On the Computational Complexity of Problems Related to Distinguishability Sets

Markus Holzer and Sebastian Jakobi

Institut für Informatik
Justus-Liebig-Universität

Arndtstr. 2, 35392 Gießen, Germany
17th International Workshop on
Descriptional Complexity of Formal Systems
Waterloo, Ontario, Canada
June 27, 2015

Overview

(1) Introduction
(2) Deciding the State Complexity of $\mathrm{D}(L)$
(3) Deciding the Form of the Hierarchy of $\mathrm{D}^{i}(L)$

4 Conclusion

Distinguishability Sets

distinguish between states of a DFA:
for states p, q, find a word w such that $\delta(p, w) \in F \Longleftrightarrow \delta(q, w) \notin F$.
distinguish between words:
for words x, y find a word w such that $x w \in L \Longleftrightarrow y w \notin L$.

Distinguishability Sets

distinguish between states of a DFA:
for states p, q, find a word w such that $\delta(p, w) \in F \Longleftrightarrow \delta(q, w) \notin F$.
distinguish between words:
for words x, y find a word w such that $x w \in L \Longleftrightarrow y w \notin L$.
[Câmpeanu, Moreira, Reis, 2014] study distinguishability sets
\ldots for a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$:
$\mathrm{D}_{A}(p, q)=\left\{w \in \Sigma^{*} \mid \delta(p, w) \in F \Leftrightarrow \delta(q, w) \notin F\right\}, \mathrm{D}(A)=\bigcup_{p, q \in Q} \mathrm{D}_{A}(p, q)$
\ldots and for a language $L \subseteq \Sigma^{*}$:

$$
\mathrm{D}_{L}(x, y)=\left\{w \in \Sigma^{*} \mid x w \in L \Leftrightarrow y w \notin L\right\}, \mathrm{D}(L)=\bigcup_{x, y \in \Sigma^{*}} \mathrm{D}_{L}(x, y)
$$

Distinguishability Sets

distinguish between states of a DFA:
for states p, q, find a word w such that $\delta(p, w) \in F \Longleftrightarrow \delta(q, w) \notin F$.
distinguish between words:
for words x, y find a word w such that $x w \in L \Longleftrightarrow y w \notin L$.
[Câmpeanu, Moreira, Reis, 2014] study distinguishability sets
\ldots for a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$:
$\mathrm{D}_{A}(p, q)=\left\{w \in \Sigma^{*} \mid \delta(p, w) \in F \Leftrightarrow \delta(q, w) \notin F\right\}, \mathrm{D}(A)=\bigcup_{p, q \in Q} \mathrm{D}_{A}(p, q)$
\ldots and for a language $L \subseteq \Sigma^{*}$:

$$
\mathrm{D}_{L}(x, y)=\left\{w \in \Sigma^{*} \mid x w \in L \Leftrightarrow y w \notin L\right\}, \mathrm{D}(L)=\bigcup_{x, y \in \Sigma^{*}} \mathrm{D}_{L}(x, y)
$$

If all states in A are reachable and $L=L(A)$ then $\mathrm{D}(L)=\mathrm{D}(A)$.

An Example (from [CMR14])

An Example (from [CMR14])

$$
\begin{aligned}
& L(A)=\left(\{0,1\}^{2}\right)^{*} \cup\{0,1\}^{*}\{1\} \\
& \begin{array}{l}
\mathrm{D}_{A}(1,0)
\end{array}=\{\lambda\} \cup\{0,1\}\left(\{0,1\}^{2}\right)^{*}\{0\} \\
& \mathrm{D}_{A}(1,2)=\{\lambda\} \quad \cup\left(\{0,1\}^{2}\right)^{*}\{0\} \\
& \mathrm{D}_{A}(0,2)=\mathrm{D}_{A}(1,0) \backslash\{\lambda\}
\end{aligned}
$$

An Example (from [CMR14])

Properties of Distinguishability Sets

$$
\mathrm{D}_{L}(x, y)=\left\{w \in \Sigma^{*} \mid x w \in L \Leftrightarrow y w \notin L\right\}, \mathrm{D}(L)=\bigcup_{x, y \in \Sigma^{*}} \mathrm{D}_{L}(x, y)
$$

Alternative characterization of $\mathrm{D}(L)$:

$$
\mathrm{D}(L)=\operatorname{suff}(L) \cap \operatorname{suff}(\bar{L})
$$

where $\operatorname{suff}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right.$ for some $\left.u \in \Sigma^{*}\right\}$ are the suffixes of words from L and $\bar{L}=\Sigma^{*} \backslash L$ is the complement of L.

Properties of Distinguishability Sets

$$
\mathrm{D}_{L}(x, y)=\left\{w \in \Sigma^{*} \mid x w \in L \Leftrightarrow y w \notin L\right\}, \mathrm{D}(L)=\bigcup_{x, y \in \Sigma^{*}} \mathrm{D}_{L}(x, y)
$$

Alternative characterization of $\mathrm{D}(L)$:

$$
\mathrm{D}(L)=\operatorname{suff}(L) \cap \operatorname{suff}(\bar{L}),
$$

where $\operatorname{suff}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right.$ for some $\left.u \in \Sigma^{*}\right\}$ are the suffixes of words from L and $\bar{L}=\Sigma^{*} \backslash L$ is the complement of L.

- $\mathrm{D}(L)$ is suffix-closed.
- If L is regular then $\mathrm{D}(L)$ is regular.

The worst case state complexity of $\mathrm{D}(L)$ is $2^{n}-n$

Properties of Distinguishability Sets

$$
\mathrm{D}_{L}(x, y)=\left\{w \in \Sigma^{*} \mid x w \in L \Leftrightarrow y w \notin L\right\}, \mathrm{D}(L)=\bigcup_{x, y \in \Sigma^{*}} \mathrm{D}_{L}(x, y)
$$

Alternative characterization of $\mathrm{D}(L)$:

$$
\mathrm{D}(L)=\operatorname{suff}(L) \cap \operatorname{suff}(\bar{L})
$$

where $\operatorname{suff}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right.$ for some $\left.u \in \Sigma^{*}\right\}$ are the suffixes of words from L and $\bar{L}=\Sigma^{*} \backslash L$ is the complement of L.

- $\mathrm{D}(L)$ is suffix-closed.
- If L is regular then $\mathrm{D}(L)$ is regular. The worst case state complexity of $\mathrm{D}(L)$ is $2^{n}-n$

Problem: D-SET-SizE

Given a DFA A and an integer k, decide whether $\operatorname{sc}(\mathrm{D}(L(A))) \leq k$.

Overview

(1) Introduction

(2) Deciding the State Complexity of $\mathrm{D}(L)$

(3) Deciding the Form of the Hierarchy of $\mathrm{D}^{i}(L)$

Deciding the State Complexity of $\mathrm{D}(L)$

Problem: D-SET-SizE

Given a DFA A and an integer k, decide whether $\operatorname{sc}(\mathrm{D}(L(A))) \leq k$.

Lemma
 D-Set-Size is contained in PSPACE.

Deciding $\operatorname{sc}(L(B)) \leq k$ for a DFA B is NL-complete.
Given an n-state DFA A, a DFA A_{D} for $\mathrm{D}(L(A))$ can be constructed with at most $2^{n}-n$ states.

Construct A_{D} on-the-fly and use the NL-algorithm on it.

Deciding the State Complexity of $\mathrm{D}(L)$

Problem: D-SET-SizE

Given a DFA A and an integer k, decide whether $\operatorname{sc}(\mathrm{D}(L(A))) \leq k$.

Lemma
 D-SET-Size is contained in PSPACE.

Deciding $\operatorname{sc}(L(B)) \leq k$ for a DFA B is NL-complete.
Given an n-state DFA A, a DFA A_{D} for $\mathrm{D}(L(A))$ can be constructed with at most $2^{n}-n$ states.

Construct A_{D} on-the-fly and use the NL-algorithm on it.

Lemma
D-SET-Size is PSPACE-hard.

D-SET-Size is PSPACE-hard

Reduction from the PSPACE-complete problem

Problem: DFA-Union-Universality Given DFAs $A_{1}, A_{2}, \ldots, A_{n}$ with common input alphabet Σ, decide whether $\bigcup_{i=1}^{n} L\left(A_{i}\right)=\Sigma^{*}$.

D-Set-Size is PSPACE-hard

 Reduction from the PSPACE-complete problem
Problem: DFA-Union-Universality Given DFAs $A_{1}, A_{2}, \ldots, A_{n}$ with common input alphabet Σ, decide whether $\bigcup_{i=1}^{n} L\left(A_{i}\right)=\Sigma^{*}$.

- We may assume $\{\lambda\} \cup \Sigma \subseteq \bigcup_{i=1}^{n} L\left(A_{i}\right)$ and add DFAs

$$
\begin{aligned}
& A_{n+1} \text { for language }\{\lambda\} \\
& A_{n+2} \text { for language } \Sigma
\end{aligned}
$$

- Minimize DFAs $A_{1}, A_{2}, \ldots, A_{n+2}$ and (polynomial time reduction)
- add reset symbol \# that takes A_{i} back to its initial state.

Obtain $A_{1}^{\prime}, A_{2}^{\prime} \ldots, A_{n+2}^{\prime}$ with $A_{i}^{\prime}=\left(Q_{i}^{\prime}, \Sigma_{\#}, \delta_{i}^{\prime}, s_{i}^{\prime}, F_{i}^{\prime}\right), \Sigma_{\#}=\Sigma \cup\{\#\}$

$$
\bigcup_{i=1}^{n} L\left(A_{i}\right)=\Sigma^{*} \Longleftrightarrow \bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)=\Sigma_{\#}^{*}
$$

D-Set-Size is PSPACE-hard (2)

Combine the DFAs $A_{i}^{\prime}=\left(Q_{i}^{\prime}, \Sigma_{\#}, \delta_{i}^{\prime}, s_{i}^{\prime}, F_{i}^{\prime}\right), 1 \leq i \leq n+2$, to one DFA $A=\left(Q, \Gamma, \delta, q_{0}, F\right)$:
$\Gamma=\Sigma_{\#} \cup\left\{\$_{i}, \Phi_{i} \mid 1 \leq i \leq n+2\right\}$
$Q=\bigcup_{i=1}^{n+2} Q_{i}^{\prime} \cup\left\{q_{0}, q_{f}, q_{s}\right\}$,
$F=\bigcup_{i=1}^{n+2} F_{i}^{\prime} \cup\left\{q_{f}\right\}$,

D-SET-Size is PSPACE-hard (2)
Combine the DFAs $A_{i}^{\prime}=\left(Q_{i}^{\prime}, \Sigma_{\#}, \delta_{i}^{\prime}, s_{i}^{\prime}, F_{i}^{\prime}\right), 1 \leq i \leq n+2$, to one DFA $A=\left(Q, \Gamma, \delta, q_{0}, F\right)$:
$\Gamma=\Sigma_{\#} \cup\left\{\Phi_{i}, \Phi_{i} \mid 1 \leq i \leq n+2\right\}$
$Q=\bigcup_{i=1}^{n+2} Q_{i}^{\prime} \cup\left\{q_{0}, q_{f}, q_{s}\right\}$,

$$
\begin{aligned}
& \text { for all } q_{i} \in Q_{i}^{\prime} \text { : } \\
& \delta\left(q_{i}, \Phi_{i}\right)=q_{f}
\end{aligned}
$$

$F=\bigcup_{i=1}^{n+2} F_{i}^{\prime} \cup\left\{q_{f}\right\}$,

D-SET-Size is PSPACE-hard (2)
Combine the DFAs $A_{i}^{\prime}=\left(Q_{i}^{\prime}, \Sigma_{\#}, \delta_{i}^{\prime}, s_{i}^{\prime}, F_{i}^{\prime}\right), 1 \leq i \leq n+2$, to one DFA $A=\left(Q, \Gamma, \delta, q_{0}, F\right)$:
$\Gamma=\Sigma_{\#} \cup\left\{\Phi_{i}, \Phi_{i} \mid 1 \leq i \leq n+2\right\}$
$Q=\bigcup_{i=1}^{n+2} Q_{i}^{\prime} \cup\left\{q_{0}, q_{f}, q_{s}\right\}$,
for all $q_{i} \in Q_{i}^{\prime}$:

$$
\delta\left(q_{i}, \Phi_{i}\right)=q_{f}
$$

$F=\bigcup_{i=1}^{n+2} F_{i}^{\prime} \cup\left\{q_{f}\right\}$,
target number of states: $k=|Q|+1$

Claim:

$\operatorname{sc}(\mathrm{D}(L(A))) \leq k$ if and only if
$\bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)=\Sigma_{\#}^{*}$

D-Set-Size is PSPACE-hard (3)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

Let $w \in \mathrm{D}(L)$, then $\delta(q, w) \in F$ for some $q \in Q$

- if $q=q_{0}: w \in L$

D-Set-Size is PSPACE-hard (3)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

Let $w \in \mathrm{D}(L)$, then $\delta(q, w) \in F$ for some $q \in Q$

- if $q=q_{0}: w \in L$
- if $q=q_{f}: w=\lambda \in \Sigma_{\#}^{*}$

D-Set-Size is PSPACE-hard (3)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

Let $w \in \mathrm{D}(L)$, then $\delta(q, w) \in F$ for some $q \in Q$

- if $q=q_{0}: w \in L$
- if $q=q_{f}: w=\lambda \in \Sigma_{\#}^{*}$
- if $q \in Q_{i}$:
- if $\delta(q, w) \in F_{i}: w \in \Sigma_{\#}^{*}$
- if $\delta(q, w)=q_{f}: w \in \Sigma_{\#}^{*} \Phi_{i}$

D-SET-Size is PSPACE-hard (3)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \quad \subseteq \quad \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i}
$$

- $L \subseteq \mathrm{D}(L)$:
A has a sink state.

D-SET-Size is PSPACE-hard (3)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

- $L \subseteq \mathrm{D}(L)$:
A has a sink state.
$-\bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L):$
$\bigcup_{i=1}^{n+2} \$_{i} \Sigma_{\#}^{*} \Phi_{i} \subseteq L \subseteq \mathrm{D}(L)$,
and $\mathrm{D}(L)$ is suffix-closed.

D-SET-Size is PSPACE-hard (3)

$$
\Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

- $L \subseteq \mathrm{D}(L)$:
A has a sink state.
- $\bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L)$:
$n+2$
$\bigcup_{i=1}^{n+2} \$_{i} \Sigma_{\#}^{*} \Phi_{i} \subseteq L \subseteq \mathrm{D}(L)$, and $\mathrm{D}(L)$ is suffix-closed.

If $\bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)=\Sigma_{\#}^{*}$:

- $\Sigma_{\#}^{*} \subseteq \mathrm{D}(L)$:
n+2
$\bigcup_{i=1} \$_{i} L\left(A_{i}^{\prime}\right) \subseteq L \subseteq \mathrm{D}(L)$,
and $\mathrm{D}(L)$ is suffix-closed.

D-SET-Size is PSPACE-hard (3)

$$
\Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \quad \subseteq \quad \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} .
$$

- $L \subseteq \mathrm{D}(L)$:
A has a sink state.
$\bigcup_{i=1}^{n+2} \sum_{\#}^{*} \Phi_{i} \subseteq D(L)$: $n+2$
$\bigcup_{i=1} \$_{i} \Sigma_{\#}^{*} \Phi_{i} \subseteq L \subseteq \mathrm{D}(L)$, and $\mathrm{D}(L)$ is suffix-closed.
If $\bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)=\Sigma_{\#}^{*}$:
- $\Sigma_{\#}^{*} \subseteq \mathrm{D}(L)$:
$n+2$
$\bigcup_{i=1}^{n+2} \$_{i} L\left(A_{i}^{\prime}\right) \subseteq L \subseteq \mathrm{D}(L)$,
and $\mathrm{D}(L)$ is suffix-closed.

D-Set-Size is PSPACE-hard (4)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \subseteq \mathrm{D}(L) \subseteq \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i}
$$

Let $w \in \Sigma_{\#}^{*}$ with $w \notin \bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)$ and B be a DFA with $L(B)=\mathrm{D}(L)$.

D-Set-Size is PSPACE-hard (4)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \quad \subseteq \quad \mathrm{D}(L) \quad \subseteq \quad \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i}
$$

Let $w \in \Sigma_{\#}^{*}$ with $w \notin \bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)$ and B be a DFA with $L(B)=\mathrm{D}(L)$.
Because $\$_{i}^{-1} \mathrm{D}(L)=\$_{i}^{-1} L$ and all A_{i}^{\prime} are minimal, B "contains" A. $L\left(A_{n+1}^{\prime}\right)=\{\lambda\}, L\left(A_{n+2}^{\prime}\right)=\Sigma \quad \Longrightarrow \quad \Sigma \subseteq \mathrm{D}(L)$

D-SET-Size is PSPACE-hard (4)

$$
L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i} \quad \subseteq \quad \mathrm{D}(L) \quad \subseteq \quad \Sigma_{\#}^{*} \cup L \cup \bigcup_{i=1}^{n+2} \Sigma_{\#}^{*} \Phi_{i}
$$

Let $w \in \Sigma_{\#}^{*}$ with $w \notin \bigcup_{i=1}^{n+2} L\left(A_{i}^{\prime}\right)$ and B be a DFA with $L(B)=\mathrm{D}(L)$.
Because $\$_{i}^{-1} \mathrm{D}(L)=\$_{i}^{-1} L$ and all A_{i}^{\prime} are minimal, B "contains" A. $L\left(A_{n+1}^{\prime}\right)=\{\lambda\}, L\left(A_{n+2}^{\prime}\right)=\Sigma \quad \Longrightarrow \quad \Sigma \subseteq \mathrm{D}(L)$

One can show that B needs at least two additional states:

- $p_{1}=\delta_{B}\left(q_{0, B}, \# w\right) \notin F_{B}$
- $p_{2}=\delta_{B}\left(q_{0, B}, a\right) \in F_{B}$ for some $a \in \Sigma$.

D-SET-Size is PSPACE-complete

Theorem
D-SET-SIze is PSPACE-complete.

Remark

Also logspace-reduction is possible:
Instead of minimizing the input DFAs A_{i} in the union universality instance, use additional symbols to ensure their minimality.

Recognizing Representations of $\mathrm{D}(L)$

Problem: L-Versus-D

Given two DFAs A and B with $L=L(A)$ and $L^{\prime}=L(B)$, is $L^{\prime}=\mathrm{D}(L)$?

Theorem

L-Versus-D is PSPACE-complete.

Remark
 Deciding $L^{\prime} \supseteq \mathrm{D}(L)$ is NL-complete and $L^{\prime} \subseteq \mathrm{D}(L)$ is PSPACE-complete.

(1) Introduction

(2) Deciding the State Complexity of $\mathrm{D}(L)$

(3) Deciding the Form of the Hierarchy of $\mathrm{D}^{i}(L)$

An Example (from [CMR14])

An Example (from [CMR14])

L :

$$
\mathrm{D}(L):
$$

$$
\mathrm{D}(L)=\{\lambda\} \cup\{0,1\}^{*}\{0\}
$$

$$
\mathrm{D}^{2}(L)=\mathrm{D}(\mathrm{D}(L))=\{\lambda\}
$$

An Example (from [CMR14])

$$
L=\left(\{0,1\}^{2}\right)^{*} \cup\{0,1\}^{*}\{1\}
$$

$$
\mathrm{D}(L)=\{\lambda\} \cup\{0,1\}^{*}\{0\}
$$

$$
\begin{aligned}
& \mathrm{D}^{2}(L)=\mathrm{D}(\mathrm{D}(L))=\{\lambda\} \\
& \mathrm{D}^{2}(L)=\mathrm{D}^{3}(L)=\ldots=\{\lambda\}
\end{aligned}
$$

The Hierarchy $L, \mathrm{D}(L), \mathrm{D}^{2}(L), \ldots$

We know from [Câmpeanu, Moreira, Reis, 2014]:

$$
\mathrm{D}(L) \supseteq \mathrm{D}^{2}(L)=\mathrm{D}^{2+i}(L) \text { for } i \geq 0
$$

and

- $L \supseteq \mathrm{D}(L)$ if L suffix-closed
- $L \subseteq \mathrm{D}(L)$ if L has \emptyset as a quotient

Interestingly, theses are only sufficient conditions $\left(\left(a^{n}\right)^{*} \subseteq \mathrm{D}\left(\left(a^{n}\right)^{*}\right)\right)$, but:
$L=\mathrm{D}(L)$ if and only if L is suffix closed and has \emptyset as a quotient.

The Hierarchy $L, \mathrm{D}(L), \mathrm{D}^{2}(L), \ldots$

We know from [Câmpeanu, Moreira, Reis, 2014]:

$$
\mathrm{D}(L) \supseteq \mathrm{D}^{2}(L)=\mathrm{D}^{2+i}(L) \text { for } i \geq 0
$$

and

- $L \supseteq \mathrm{D}(L)$ if L suffix-closed
- $L \subseteq \mathrm{D}(L)$ if L has \emptyset as a quotient

Interestingly, theses are only sufficient conditions $\left(\left(a^{n}\right)^{*} \subseteq \mathrm{D}\left(\left(a^{n}\right)^{*}\right)\right)$, but: $L=\mathrm{D}(L)$ if and only if L is suffix closed and has \emptyset as a quotient.

Decision Problems on the Hierarchy

Given a DFA A with $L=L(A)$,

$$
\begin{array}{ll}
\text { is } L=\mathrm{D}(L) ? & \text { L-EQUALS-D } \\
\text { is } \mathrm{D}(L)=\mathrm{D}^{2}(L) ? & \text { D-EQUALS-DSQUARE } \\
\text { is } L=\mathrm{D}^{2}(L) ? & \text { L-EQUALS-DSQUARE }
\end{array}
$$

L-Equals-D is NL-complete

Theorem
 L-Equals-D is NL-complete.

$L=\mathrm{D}(L)$ if and only if L is suffix closed and has \emptyset as a quotient. [CMR14] Both properties can be checked in NL \Longrightarrow containment in NL follows.

NL-hardness by a reduction from the graph reachability problem.

D-Equals-DSquare and Synchronization

A (not necessarily regular) language $L \subseteq \Sigma$ is language-synchronizing if there exists a language-reset word $w \in \Sigma^{*}$ such that

$$
\text { for all } x, y, z \in \Sigma^{*}: x w z \in L \text { if and only if } y w z \in L
$$

Theorem

A language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if $\mathrm{D}(L)=\mathrm{D}^{2}(L)$.

D-Equals-DSquare and Synchronization

A (not necessarily regular) language $L \subseteq \Sigma$ is language-synchronizing if there exists a language-reset word $w \in \Sigma^{*}$ such that
for all $x, y, z \in \Sigma^{*}: x w z \in L$ if and only if $y w z \in L$.

Theorem

A language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if $\mathrm{D}(L)=\mathrm{D}^{2}(L)$.
L is language-synchronizing with language-reset word w if and only if:

$$
\begin{aligned}
& \text { for all } x, y, z \in \Sigma^{*}: w z \in x^{-1} L \text { if and only if } w z \in y^{-1} L \\
& \text { for all } z \in \Sigma^{*}: w z \notin \mathrm{D}(L) \\
& \qquad w^{-1} \mathrm{D}(L)=\emptyset
\end{aligned}
$$

D-Equals-DSquare and Synchronization

A (not necessarily regular) language $L \subseteq \Sigma$ is language-synchronizing if there exists a language-reset word $w \in \Sigma^{*}$ such that
for all $x, y, z \in \Sigma^{*}: x w z \in L$ if and only if $y w z \in L$.

Theorem

A language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if $\mathrm{D}(L)=\mathrm{D}^{2}(L)$.
L is language-synchronizing with language-reset word w if and only if:

$$
\begin{aligned}
& \text { for all } x, y, z \in \Sigma^{*}: w z \in x^{-1} L \text { if and only if } w z \in y^{-1} L \\
& \qquad \begin{array}{l}
\text { for all } z \in \Sigma^{*}: w z \notin \mathrm{D}(L) \\
\quad w^{-1} \mathrm{D}(L)=\emptyset
\end{array}
\end{aligned}
$$

$\mathrm{D}(L)=\mathrm{D}^{2}(L)$ if and only if $\mathrm{D}(L)$ has \emptyset as a quotient.
[CMR14]

D-Equals-DSquare is NL-complete

A DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is synchronizing if there exists $w \in \Sigma^{*}, q \in Q$ such that $\delta(p, w)=q$ for all $p \in Q$.

Theorem
A regular language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if the minimal DFA for L is synchronizing.

D-Equals-DSquare is NL-complete
A DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is synchronizing if there exists $w \in \Sigma^{*}, q \in Q$ such that $\delta(p, w)=q$ for all $p \in Q$.

Theorem
A regular language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if the minimal DFA for L is synchronizing.

Theorem
Deciding for a given DFA A, whether it is synchronizing, is NL-complete (even if the problem instances are restricted to minimal DFAs).

D-Equals-DSquare is NL-complete
A DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is synchronizing if there exists $w \in \Sigma^{*}, q \in Q$ such that $\delta(p, w)=q$ for all $p \in Q$.

Theorem
A regular language $L \subseteq \Sigma^{*}$ is language-synchronizing if and only if the minimal DFA for L is synchronizing.

Theorem

Deciding for a given DFA A, whether it is synchronizing, is NL-complete (even if the problem instances are restricted to minimal DFAs).

Theorem
 D-Equals-DSquare is NL-complete.

L-EQUALS-DSQUARE is NL-complete

Theorem
 L-Equals-DSquare is NL-complete.

Observe that $L=\mathrm{D}^{2}(L)$ if and only if $L=\mathrm{D}(L)$:

L-Equals-DSquare is NL-complete

Theorem

L-Equals-DSquare is NL-complete.

Observe that $L=\mathrm{D}^{2}(L)$ if and only if $L=\mathrm{D}(L)$:
Assume $L=\mathrm{D}^{2}(L)$, apply $\mathrm{D} \quad \Longrightarrow \quad \mathrm{D}(L)=\mathrm{D}^{3}(L)$
Because $\mathrm{D}^{2}(L)=\mathrm{D}^{3}(L)$, we obtain $\mathrm{D}(L)=\mathrm{D}^{2}(L)=L$.

L-Equals-DSquare is NL-complete

Theorem

L-Equals-DSquare is NL-complete.

Observe that $L=\mathrm{D}^{2}(L)$ if and only if $L=\mathrm{D}(L)$:
Assume $L=\mathrm{D}^{2}(L)$, apply $\mathrm{D} \quad \Longrightarrow \quad \mathrm{D}(L)=\mathrm{D}^{3}(L)$
Because $\mathrm{D}^{2}(L)=\mathrm{D}^{3}(L)$, we obtain $\mathrm{D}(L)=\mathrm{D}^{2}(L)=L$.
Conversely assume $L=\mathrm{D}(L)$, apply $\mathrm{D} \quad \Longrightarrow \quad \mathrm{D}(L)=\mathrm{D}^{2}(L)$
We obtain $L=\mathrm{D}(L)=\mathrm{D}^{2}(L)$.

Overview

(1) Introduction

(2) Deciding the State Complexity of $\mathrm{D}(L)$

(3) Deciding the Form of the Hierarchy of $\mathrm{D}^{i}(L)$
4. Conclusion

Conclusion

Summary

- PSPACE-complete decision problems even for DFAs:

D-SEt-Size
L-Versus-D

- NL-complete decision problems on the hierarchy of $\mathrm{D}^{i}(L)$
- link to synchronizing DFAs

Further Research

- Use prefixes or infixes instead of suffixes:
$\operatorname{suff}(L) \cap \operatorname{suff}(\bar{L}), \quad \operatorname{pref}(L) \cap \operatorname{pref}(\bar{L}), \quad \operatorname{infix}(L) \cap \operatorname{infix}(\bar{L})$
- Use quasi-lexicographically minimal distinguishing words:
$\underline{\mathrm{D}}_{L}(x, y)=\min \left\{w \mid w \in \mathrm{D}_{L}(x, y)\right\}, \quad \underline{\mathrm{D}}(L)=\left\{\underline{\mathrm{D}}_{L}(x, y) \mid x \not 三_{L} y\right\}$
The $\underline{\mathrm{D}}^{i}(L)$-hierarchy is finite for every L, but fixed point may vary.

Thank you for your attention!

