DCFS 2015

Quantum queries on permutations

Taisia Mischenko-Slatenkova Alina Vasilieva Iļja Kucevalovs* Rūsiņs Freivalds

Faculty of Computing Latvijas Universitāte (University of Latvia)

Domain

- Quantum vs. deterministic query algorithm complexity
 - The black box contains a permutation

Black box – The explanation

Based on the query results, the algorithm determines a certain Boolean property of the sequence. The min number of queries needed to determine it is the **algorithm complexity**.

A permutation problem

Previous work

- Rūsiņs Freivalds, Kazuo Iwama. Quantum Queries on Permutations with a Promise. *Lecture Notes in Computer Science*, vol. 5642, p. 208–216, 2009.
 - Algorithms for deciding parity of permutations: Quantum vs. deterministic
 - Attempted to prove: Quantum algorithms need 2x less queries compared to deterministic ones
 - Proved: Quantum algorithms need
 - *m* queries for *2m*-permutations
 - *m*+1 queries for (2*m*+1)-permutations
 - More than ¹/₂ compared to deterministic algorithms

This paper

- A permutation problem
- Quantum algorithms need 2x less queries than deterministic

The problem

• Given a 5-permutation, does it belong to the group GR?

```
GR = {
```

01234 12340 23401 34012 40123 02413 13024 24135 30241 41302 03142 14203 20314 31420 42031 04321 10432 21043 32104 43210 }

The result

- To solve the problem,
 - no less than 4 queries are needed for a deterministic algorithm
 - only 2 queries are needed for a quantum algorithm

The deterministic case

- Suppose 3 queries are enough
 - 012.. is received
 - $\textbf{-01234} \in GR$
 - 01243 ∉ GR
- Hence, at least 4 queries are needed

The quantum case: The result

- The algorithm enters 20 states (in the way of quantum parallelism), with equal amplitudes $1/\sqrt{20}$
- In each state, one of the 20 possible query pairs (x_i, x_j) is asked
 - $-i, j \in \{0, 1, 2, 3, 4\} \text{ and } i \neq j$
 - Upon receiving the result, the amplitude is multiplied by (-1) or (+1) according to a specifically designed table
- The table is constructed so that:
 - If the permutation \in GR, then all the 20 multipliers are equal
 - If the permutation ∉ GR, then half of the multipliers are (-1) and half are (+1)
- Hence, 2 queries are enough

The construction

- A numbering of pairs (a, b) such that

 a, b ∈ {0,1,2,3,4} and a ≠ b:
 (0,1) (1,2) (2,3) (3,4) (4,0)
 - $\begin{array}{c} (0,1) (1,2) (2,3) (3,4) (4,0) \\ (0,2) (2,4) (4,1) (1,3) (3,0) \\ (0,4) (4,3) (3,2) (2,1) (1,0) \\ (0,3) (3,1) (1,4) (4,2) (2,0) \end{array}$
- $D_r[(a,b),(u,v)] = RowNo[(a,b)] RowNo[(u,v)] \mod 4$
- $D_{c}[(a,b),(u,v)] = ColNo[(a,b)] ColNo[(u,v)] \mod 5$

The construction explained

- (0,1)(1,2)(2,3)(3,4)(4,0)(0,2)(2,4)(4,1)(1,3)(3,0)(0,4)(4,3)(3,2)(2,1)(1,0)(0,3)(3,1)(1,4)(4,2)(2,0)
- This corresponds to the linear functions

x + 1 + 2 + 2 + 3 + 4 2x + 1 + 2 + 2 + 3 + 4 4x + 1 + 2 + 2 + 3 + 4 + 4 4x + 1 + 4x + 2 + 4x + 3 + 4 + 43x + 1 + 3x + 2 + 3 + 3 + 4 + 4

- Each row = previous row * 2 mod 5
- Each column = previous column + 1 mod 5

The construction explained (2)

- The permutations from GR themselves can be represented as linear functions modulo 5:
- GR = {

01234 12340 23401 34012 40123 02413 13024 24130 30241 41302 03142 14203 20314 31420 42031 04321 10432 21043 32104 43210 }

Multiplier table

- *i*, *j* are the zero-based indices of the permutation elements to be queried (*i*, $j \in \{0, 1, 2, 3, 4\}$ and $i \neq j$)
- a_i , a_j are the results of the respective queries

$D_{r}[(i,j),(a_i,a_j)]$	$D_{c}[(i,j),(a_i,a_j)]$	$D_{r}[(j,i),(a_j,a_i)]$	$D_{c}[(j,i),(a_j,a_i)]$	Multiplier
0	0	0	0	+1
0	1	0	4	+1
3	0	3	0	-1

Example

- The permutation in the black box is 03241
- We query the elements #2 and #4
- The results are 2 and 1
 - $\begin{array}{r} & (0,1) \, (\textbf{1,2}) \, (2,3) \, (3,4) \, (4,0) \\ & (0,2) \, (\textbf{2,4}) \, (4,1) \, (1,3) \, (3,0) \\ & (0,4) \, (4,3) \, (3,2) \, (\textbf{2,1}) \, (1,0) \\ & (0,3) \, (3,1) \, (1,4) \, (\textbf{4,2}) \, (2,0) \end{array}$
- $D_r[(2,4),(2,1)] = 2 1 \mod 4 = 1$
- $D_c[(2,4),(2,1)] = 3 1 \mod 5 = 2$
- $D_r[(4,2),(1,2)] = 0 3 \mod 4 = 1$
- $D_{c}[(4,2),(1,2)] = 1 3 \mod 5 = 3$
- Hence we need to search for the table row (1, 2, 1, 3)
 - In our table, the multiplier in this row is +1

- If the permutation in the black box is from the group GR then all 20 multipliers are equal
- Proof:
 - If the permutation corresponds to the function ax + b where a = 1 or a = 2, then the multiplier equals (+1)
 - If the permutation corresponds to the function ax + b where a = 3 or a = 4, then the multiplier equals (-1)

• If the permutation in the black box is one of the following:

01243, 01342, 01423, 01324, 01432 then exactly 10 multipliers equal (-1) and exactly 10 multipliers equal (+1)

- Proof:
 - By explicit counting

If the permutation in the black box f(x) can be obtained from a permutation g(x) from the set
 { 01243, 01342, 01423, 01324, 01432 }

as

```
f(x) \equiv ag(x) + b \pmod{5}
```

then

- exactly 10 multipliers equal (-1) and
- exactly 10 multipliers equal (+1)
- Proof:
 - The definition of the values of multipliers depend only on the distances D_r but not on the distances D_c
 - Application of a linear function *at* + *b* does not change the distance D_r

- If the permutation in the black box is not from the group GR then
 - exactly 10 multipliers equal (-1) and
 - exactly 10 multipliers equal (+1)
- Proof:
 - The group G_5 of all 5-permutations consists of 120 elements
 - GR is a subgroup of G_5 consisting of 20 elements
 - Lagrange's theorem on finite groups: G₅ is subdivided into 6 cosets of equal size, one of the cosets being GR
 - The other 5 cosets GC_1 , GC_2 , GC_3 , GC_4 , GC_5 can be described as the set of all permutations f(x) such that
 - $f(x) \equiv ag(x) + b \pmod{5}$ and
 - $g(x) \in GC_i$
 - From Lemma 3: exactly 10 multipliers equal (-1) and exactly 10 multipliers equal (+1)

Main theorem

- The algorithm enters 20 states (in the way of quantum parallelism), with equal amplitudes $1/\sqrt{20}$
- In each state, one of the 20 possible query pairs (x_i, x_j) is asked
 - $-i, j \in \{0, 1, 2, 3, 4\}$ and *i* ≠ *j*
 - Upon receiving the result, the amplitude is multiplied by (-1) or (+1) according to a specifically designed table
- The table is constructed so that:
 - If the permutation \in GR, then all the 20 multipliers are equal
 - If the permutation ∉ GR, then half of the multipliers are (-1) and half are (+1)
- Hence, there is an exact quantum query algorithm deciding the membership in the group GR with two queries

Conclusion and future work

- There is a permutation problem, for which quantum algorithms need 2x less queries than deterministic ones
- In future, we hope to show a similar separation:
 - For a parity problem for permutations
 - For *n*-permutations, where *n* can be arbitrarily large

Thank you for your attention

Appendix: Application of at + b does not change the distance D_r

- The permutation in the black box is 03241
- We query the elements #2 and #4
- The results are 2 and 1

$$\begin{array}{c} - (0,1) \, (\textbf{1,2}) \, (2,3) \, (3,4) \, (4,0) \\ (0,2) \, (\textbf{2,4}) \, (4,1) \, (1,3) \, (3,0) \\ (0,4) \, (4,3) \, (3,2) \, (\textbf{2,1}) \, (1,0) \\ (0,3) \, (3,1) \, (1,4) \, (\textbf{4,2}) \, (2,0) \end{array}$$

- $D_r[(2,4),(2,1)] = 2 1 \mod 4 = 1$
- $D_c[(2,4),(2,1)] = 3 1 \mod 5 = 2$
- $D_r[(4,2),(1,2)] = 0 3 \mod 4 = 1$
- $D_c[(4,2),(1,2)] = 1 3 \mod 5 = 3$

Appendix: Application of at + b does not change the distance D_r (2)

- The permutation in the black box is 14302
- We query the elements #2 and #4
- The results are 3 and 2

$$\begin{array}{c} - (0,1) (1,2) (2,3) (3,4) (4,0) \\ (0,2) (2,4) (4,1) (1,3) (3,0) \\ (0,4) (4,3) (3,2) (2,1) (1,0) \\ (0,3) (3,1) (1,4) (4,2) (2,0) \end{array}$$

- $D_r[(2,4),(3,2)] = 2 1 \mod 4 = 1$
- $D_c[(2,4),(3,2)] = 2 1 \mod 5 = 1$
- $D_r[(4,2),(2,3)] = 0 3 \mod 4 = 1$
- $D_c[(4,2),(2,3)] = 2 3 \mod 5 = 4$

Appendix: Application of at + b does not change the distance D_r (3)

- The permutation in the black box is 20413
- We query the elements #2 and #4
- The results are 4 and 3

$$\begin{array}{c} - (0,1) (1,2) (2,3) (\mathbf{3,4}) (4,0) \\ (0,2) (\mathbf{2,4}) (4,1) (1,3) (3,0) \\ (0,4) (\mathbf{4,3}) (3,2) (2,1) (1,0) \\ (0,3) (3,1) (1,4) (\mathbf{4,2}) (2,0) \end{array}$$

- $D_r[(2,4),(4,3)] = 2 1 \mod 4 = 1$
- $D_c[(2,4),(4,3)] = 1 1 \mod 5 = 0$
- $D_r[(4,2),(3,4)] = 0 3 \mod 4 = 1$
- $D_c[(4,2),(3,4)] = 1 1 \mod 5 = 0$