

L(M) is the language consisting of all words that are accepted by M.

As each cycle ends with a rewrite operation, which replaces a symbol *a* by a symbol *b* that is strictly smaller with respect to >, each computation of *M* on input *w* consists of $\leq |w| \cdot (|\Gamma| - 1)$ many cycles.

Theorem 2 (Mráz, Otto, SOFSEM 2014)

 $\mathsf{REG} = \mathcal{L}(\mathsf{stl-det-ORWW}) \subsetneq \mathcal{L}(\mathsf{ORWW}).$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 1 (cont.)

An input $w \in \Sigma^*$ is accepted by M, if there exists a computation of M which starts with the initial configuration $\triangleright w \triangleleft$, and which finally ends with executing an Accept instruction.

L(M) is the language consisting of all words that are accepted by M.

As each cycle ends with a rewrite operation, which replaces a symbol *a* by a symbol *b* that is strictly smaller with respect to >, each computation of *M* on input *w* consists of $\leq |w| \cdot (|\Gamma| - 1)$ many cycles.

Theorem 2 (Mráz, Otto, SOFSEM 2014)

 $\mathsf{REG} = \mathcal{L}(\mathsf{stl-det-ORWW}) \subsetneq \mathcal{L}(\mathsf{ORWW}).$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 1 (cont.)

An input $w \in \Sigma^*$ is accepted by M, if there exists a computation of M which starts with the initial configuration $\triangleright w \triangleleft$, and which finally ends with executing an Accept instruction.

L(M) is the language consisting of all words that are accepted by M.

As each cycle ends with a rewrite operation, which replaces a symbol *a* by a symbol *b* that is strictly smaller with respect to >, each computation of *M* on input *w* consists of $\leq |w| \cdot (|\Gamma| - 1)$ many cycles.

Theorem 2 (Mráz, Otto, SOFSEM 2014)

 $\mathsf{REG} = \mathcal{L}(\mathsf{stl-det}\text{-}\mathsf{ORWW}) \subsetneq \mathcal{L}(\mathsf{ORWW}).$

・ロト ・ 四ト ・ ヨト ・ ヨト

3. Simulating a stl-det ORWW by an NFA

Theorem 1

Let $M = (\Sigma, \Gamma, \rhd, \lhd, \delta_M, >)$ be a stl-det-ORWW-automaton. Then an unambiguous NFA $A = (Q, \Sigma, \Delta_A, q_0, F)$ can be constructed from M such that L(A) = L(M) and $|Q| \in 2^{O(|\Gamma|)}$.

Lemma 2

From a stl-det-ORWW-automaton $M = (\Sigma, \Gamma, \rhd, \lhd, \delta, >)$, one can construct a stl-det-ORWW-automaton $M' = (\Sigma, \Delta, \rhd, \lhd, \delta', >)$ such that L(M') = L(M), $|\Delta| \le |\Gamma| + 1$, and M' only accepts when its window contains the right sentinel \lhd .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3. Simulating a stl-det ORWW by an NFA

Theorem 1

Let $M = (\Sigma, \Gamma, \rhd, \lhd, \delta_M, >)$ be a stl-det-ORWW-automaton. Then an unambiguous NFA $A = (Q, \Sigma, \Delta_A, q_0, F)$ can be constructed from M such that L(A) = L(M) and $|Q| \in 2^{O(|\Gamma|)}$.

Lemma 2

From a stl-det-ORWW-automaton $M = (\Sigma, \Gamma, \rhd, \lhd, \delta, >)$, one can construct a stl-det-ORWW-automaton $M' = (\Sigma, \Delta, \rhd, \lhd, \delta', >)$ such that L(M') = L(M), $|\Delta| \le |\Gamma| + 1$, and M' only accepts when its window contains the right sentinel \lhd .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\triangleright a_1 a_2 a_3 a_4 \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	٨	a ₁	٨	٨	<i>a</i> ₂	٨	٨	а 3	٨	٨	<i>a</i> 4	٨	\bigtriangledown

æ

$$\triangleright b_1 a_2 a_3 a_4 \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	1	a ₁ b ₁	1	٨	<i>a</i> ₂	٨	٨	а 3	٨	٨	<i>a</i> 4	٨	\bigtriangledown

æ

$$\triangleright b_1 a_2 a_3 a_4 \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	1	a ₁ b ₁	1	٨	<i>a</i> ₂	٨	٨	а 3	٨	٨	<i>a</i> 4	٨	\bigtriangledown

2

$$\triangleright b_1 a_2 a_3 a_4 \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	1	a ₁ b ₁	1	٨	<i>a</i> ₂	٨	٨	а 3	٨	٨	<i>a</i> 4	٨	

2

$$\triangleright b_1 a_2 b_3 a_4 \triangleleft$$

W_0	$ L_1 $	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	1	a ₁ b ₁	1	٨	а ₂	٨	1	а ₃ b ₃	1	٨	<i>a</i> 4	٨	

æ

$$\triangleright b_1 a_2 b_3 a_4 \triangleleft$$

W_0	$ L_1 $	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
	1	a ₁ b ₁	1	٨	<i>a</i> ₂	٨	1	а ₃ b ₃	1	٨	<i>a</i> ₄	٨	

æ

$$\triangleright b_1 b_2 b_3 a_4 \triangleleft$$

æ

$$\triangleright b_1 b_2 b_3 a_4 \triangleleft$$

æ

$$\triangleright \quad C_1 \quad b_2 \quad b_3 \quad a_4 \quad \triangleleft$$

æ

$$\triangleright \begin{array}{|c|c|c|c|c|} \hline c_1 & b_2 & b_3 & a_4 & \checkmark \\ \hline \end{array}$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\triangleleft
	1	b_1	2		b ₂			b_3					
		<i>C</i> ₁											

æ

$$\triangleright \quad C_1 \quad b_2 \quad b_3 \quad a_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\triangleleft
	1	b_1	2		b ₂			b_3					
		<i>C</i> ₁											

æ

$$\triangleright \quad C_1 \quad b_2 \quad C_3 \quad a_4 \quad \triangleleft$$

æ

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\triangleleft
	1	b_1	2		b ₂		2	b_3	1				
		<i>C</i> ₁						<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad a_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1				
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\bigtriangledown
	1	b_1	2	3	b ₂	3	2	b_3	1				
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad a_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	Λ	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1				
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad a_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	Λ	a_4	٨	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1				
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad b_4 \quad \triangleleft$$

W_0	$ L_1 $	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	3	a_4	1	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1		b_4		
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	3	a_4	1	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1		b_4		
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad b_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	3	a_4	1	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1		b_4		
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad b_4 \quad \lhd$$

W_0	$ L_1 $	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	3	a_4	1	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1		b_4		
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3					

æ

$$\triangleright \quad C_1 \quad C_2 \quad C_3 \quad C_4 \quad \triangleleft$$

W_0	L_1	W_1	R_1	L_2	W_2	R_2	L ₃	W_3	R_3	L_4	W_4	R_4	W_5
\triangleright	1	a ₁	1	2	a_2	2	1	a_3	1	3	a_4	1	\triangleleft
	1	b_1	2	3	b ₂	3	2	b_3	1	3	b_4	1	
		<i>C</i> ₁			<i>C</i> ₂			<i>C</i> 3			<i>C</i> ₄		

These sequences can be used to reconstruct the computation of the stl-det-ORWW.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof outline (cont.)

There is no valid computation for the following sequences.

Compatibility of two finite non-decreasing sequences of integers

$$R = (r_1, ..., r_k)$$
 and $L = (\ell_1, ..., \ell_s)$, where $k, s \ge 0$,

order $(R, L) = \{ r_i + i - 1 \mid i = 1, ..., k \} \cup \{ \ell_j + j - 1 \mid j = 1, ..., s \}.$

(R, L) is called consistent, if order $(R, L) = \{1, 2, \dots, k + s\}$.

Proof outline (cont.)

There is no valid computation for the following sequences.

Compatibility of two finite non-decreasing sequences of integers

$$R = (r_1, \ldots, r_k)$$
 and $L = (\ell_1, \ldots, \ell_s)$, where $k, s \ge 0$,

order
$$(R, L) = \{ r_i + i - 1 \mid i = 1, ..., k \} \cup \{ \ell_j + j - 1 \mid j = 1, ..., s \}.$$

(R, L) is called consistent, if order $(R, L) = \{1, 2, \dots, k + s\}$.

・ロト ・聞 ト ・ ヨト ・ ヨト

As a first step we construct an NFA *B* for the characteristic language $L_C(M) = \{ w \in \Gamma^* \mid (\lambda, \triangleright w \lhd) \vdash_M^* \text{Accept} \}$ of *M*, which consists of all words over Γ that *M* accepts.

The set *Q* contains

the initial state q₀,

- the final state q_F and
- all pairs of triples of the form $((L_1, W_1, R_1), (L_2, W_2, R_2))$, which satisfy certain conditions.
 - The sequence of letters are ordered by the partial ordering <</p>
 - \blacksquare *L_i* and *R_i* is a non-decreasing sequence of positive integers.
 - The sequences R_1 and L_2 are consistent.

The transition function Δ_B ensures that all MVR and rewrite instructions exist.

• • • • • • • • • • • •

As a first step we construct an NFA *B* for the characteristic language $L_C(M) = \{ w \in \Gamma^* \mid (\lambda, \triangleright w \lhd) \vdash_M^* \text{Accept} \}$ of *M*, which consists of all words over Γ that *M* accepts.

The set *Q* contains

- the initial state q_0 ,
- the final state q_F and
- all pairs of triples of the form ((*L*₁, *W*₁, *R*₁), (*L*₂, *W*₂, *R*₂)), which satisfy certain conditions.
 - The sequence of letters are ordered by the partial ordering <</p>
 - \blacksquare L_i and R_i is a non-decreasing sequence of positive integers.
 - The sequences R_1 and L_2 are consistent.

The transition function Δ_B ensures that all MVR and rewrite instructions exist.

• • • • • • • • • • • •

As a first step we construct an NFA *B* for the characteristic language $L_C(M) = \{ w \in \Gamma^* \mid (\lambda, \triangleright w \lhd) \vdash_M^* \text{Accept} \}$ of *M*, which consists of all words over Γ that *M* accepts.

The set *Q* contains

- the initial state q_0 ,
- the final state q_F and
- all pairs of triples of the form ((*L*₁, *W*₁, *R*₁), (*L*₂, *W*₂, *R*₂)), which satisfy certain conditions.
 - The sequence of letters are ordered by the partial ordering <</p>
 - L_i and R_i is a non-decreasing sequence of positive integers.
 - The sequences *R*₁ and *L*₂ are consistent.

The transition function Δ_B ensures that all MVR and rewrite instructions exist.

• • • • • • • • • • •

As a first step we construct an NFA *B* for the characteristic language $L_C(M) = \{ w \in \Gamma^* \mid (\lambda, \triangleright w \lhd) \vdash_M^* \text{Accept} \}$ of *M*, which consists of all words over Γ that *M* accepts.

The set *Q* contains

• the initial state q_0 ,

- the final state q_F and
- all pairs of triples of the form ((*L*₁, *W*₁, *R*₁), (*L*₂, *W*₂, *R*₂)), which satisfy certain conditions.
 - The sequence of letters are ordered by the partial ordering <</p>
 - L_i and R_i is a non-decreasing sequence of positive integers.
 - The sequences R_1 and L_2 are consistent.

The transition function Δ_B ensures that all MVR and rewrite instructions exist.

• • • • • • • • • • •

Proof outline (cont.)

• $L_C(M) \subseteq L(B)$:

- Construct the sequences
- Obviously they yield an accepting computation of B.

$\blacksquare L(B) \subseteq L_C(M):$

- Extract a computation of M
- Proof that all conditions are met by induction over the number of rewrites.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof outline (cont.)

- $L_C(M) \subseteq L(B)$:
 - Construct the sequences
 - Obviously they yield an accepting computation of B.

• $L(B) \subseteq L_C(M)$:

- Extract a computation of M
- Proof that all conditions are met by induction over the number of rewrites.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$|Q| \in 2^{O(|\Gamma|)}$

The sequence L can be interpreted as multiset. The number of possible sequences L is bounded from above by the expression

$$\sum_{r=0}^{n-1} \binom{n+r-1}{r} \leq \sum_{r=0}^{n-1} \binom{2n}{r} \leq \sum_{r=0}^{2n} \binom{2n}{r} = 2^{2n},$$

and the same is true for the number of possible sequences *R*.
at most 2²ⁿ ⋅ 2ⁿ ⋅ 2²ⁿ = 2⁵ⁿ different triples of the form (*L*, *W*, *R*)
number of states of *B* is bounded from above by 2¹⁰ⁿ

• • • • • • • • • • •

• B is of size $2^{O(n)}$

- obtain an NFA *A* for the language $L(M) = L_C(M) \cap \Sigma^*$ by simply deleting all transitions from Δ_B that read a letter $x \in (\Gamma \setminus \Sigma)$.
- A is an unambiguous NFA of size $2^{O(n)}$ for $L(A) = L(B) \cap \Sigma^* = L(M)$

- $U_n = \{a^{2^n}\}$ is accepted by a stl-det-ORWW-automaton with 3n 1 letters
- each NFA for U_n needs at least $2^n + 1$ states
- the bound given in Theorem 1 is sharp up to the O-notation

Corollary 3

For each stl-det-ORWW-automaton M with alphabet of size n, there exists a DFA C of size $2^{2^{O(n)}}$ such that L(C) = L(M) holds.

B is of size $2^{O(n)}$

- obtain an NFA *A* for the language $L(M) = L_C(M) \cap \Sigma^*$ by simply deleting all transitions from Δ_B that read a letter $x \in (\Gamma \setminus \Sigma)$.
- A is an unambiguous NFA of size $2^{O(n)}$ for $L(A) = L(B) \cap \Sigma^* = L(M)$

■ U_n = {a^{2ⁿ</sub>} is accepted by a stl-det-ORWW-automaton with 3n - 1 letters}

- each NFA for U_n needs at least $2^n + 1$ states
- the bound given in Theorem 1 is sharp up to the O-notation

Corollary 3

For each stl-det-ORWW-automaton M with alphabet of size n, there exists a DFA C of size $2^{2^{O(n)}}$ such that L(C) = L(M) holds.

B is of size 2^{O(n)}

- obtain an NFA *A* for the language $L(M) = L_C(M) \cap \Sigma^*$ by simply deleting all transitions from Δ_B that read a letter $x \in (\Gamma \setminus \Sigma)$.
- A is an unambiguous NFA of size $2^{O(n)}$ for $L(A) = L(B) \cap \Sigma^* = L(M)$

■ U_n = {a^{2ⁿ</sub>} is accepted by a stl-det-ORWW-automaton with 3n - 1 letters}

- each NFA for U_n needs at least $2^n + 1$ states
- the bound given in Theorem 1 is sharp up to the O-notation

Corollary 3

For each stl-det-ORWW-automaton M with alphabet of size n, there exists a DFA C of size $2^{2^{O(n)}}$ such that L(C) = L(M) holds.

4. Decision Problems for stl-det-ORWW-Automata

The emptiness problem for an NFA A = (Q, Σ, δ, q₀, F) of size |Q| = m is decidable nondeterministically in space O(log m)
 NFA-Emptiness ∈ DSPACE((log |Q|)²) (Savitch's Theorem)

Theorem 4

The emptiness problem for stl-det-ORWW-automata is PSPACE-complete.

Proof

Let $M = (\Sigma, \Gamma, \rhd, \lhd, \delta, >)$ be a stl-det-ORWW-automaton ($|\Gamma| = n$).

- There exists an NFA A of size $2^{O(n)}$ such that L(A) = L(M).
- We can check emptiness of L(A) deterministically using space (log(2^{O(n)}))² = O(n²).

Thus, we see that stl-det-ORWW-Emptiness \in PSPACE.

4. Decision Problems for stl-det-ORWW-Automata

The emptiness problem for an NFA A = (Q, Σ, δ, q₀, F) of size |Q| = m is decidable nondeterministically in space O(log m)
 NEA Emptinese C DSPACE((log |Q|)²) (Savitab's Theorem)

■ NFA-Emptiness \in DSPACE((log $|Q|)^2$) (Savitch's Theorem)

Theorem 4

The emptiness problem for stl-det-ORWW-automata is PSPACE-complete.

Proof

- Let $M = (\Sigma, \Gamma, \rhd, \lhd, \delta, >)$ be a stl-det-ORWW-automaton ($|\Gamma| = n$).
- There exists an NFA A of size $2^{O(n)}$ such that L(A) = L(M).
- We can check emptiness of L(A) deterministically using space (log(2^{O(n)}))² = O(n²).
- Thus, we see that stl-det-ORWW-Emptiness \in PSPACE.

Proof (cont.)

- Let A₁,..., A_t be t ≥ 2 DFAs over a common input alphabet Σ of size k such that A_i has n_i states, 1 ≤ i ≤ t.
- From these DFAs we can construct a stl-det-ORWW-automaton M with a tape aphabet of size $k \cdot (1 + n_1 + \cdots + n_{t-1}) + n_t$ such that $L(M) = \bigcap_{i_1}^t L(A_i)$ (Otto, DCFS2014).
- *M* has at most $O((k \cdot \sum_{i=1}^{t} n_i)^3)$ transitions and can be computed from A_1, \ldots, A_t in polynomial time.

$$L(M) \neq \emptyset \text{ iff } L(A_1) \cap \cdots \cap L(A_t) \neq \emptyset$$

- polynomial-time reduction from the DFA-Intersection-Emptiness Problem (PSPACE-complete) to stl-det-ORWW-Emptiness
- stl-det-ORWW-Emptiness is PSPACE-hard

< ロ > < 同 > < 回 > < 回 >

Corollary 5

For stl-det-ORWW-automata, universality, finiteness, inclusion, and equivalence are PSPACE-complete.

Many subfamilies of REG have been studied:

- nilpotent
- combinatorial
- circular
- suffix-closed
- prefix-closed
- strictly locally testable

< 🗇 🕨 < 🖻 🕨

Corollary 5

For stl-det-ORWW-automata, universality, finiteness, inclusion, and equivalence are PSPACE-complete.

Many subfamilies of REG have been studied:

- nilpotent
- combinatorial
- circular
- suffix-closed
- prefix-closed
- strictly locally testable

< 🗇 🕨 < 🖃 >

Corollary 5

For stl-det-ORWW-automata, universality, finiteness, inclusion, and equivalence are PSPACE-complete.

Many subfamilies of REG have been studied:

- nilpotent
- combinatorial
- circular
- suffix-closed
- prefix-closed
- strictly locally testable

< 47 ▶

Definition 6

A language $L \subseteq \Sigma^*$ is strictly *k*-testable for some $k \ge 1$ if $L \cap \Sigma^k \cdot \Sigma^* = (A \cdot \Sigma^* \cap \Sigma^* \cdot B) \setminus \Sigma^+ \cdot (\Sigma^k \setminus C) \cdot \Sigma^+$ for some finite sets $A, B, C \subseteq \Sigma^k$.

Theorem 7

The following problem is PSPACE-complete for each $k \ge 1$:

INSTANCE: A stl-det-ORWW-automaton M. QUESTION: Is the language L(M) strictly locally k-testable?

Strictly locally testability is at least PSPACE-hard.

5. Concluding Remarks

- stl-det-ORWW-automata although being deterministic can provide exponentially more succinct representations than NFAs
- Many decision problems of interest are PSPACE-complete.
- Some open problems remain:
 - Can the given upper bounds be further improved by providing small constants in the exponents?
 - Is the problem of deciding whether the language L(M) that is accepted by a given stl-det-ORWW-automaton M is strictly locally testable decidable in polynomial space?
 - Characterize *L*(ORWW)

Thank you for your attention!

< ロ > < 同 > < 回 > < 回 >