Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Jozef Jirásek Juraj Šebej

DCFS 2015

Outline

- Maximal prefix-free subsets
- Properties
- Constructing
- Subsets of certain properties
- State complexity
- Non-regular MPFS

Definitions

- DFA $A = (Q, \Sigma, \delta, s, F)$
- We consider incomplete, trim DFAs.

Definitions

- DFA $A = (Q, \Sigma, \delta, s, F)$
- We consider incomplete, trim DFAs.

•
$$U \leq_{D} v$$
 iff $\exists w: uw = v$

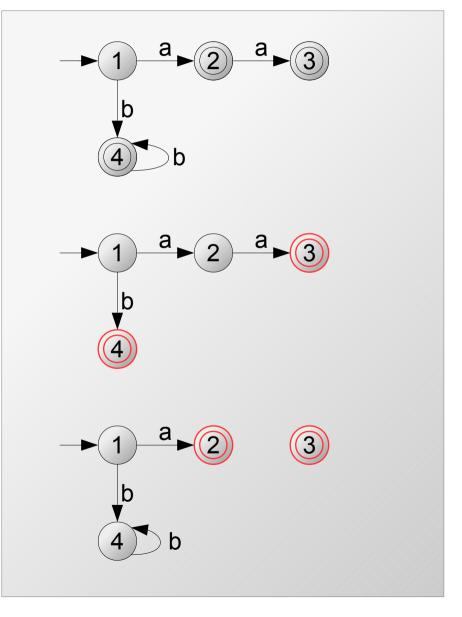
- $u <_p v$ iff $u \leq_p v$ and $u \neq v$ ($w \neq \varepsilon$)
- Set P is *prefix-free* iff $\nexists u, v \in P$: $u \leq_{D} v$
- Set P is a maximal prefix-free subset of L iff:

 $- P \subseteq L$

- P is prefix-free
- $= \forall u \in L: \exists v \in P: u \leq_p v \text{ or } v \leq_p u$

Constructing a MPFS

- Let $A = (Q, \Sigma, \delta, s, F); F' \subseteq F$
- Construct $A_{F'} = (Q, \Sigma, \delta', s, F')$
 - $-\delta'(q, a)$ undefined if $q \in F'$
 - as in A otherwise.
- $L(A_{F'})$ is a PFS of L(A)
- If ∀q ∈ F \ F' reachable in A_{F'}: ∃w accepted from q in A_{F'}
 then L(A_{F'}) is a MPFS of L(A).



Constructing some PFS

... remove all strings which are proper prefixes?

•
$$L_1 = L \setminus \{w \in L \mid \exists v \neq \varepsilon : wv \in L\}$$

• $A_1 = (Q, \Sigma, \delta, s, F_1)$
 $-F_1 = \{q \in F \mid \nexists w \neq \varepsilon \text{ accepted from } q\}$
• 1 a 2 a 3
b 4 b

Results

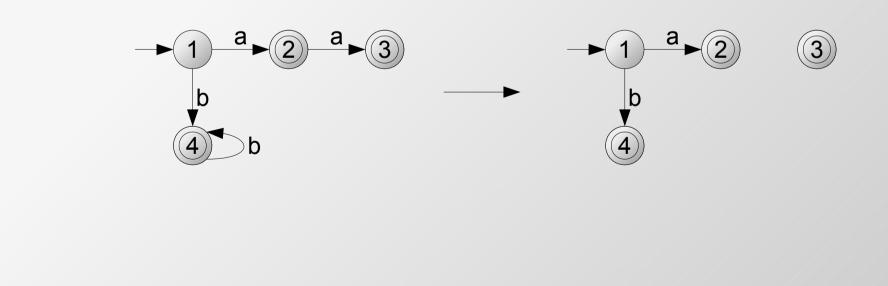
... remove all strings which are proper prefixes?

- $SC(L_1) \leq SC(L)$
 - L unary: $sc(L_1) = 1$ or $sc(L_1) = n$
 - $\forall 1 \le k \le n$ there is a binary L with sc(L) = n and sc(L₁) = k
- L_1 is a PFS of L_2 .
- If L is finite, L₁ is a largest MPFS of L.
- Otherwise, 😕

Constructing some PFS

... remove all strings which have a proper prefix?

- $L_2 = L \setminus \{w \in L \mid \exists u \in L, v \neq \varepsilon : w = uv\}$
- $A_2 = (Q, \Sigma, \delta_2, s, F)$
 - $-\delta_2$ undefined for $q \in F$, as in A otherwise.



Results

... remove all strings which *have a* proper prefix?

• $\operatorname{sc}(L_2) \leq \operatorname{sc}(L) + 1$

 $- \forall 1 \le k \le n + 1$ there is a unary *L* with sc(*L*) = *n* and sc(*L*₂) = *k*

- L_2 is a MPFS of L.
- If L₂ is infinite, L does not have any finite MPFS.
- If L₂ is finite, it is a *smallest* MPFS of L.

Finding a largest finite MPFS

L has both finite and infinite MPFS. We can find the smallest (L_2) , can we find the largest finite MPFS?

Finding a largest finite MPFS

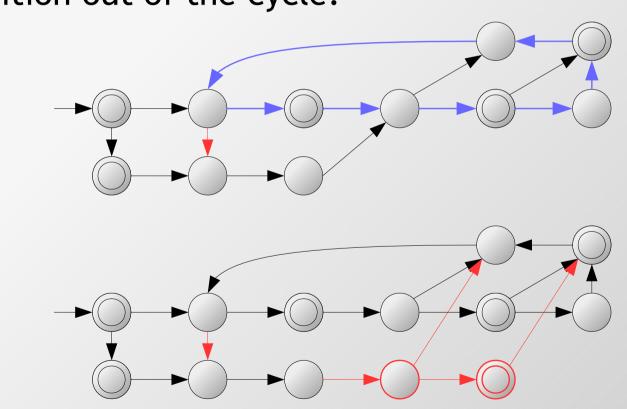
L has both finite and infinite MPFS. We can find the smallest (L_2) , can we find the largest finite MPFS?

- Yes we can!
- Polynomial-time algorithm which either:
 - finds $F' \subseteq F$, such that $L(A_{F'})$ is a largest finite MPFS of L; or
 - determines that no largest finite MPFS of L exists.
 - Only infinite MPFS.
 - Finite MPFS of unlimited size.
- $\operatorname{sc}(L(A_{F'})) \leq \operatorname{sc}(L) + 1$
 - Reached for every $1 \le k \le n + 1$ on unary languages.
- Construction in paper.

Infinite MPFS

Task: Find an infinite regular MPFS of L = L(A).

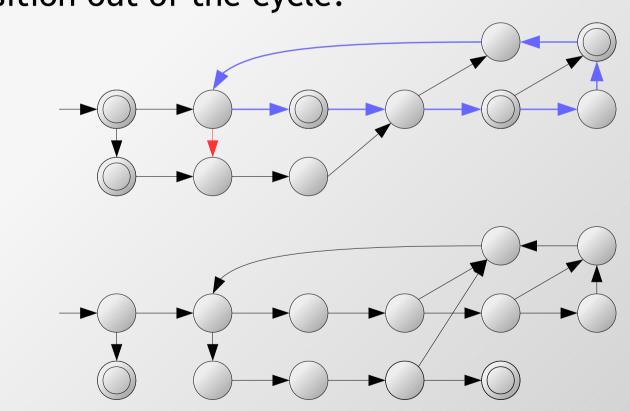
- L infinite \Rightarrow A contains a cycle
- (1) transition out of the cycle:



Infinite MPFS

Task: Find an infinite regular MPFS of L = L(A).

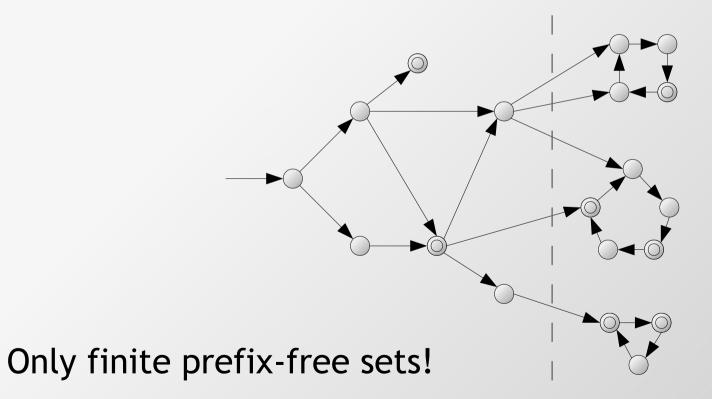
- L infinite \Rightarrow A contains a cycle
- (1) transition out of the cycle:



Infinite MPFS

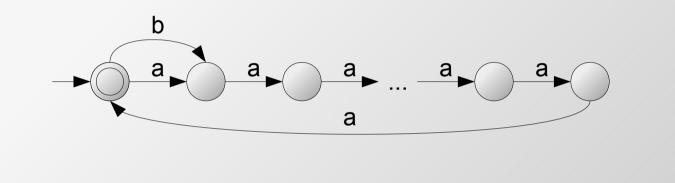
Task: Find an infinite regular MPFS of L = L(A).

- L infinite \Rightarrow A contains a cycle
- (2) no transition out of any cycle:



State complexity

 For every n ≥ 2, there exists a language L with sc(L) = n, such that every infinite MPFS of L has sc ≥ 2n.



 For every n ≥ 4, there exists a language L with sc(L) = n, which has infinite MPFS of unlimited sc.

$$L = b^{+}a \cup \{a^{i} \mid i \ge n - 3\}$$
$$P_{k} = b^{+}a \cup \{a^{k}\}$$
$$sc(P_{k}) = k$$

Regular language L with a non-regular MPFS:

- *L* = a*b*
- **P** = {aⁿbⁿ | n > 0}

L has a non-regular MPFS \Rightarrow L has uncountably many MPFS.

• Let P be a non-regular MPFS of a regular language L.

$$- \mathsf{P}^{+} = \{ w \in \mathsf{P} \mid \exists u_{w} \in \mathsf{L} : w <_{p} u_{w} \}$$

$$-\mathsf{P}^{-} = \{ w \in \mathsf{P} \mid \nexists u \in \mathsf{L} : w <_{p} u \}$$

L has a non-regular MPFS \Rightarrow L has uncountably many MPFS.

• Let P be a non-regular MPFS of a regular language L.

$$- \mathsf{P}^{+} = \{ \mathsf{w} \in \mathsf{P} \mid \exists u_{w} \in \mathsf{L} : \mathsf{w} <_{p} u_{w} \}$$

$$-\mathsf{P}^{-} = \{ w \in \mathsf{P} \mid \nexists u \in \mathsf{L} : w <_{p} u \}$$

- Assume that P⁺ is finite:
 - Let $R = L \setminus \{[w] \mid w \in P^+\}$
 - Let R⁻ = {w ∈ R | $\exists u \in R: w <_p u$ }
 - Claim: $R^- = P^-$
 - Thus $P = P^+ \cup P^-$ is regular!

L has a non-regular MPFS \Rightarrow L has uncountably many MPFS.

- Let P be a non-regular MPFS of a regular language L.
 - $\mathsf{P}^{+} = \{ w \in \mathsf{P} \mid \exists u_{w} \in \mathsf{L} : w <_{p} u_{w} \} \quad \text{(infinite)}$

$$- \mathsf{P}^{-} = \{ w \in \mathsf{P} \mid \nexists u \in \mathsf{L} : w <_{p} u \}$$

- Pick $S \subseteq P^+$
 - $\text{ Let } \mathsf{S'} = \mathsf{S} \cup \{ wu_w \mid w \in \mathsf{P}^+ \setminus \mathsf{S} \}$
 - Extend S' to a MPFS S".

L has a non-regular MPFS \Rightarrow L has uncountably many MPFS.

- Let P be a non-regular MPFS of a regular language L.
 - $\mathsf{P}^{+} = \{ w \in \mathsf{P} \mid \exists u_{w} \in \mathsf{L}: w <_{p} u_{w} \} \quad \text{(infinite)}$

$$- P^{-} = \{ w \in P \mid \nexists u \in L: w <_{p} u \}$$

- Pick $S \subseteq P^+$
 - $\text{ Let S'} = S \cup \{wu_w \mid w \in P^+ \setminus S\}$
 - Extend S' to a MPFS S".
- Picking two different S₁, S₂ results in two different S₁", S₂".
- Uncountably many choices \Rightarrow uncountably many MPFS. \Box

L has a non-regular MPFS \Rightarrow L has uncountably many MPFS.

- Let P be a non-regular MPFS of a regular language L.
 - $\mathsf{P}^{+} = \{ w \in \mathsf{P} \mid \exists u_{w} \in \mathsf{L}: w <_{p} u_{w} \} \quad \text{(infinite)}$

$$- \mathsf{P}^- = \{ w \in \mathsf{P} \mid \nexists u \in \mathsf{L} : w <_p u \}$$

- Pick $S \subseteq P^+$
 - $\text{ Let S'} = S \cup \{wu_w \mid w \in P^+ \setminus S\}$
 - Extend S' to a MPFS S".
- Picking two different S₁, S₂ results in two different S₁", S₂".
- Uncountably many choices ⇒ uncountably many MPFS.
- Further results on non-regular MPFS in an upcoming paper!

Thank you for your attention!

Questions?