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Domain

• Quantum vs. deterministic query algorithm

complexity

– The black box contains a permutation



3

Black box – The explanation

Some sequence
The Algorithm

xi = ?

xj = ?

Queries

Based on the query results, the algorithm determines a certain

Boolean property of the sequence.

The min number of queries needed to determine it 

is the algorithm complexity.

...
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A permutation problem

Some permutation
The Algorithm

Queries

xi = ?

xj = ?

...
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Previous work

• Rūsiņs Freivalds, Kazuo Iwama. Quantum 
Queries on Permutations with a Promise. 
Lecture Notes in Computer Science, vol. 5642, 
p. 208–216, 2009.
– Algorithms for deciding parity of permutations: 

Quantum vs. deterministic

– Attempted to prove: Quantum algorithms need 2x less 
queries compared to deterministic ones

– Proved: Quantum algorithms need
• m queries for 2m-permutations

• m+1 queries for (2m+1)-permutations

• More than ½ compared to deterministic algorithms
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This paper

• A permutation problem

• Quantum algorithms need 2x less queries 

than deterministic
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The problem

• Given a 5-permutation, does it belong to 

the group GR?

GR = {

01234 12340 23401 34012 40123 

02413 13024 24135 30241 41302

03142 14203 20314 31420 42031

04321 10432 21043 32104 43210

}
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The result

• To solve the problem,

– no less than 4 queries are needed for a 

deterministic algorithm

– only 2 queries are needed for a quantum 

algorithm
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The deterministic case

• GR = {
01234 12340 23401 34012 40123 
02413 13024 24130 30241 41302
03142 14203 20314 31420 42031
04321 10432 21043 32104 43210
}

• Suppose 3 queries are enough
– 012.. is received

– 01234 ∈ GR

– 01243 ∉ GR

• Hence, at least 4 queries are needed
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The quantum case: 

The result
• The algorithm enters 20 states (in the way of quantum 

parallelism), with equal amplitudes 1/√20
• In each state, one of the 20 possible query pairs (xi, xj) is 

asked
– i, j ∈ {0,1,2,3,4} and i ≠ j

– Upon receiving the result, the amplitude is multiplied by (-1) or 
(+1) according to a specifically designed table

• The table is constructed so that:
– If the permutation ∈ GR, then all the 20 multipliers are equal

– If the permutation ∉ GR, then half of the multipliers are (-1) and 
half are (+1)

• Hence, 2 queries are enough
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The construction

• A numbering of pairs (a, b) such that 
a, b ∈ {0,1,2,3,4} and a ≠ b:

(0,1) (1,2) (2,3) (3,4) (4,0)
(0,2) (2,4) (4,1) (1,3) (3,0)
(0,4) (4,3) (3,2) (2,1) (1,0)
(0,3) (3,1) (1,4) (4,2) (2,0)

• Dr[(a,b),(u,v)] = RowNo[(a,b)] – RowNo[(u,v)] mod 4

• Dc[(a,b),(u,v)] = ColNo[(a,b)] – ColNo[(u,v)] mod 5



12

The construction explained

• (0,1) (1,2) (2,3) (3,4) (4,0)

(0,2) (2,4) (4,1) (1,3) (3,0)

(0,4) (4,3) (3,2) (2,1) (1,0)

(0,3) (3,1) (1,4) (4,2) (2,0)

• This corresponds to the linear functions

x   x + 1   x + 2   x + 3   x + 4

2x 2x + 1 2x + 2 2x + 3 2x + 4

4x 4x + 1 4x + 2 4x + 3 4x + 4

3x 3x + 1 3x + 2 3x + 3 3x + 4

• Each row = previous row * 2 mod 5

• Each column = previous column + 1 mod 5
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The construction explained (2)

• The permutations from GR themselves can be 
represented as linear functions modulo 5:

• x   x + 1   x + 2   x + 3   x + 4
2x 2x + 1 2x + 2 2x + 3 2x + 4
3x 3x + 1 3x + 2 3x + 3 3x + 4
4x 4x + 1 4x + 2 4x + 3 4x + 4

• GR = {
01234 12340 23401 34012 40123 
02413 13024 24130 30241 41302
03142 14203 20314 31420 42031
04321 10432 21043 32104 43210
}
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Multiplier table

• i, j are the zero-based indices of the permutation 

elements to be queried (i, j ∈ {0,1,2,3,4} and i ≠ j)

• ai, aj are the results of the respective queries

.........

–10303

.........

+14010

+10000

MultiplierD
c
[(j,i),(aj,ai)]D

r
[(j,i),(aj,ai)]D

c
[(i,j),(ai,aj)]D

r
[(i,j),(ai,aj)]
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Example

• The permutation in the black box is 03241

• We query the elements #2 and #4

• The results are 2 and 1
– (0,1) (1,2) (2,3) (3,4) (4,0)

(0,2) (2,4) (4,1) (1,3) (3,0)
(0,4) (4,3) (3,2) (2,1) (1,0)
(0,3) (3,1) (1,4) (4,2) (2,0)

• Dr[(2,4),(2,1)] = 2 – 1 mod 4 = 1

• Dc[(2,4),(2,1)] = 3 – 1 mod 5 = 2

• Dr[(4,2),(1,2)] = 0 – 3 mod 4 = 1

• Dc[(4,2),(1,2)] = 1 – 3 mod 5 = 3

• Hence we need to search for the table row (1, 2, 1, 3)
– In our table, the multiplier in this row is +1
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Lemma 1

• If the permutation in the black box is from 
the group GR then all 20 multipliers are 
equal

• Proof:

– If the permutation corresponds to the function 
ax + b where a = 1 or a = 2, then the multiplier 
equals (+1)

– If the permutation corresponds to the function 
ax + b where a = 3 or a = 4, then the multiplier 
equals (−1)
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Lemma 2

• If the permutation in the black box is one 

of the following:

01243, 01342, 01423, 01324, 01432

then exactly 10 multipliers equal (− 1) and 

exactly 10 multipliers equal (+1)

• Proof:

– By explicit counting
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Lemma 3

• If the permutation in the black box f(x) can be obtained 
from a permutation g(x) from the set

{ 01243, 01342, 01423, 01324, 01432 }
as 

f(x) ≡ ag(x) + b(mod 5)
then
– exactly 10 multipliers equal (−1) and 

– exactly 10 multipliers equal (+1)

• Proof:
– The definition of the values of multipliers depend only on the 

distances D
r
but not on the distances D

c

– Application of a linear function at + b does not change the 
distance D

r
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Lemma 4

• If the permutation in the black box is not from the group 
GR then
– exactly 10 multipliers equal (−1) and 

– exactly 10 multipliers equal (+1)

• Proof:
– The group G

5
of all 5-permutations consists of 120 elements

– GR is a subgroup of G
5

consisting of 20 elements

– Lagrange’s theorem on finite groups: G
5

is subdivided into 6 
cosets of equal size, one of the cosets being GR

– The other 5 cosets GC
1
, GC

2
, GC

3
, GC

4
, GC

5
can be described 

as the set of all permutations f(x) such that 
• f(x) ≡ ag(x) + b(mod 5) and 

• g(x) ∈ GC
i

– From Lemma 3: exactly 10 multipliers equal (−1) and exactly 10
multipliers equal (+1)
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Main theorem

• The algorithm enters 20 states (in the way of quantum 
parallelism), with equal amplitudes 1/√20

• In each state, one of the 20 possible query pairs (xi, xj) is 
asked
– i, j ∈ {0,1,2,3,4} and i ≠ j

– Upon receiving the result, the amplitude is multiplied by (-1) or 
(+1) according to a specifically designed table

• The table is constructed so that:
– If the permutation ∈ GR, then all the 20 multipliers are equal

– If the permutation ∉ GR, then half of the multipliers are (-1) and 
half are (+1)

• Hence, there is an exact quantum query algorithm 
deciding the membership in the group GR with two 
queries
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Conclusion and future work

• There is a permutation problem, for which 

quantum algorithms need 2x less queries 

than deterministic ones

• In future, we hope to show a similar 

separation:

– For a parity problem for permutations

– For n-permutations, where n can be arbitrarily 

large



Thank you for your attention



23

Appendix: Application of at + b does not

change the distance D
r

• The permutation in the black box is 03241

• We query the elements #2 and #4

• The results are 2 and 1
– (0,1) (1,2) (2,3) (3,4) (4,0)

(0,2) (2,4) (4,1) (1,3) (3,0)
(0,4) (4,3) (3,2) (2,1) (1,0)
(0,3) (3,1) (1,4) (4,2) (2,0)

• D
r
[(2,4),(2,1)] = 2 – 1 mod 4 = 1

• D
c
[(2,4),(2,1)] = 3 – 1 mod 5 = 2

• D
r
[(4,2),(1,2)] = 0 – 3 mod 4 = 1

• D
c
[(4,2),(1,2)] = 1 – 3 mod 5 = 3
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Appendix: Application of at + b does not

change the distance D
r
(2)

• The permutation in the black box is 14302

• We query the elements #2 and #4

• The results are 3 and 2
– (0,1) (1,2) (2,3) (3,4) (4,0)

(0,2) (2,4) (4,1) (1,3) (3,0)
(0,4) (4,3) (3,2) (2,1) (1,0)
(0,3) (3,1) (1,4) (4,2) (2,0)

• D
r
[(2,4),(3,2)] = 2 – 1 mod 4 = 1

• D
c
[(2,4),(3,2)] = 2 – 1 mod 5 = 1

• D
r
[(4,2),(2,3)] = 0 – 3 mod 4 = 1

• D
c
[(4,2),(2,3)] = 2 – 3 mod 5 = 4
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Appendix: Application of at + b does not

change the distance D
r
(3)

• The permutation in the black box is 20413

• We query the elements #2 and #4

• The results are 4 and 3
– (0,1) (1,2) (2,3) (3,4) (4,0)

(0,2) (2,4) (4,1) (1,3) (3,0)
(0,4) (4,3) (3,2) (2,1) (1,0)
(0,3) (3,1) (1,4) (4,2) (2,0)

• D
r
[(2,4),(4,3)] = 2 – 1 mod 4 = 1

• D
c
[(2,4),(4,3)] = 1 – 1 mod 5 = 0

• D
r
[(4,2),(3,4)] = 0 – 3 mod 4 = 1

• D
c
[(4,2),(3,4)] = 1 – 1 mod 5 = 0


