Quantum queries on permutations

Taisia Mischenko-Slatenkova
Alina Vasilieva
Ilja Kucevalovs*
Rūsiņs Freivalds

Faculty of Computing
Latvijas Universitāte (University of Latvia)

Domain

- Quantum vs. deterministic query algorithm complexity
- The black box contains a permutation

Black box - The explanation

Queries

Based on the query results, the algorithm determines a certain Boolean property of the sequence.
The min number of queries needed to determine it is the algorithm complexity.

A permutation problem

Queries

Previous work

- Rūsiņs Freivalds, Kazuo Iwama. Quantum Queries on Permutations with a Promise. Lecture Notes in Computer Science, vol. 5642, p. 208-216, 2009.
- Algorithms for deciding parity of permutations: Quantum vs. deterministic
- Attempted to prove: Quantum algorithms need $2 x$ less queries compared to deterministic ones
- Proved: Quantum algorithms need
- m queries for $2 m$-permutations
- $m+1$ queries for ($2 m+1$)-permutations
- More than $1 / 2$ compared to deterministic algorithms

This paper

- A permutation problem
- Quantum algorithms need $2 x$ less queries than deterministic

The problem

- Given a 5-permutation, does it belong to the group GR?
GR = \{
0123412340234013401240123
0241313024241353024141302
0314214203203143142042031
0432110432210433210443210 \}

The result

- To solve the problem,
- no less than 4 queries are needed for a deterministic algorithm
- only 2 queries are needed for a quantum algorithm

The deterministic case

- GR = \{

$$
\begin{aligned}
& 0123412340234013401240123 \\
& 0241313024241303024141302 \\
& 0314214203203143142042031 \\
& 0432110432210433210443210
\end{aligned}
$$

- Suppose 3 queries are enough
- 012.. is received
- 01234 G GR
- $01243 \notin G R$
- Hence, at least 4 queries are needed

The quantum case: The result

- The algorithm enters 20 states (in the way of quantum parallelism), with equal amplitudes $1 / \sqrt{20}$
- In each state, one of the 20 possible query pairs $\left(x_{i}, x_{j}\right)$ is asked
- $i, j \in\{0,1,2,3,4\}$ and $i \neq j$
- Upon receiving the result, the amplitude is multiplied by (-1) or $(+1)$ according to a specifically designed table
- The table is constructed so that:
- If the permutation $\in G R$, then all the 20 multipliers are equal
- If the permutation $\notin G R$, then half of the multipliers are (-1) and half are (+1)
- Hence, 2 queries are enough

The construction

- A numbering of pairs (a, b) such that $a, b \in\{0,1,2,3,4\}$ and $a \neq b$:
$(0,1)(1,2)(2,3)(3,4)(4,0)$
$(0,2)(2,4)(4,1)(1,3)(3,0)$
$(0,4)(4,3)(3,2)(2,1)(1,0)$
$(0,3)(3,1)(1,4)(4,2)(2,0)$
- $\mathrm{D}_{\mathrm{r}}[(a, b),(u, v)]=\operatorname{RowNo}[(a, b)]-\operatorname{RowNo}[(u, v)] \bmod 4$
- $\mathrm{D}_{\mathrm{c}}[(a, b),(u, v)]=\operatorname{ColNo}[(a, b)]-\operatorname{ColNo}[(u, v)] \bmod 5$

The construction explained

- $(0,1)(1,2)(2,3)(3,4)(4,0)$
$(0,2)(2,4)(4,1)(1,3)(3,0)$
$(0,4)(4,3)(3,2)(2,1)(1,0)$
$(0,3)(3,1)(1,4)(4,2)(2,0)$
- This corresponds to the linear functions

$$
\begin{aligned}
& x \quad x+1 \quad x+2 \quad x+3 x+4 \\
& 2 x 2 x+12 x+22 x+32 x+4 \\
& 4 \mathrm{x} 4 \mathrm{x}+14 \mathrm{x}+24 \mathrm{x}+34 \mathrm{x}+4 \\
& 3 x 3 x+13 x+23 x+33 x+4
\end{aligned}
$$

- Each row $=$ previous row * 2 mod 5
- Each column $=$ previous column $+1 \bmod 5$

The construction explained (2)

- The permutations from GR themselves can be represented as linear functions modulo 5:

$$
\begin{array}{r}
x x+1 x+2 x+3 x+4 \\
2 x 2 x+12 x+22 x+32 x+4 \\
3 x 3 x+13 x+23 x+33 x+4 \\
4 x 4 x+14 x+24 x+34 x+4
\end{array}
$$

- $G R=\{$

$$
\begin{aligned}
& 0123412340234013401240123 \\
& 0241313024241303024141302 \\
& 0314214203203143142042031 \\
& 0432110432210433210443210 \\
& \}
\end{aligned}
$$

Multiplier table

- i, j are the zero-based indices of the permutation elements to be queried ($i, j \in\{0,1,2,3,4\}$ and $i \neq j$)
- a_{i}, a_{j} are the results of the respective queries

$D_{\mathrm{r}}\left[(i, j),\left(a_{i}, a_{j}\right)\right]$	$D_{\mathrm{c}}\left[(i, j),\left(a_{i j}, a_{j}\right)\right]$	$D_{\mathrm{r}}\left[(j, i),\left(a_{j}, a_{i}\right)\right]$	$D_{\mathrm{c}}\left[(j, i),\left(a_{j}, a_{i}\right)\right]$	Multiplier
0	0	0	0	+1
0	1	0	4	+1
\ldots	\ldots			\ldots
3	0	3	0	-1
\ldots	\ldots			\ldots

Example

- The permutation in the black box is 03241
- We query the elements \#2 and \#4
- The results are 2 and 1
$-(0,1)(1,2)(2,3)(3,4)(4,0)$
$(0,2)(2,4)(4,1)(1,3)(3,0)$
$(0,4)(4,3)(3,2)(2,1)(1,0)$
$(0,3)(3,1)(1,4)(4,2)(2,0)$
- $\mathrm{D}_{\mathrm{r}}[(2,4),(2,1)]=2-1 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(2,4),(2,1)]=3-1 \bmod 5=2$
- $\mathrm{D}_{\mathrm{r}}[(4,2),(1,2)]=0-3 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(4,2),(1,2)]=1-3 \bmod 5=3$
- Hence we need to search for the table row (1, 2, 1, 3)
- In our table, the multiplier in this row is +1

Lemma 1

- If the permutation in the black box is from the group GR then all 20 multipliers are equal
- Proof:
- If the permutation corresponds to the function $a x+b$ where $a=1$ or $a=2$, then the multiplier equals (+1)
- If the permutation corresponds to the function $a x+b$ where $a=3$ or $a=4$, then the multiplier equals (-1)

Lemma 2

- If the permutation in the black box is one of the following:

01243, 01342, 01423, 01324, 01432 then exactly 10 multipliers equal (-1) and exactly 10 multipliers equal (+1)

- Proof:
- By explicit counting

Lemma 3

- If the permutation in the black box $f(x)$ can be obtained from a permutation $g(x)$ from the set $\{01243,01342,01423,01324,01432\}$
as

$$
f(x) \equiv a g(x)+b(\bmod 5)
$$

then

- exactly 10 multipliers equal (-1) and
- exactly 10 multipliers equal (+1)
- Proof:
- The definition of the values of multipliers depend only on the distances D_{r} but not on the distances D_{c}
- Application of a linear function $a t+b$ does not change the distance D_{r}

Lemma 4

- If the permutation in the black box is not from the group GR then
- exactly 10 multipliers equal (-1) and
- exactly 10 multipliers equal (+1)
- Proof:
- The group G_{5} of all 5-permutations consists of 120 elements
- GR is a subgroup of G_{5} consisting of 20 elements
- Lagrange's theorem on finite groups: G_{5} is subdivided into 6 cosets of equal size, one of the cosets being GR
- The other 5 cosets $\mathrm{GC}_{1}, \mathrm{GC}_{2}, \mathrm{GC}_{3}, \mathrm{GC}_{4}, \mathrm{GC}_{5}$ can be described as the set of all permutations $f(x)$ such that
- $f(x) \equiv a g(x)+b(\bmod 5)$ and
- $g(x) \in \mathrm{GC}_{i}$
- From Lemma 3: exactly 10 multipliers equal (-1) and exactly 10 multipliers equal (+1)

Main theorem

- The algorithm enters 20 states (in the way of quantum parallelism), with equal amplitudes $1 / \sqrt{20}$
- In each state, one of the 20 possible query pairs $\left(x_{i}, x_{j}\right)$ is asked
- $i, j \in\{0,1,2,3,4\}$ and $i \neq j$
- Upon receiving the result, the amplitude is multiplied by (-1) or $(+1)$ according to a specifically designed table
- The table is constructed so that:
- If the permutation $\in G R$, then all the 20 multipliers are equal
- If the permutation $\notin G R$, then half of the multipliers are (-1) and half are (+1)
- Hence, there is an exact quantum query algorithm deciding the membership in the group GR with two queries

Conclusion and future work

- There is a permutation problem, for which quantum algorithms need $2 x$ less queries than deterministic ones
- In future, we hope to show a similar separation:
- For a parity problem for permutations
- For n-permutations, where n can be arbitrarily large

Thank you for your attention

Appendix: Application of $a t+b$ does not change the distance D_{r}

- The permutation in the black box is 03241
- We query the elements \#2 and \#4
- The results are 2 and 1

- $D_{D}[(2,4),(2,1)]=2-1 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(2,4),(2,1)]=3-1 \bmod 5=2$
- $D_{r}[(4,2),(1,2)]=0-3 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(4,2),(1,2)]=1-3 \bmod 5=3$

Appendix: Application of $a t+b$ does not change the distance $D_{r}(2)$

- The permutation in the black box is 14302
- We query the elements \#2 and \#4
- The results are 3 and 2

- $D_{[}[(2,4),(3,2)]=2-1 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(2,4),(3,2)]=2-1 \bmod 5=1$
- $D_{[}[(4,2),(2,3)]=0-3 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(4,2),(2,3)]=2-3 \bmod 5=4$

Appendix: Application of $a t+b$ does not change the distance $D_{r}(3)$

- The permutation in the black box is 20413
- We query the elements \#2 and \#4
- The results are 4 and 3

- $D_{[}[(2,4),(4,3)]=2-1 \bmod 4=1$
- $D_{D}[(2,4),(4,3)]=1-1 \bmod 5=0$
- $\mathrm{D}_{\mathrm{D}}[(4,2),(3,4)]=0-3 \bmod 4=1$
- $\mathrm{D}_{\mathrm{c}}[(4,2),(3,4)]=1-1 \bmod 5=0$

