Integer Complexity: Experimental and Analytical Results II

Juris Čerņenoks¹ **Jānis Iraids**¹ Mārtiņš Opmanis² Rihards Opmanis² Kārlis Podnieks¹

¹University of Latvia

²Institute of Mathematics and Computer Science, University of Latvia

DCFS 2015, University of Waterloo, Friday 26th June, 2015

◆□ → ◆□ → ◆ = → ◆ = → のへで

Introduction •000000000 Main Results

Conclusion 00

Integer Complexity

Definition of Integer Complexity

Integer complexity

Integer complexity of a positive integer *n*, denoted by ||n||, is the least amount of 1's in an arithmetic expression for *n* consisting of 1's, +, \cdot and brackets.

For example,

$$\begin{split} \|1\| &= 1\\ \|2\| &= 2; 2 = 1 + 1\\ \|3\| &= 3; 3 = 1 + 1 + 1\\ \|6\| &= 5; 6 = (1 + 1) \cdot (1 + 1 + 1)\\ \|8\| &= 6; 8 = (1 + 1) \cdot (1 + 1) \cdot (1 + 1)\\ \|11\| &= 8; 11 = (1 + 1 + 1) \cdot (1 + 1 + 1) + 1 + 1 \end{split}$$

http://oeis.org/A005245

Introduction	Main Results	Conclusi
000000000		

Integer Complexity

Lower and Upper Bounds

Theorem

$$\|n\| \in \Theta(\log n)$$

Sketch of proof.

• $||n|| \le 3 \log_2 n$ - Horner's rule Expand *n* in binary: $n = \overline{a_k a_{k-1} \cdots a_1 a_0}$. Express as

$$a_0 + (1+1) \cdot (a_1 + (1+1) \cdot \ldots (a_{k-1} + (1+1) \cdot a_k) \ldots).$$

In || ≥ 3 log₃ n
 Idea: denote by E(k) the largest number having complexity k.

Introduction	Main Results
00000000	

Integer Complexity

Lower and Upper Bounds

Theorem

$$\|n\| \in \Theta(\log n)$$

Sketch of proof.

We will show that

$$E(3k+2) = 2 \cdot 3^{k};$$

$$E(3k+3) = 3 \cdot 3^{k};$$

$$E(3k+4) = 4 \cdot 3^{k}.$$

うせん 聞い ふぼう ふぼう ふしゃ

Introduction 000000000 Main Results

Integer Complexity

Largest Number of Complexity k

Theorem

For all $k \ge 0$:

$$E(3k+2) = 2 \cdot 3^k$$
; $E(3k+3) = 3 \cdot 3^k$; $E(3k+4) = 4 \cdot 3^k$.

Proof (by H. Altman).

The value of an expression does not decrease if we:

- Replace all $x \cdot 1$ by x + 1;
- Replace all $x \cdot y + 1$ by $x \cdot (y + 1)$;
- Replace all $x \cdot y + u \cdot v$ by $x \cdot y \cdot u \cdot v$;
- If x = 1 + 1 + ... + 1 > 3, split it into product of (1 + 1)'s and (1 + 1 + 1)'s;
- Replace all $(1+1) \cdot (1+1) \cdot (1+1)$ by $(1+1+1) \cdot (1+1+1)$.

Introduction 000000000	Main Results 00000000	Conclusion 00
Integer Complexity		
Complexity of Powers		

From $E(3k) = 3^k$ we arrive at

$$\left|3^{k}\right|=3k.$$

What about powers of other numbers $||n^k||$? There exist *n* with $||n^k|| < k \cdot ||n||$:

$$\begin{split} \|5\| &= 5\\ \|5^2\| &= 10\\ & \\ \|5^5\| &= 25\\ \|5^6\| &= 29; 5^6 = (3^3 \cdot 2^3 + 1) \cdot 3^2 \cdot 2^3 + 1 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Main Results	Conclusion
000000000	000000000	00
Integer Complexity		

Complexity of 2^a

Richard K. Guy, "Unsolved Problems in Number Theory", problem F26

Is $||2^a 3^b|| = 2a + 3b$ for all $(a, b) \neq (0, 0)$? In particular, is $||2^a|| = 2a$ for all a? [Attributed to Selfridge, Hypothesis H1]

- Having computed ||n|| for n up to 10¹² hypothesis H1 holds for all a ≤ 39 [2010].
- Recently Harry Altman showed H1 holds for all (a, b) with a ≤ 48 (See the PhD thesis of Altman "Integer Complexity, Addition Chains, and Well-Ordering" for excellent introduction to integer complexity.)

• For all *n* up to 10¹²:

$$\|n\|_{\log} \le \|1439\|_{\log} \approx 3.928.$$

• In 2014 Arias de Reyna and van de Lune showed that for most n:

$$||n||_{\log} < 3.635.$$

Distribution of Logarithmic Complexity [1]

Figure : Distribution of logarithmic complexity of numbers with ||n|| = 30

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Logarithmic Complexity

Distribution of Logarithmic Complexity [2]

Figure : Distribution of logarithmic complexity of numbers with ||n|| = 40

・ロト・雪ト・雪ト・雪・ 今日・

Distribution of Logarithmic Complexity [3]

Figure : Distribution of logarithmic complexity of numbers with ||n|| = 70

Introduction Open Problems Main Results

Conclusion

Relation of the Open Problems

Richard K. Guy, "Unsolved Problems in Number Theory", problem F26

- Is $||2^a|| = 2a$ for all a? [Hypothesis H1]
- As $n \to \infty$ does $||n||_{\log} \to 3$? [Hypothesis H2]

•
$$H1 \implies \neg H2$$
, because

$$\|2^{a}\|_{\log} = \frac{2a}{\log_{3} 2^{a}} \approx 3.170;$$

hence H2 should be easier to settle.

• We have not succeeded to prove or disprove either of them.

Introduction	Main Results	Conclusion
	00000000	

Sum of Digits

Base-3 Representations of 2^n

Observation

$$\|8\| = 6; 8 = (1+1)(1+1)(1+1)$$

 $\|9\| = 6; 9 = (1+1+1)(1+1+1)$

Base-3 representation of powers of 2:

$$\begin{array}{l} (2)_3 = 2\\ (2^2)_3 = 11\\ (2^3)_3 = 22\\ (2^{10})_3 = 1101221\\ (2^{30})_3 = 2202211102201212201\\ (2^{50})_3 = 12110122110222110100112122112211\end{array}$$

The digits seem "random, uniformly distributed". (B) (B) (C) (C)

Introduction 000000000	Main Results ○●0000000	Conclusion 00
Sum of Digits		
	(D	

Pseudorandomness of Powers

Let $S_q(p^n)$ denote the **sum of digits** of p^n in base q. If the digits were to be **independent**, **uniformly distributed** random variables then the pseudo expectation would be:

$$E_n pprox n \log_q p \cdot rac{q-1}{2}$$

and pseudo variance

$$V_n \approx n \log_q p \cdot rac{q^2 - 1}{12};$$

and the corresponding normed and centered variable $s_q(p^n)$ should behave as the **standard normal distribution**. We can try to *verify* this experimentally...

Introduction	Main Results	Conclusion
	00000000	

Sum of Digits

Distribution of Normalized Digit Sums

The results for *n* up to 10^5 :

Figure : Histogram of the centered and normed variable $s_3(2^n)$

・ロト ・ 一下・ ・ モト・ ・ モト・

э

Main Results

Sum of Digits

Related Theoretical Results

Conjecture by Paul Erdős

For n > 8, the base-3 representation of 2^n contains digit "2".

Corollary of a theorem by C. L. Stewart

There exists a constant $C_{p,q} > 0$ such that:

$$S_q(p^n) > rac{\log n}{\log\log n + C_{p,q}} - 1.$$

Our result

If H1 holds, i.e., if indeed
$$||2^n|| = 2n$$
, then

 $S_3(2^n) > 0.107n.$

Does this mean proving H1 is very difficult?

Introduction 000000000 Main Results

Conclusion

Sum of Digits

H1 Implies Linear Sum of Digits

Theorem (Čerņenoks et al.)

If, for a prime p, $\exists \epsilon > 0 \forall n > 0 : \|p^n\|_{\log} \ge 3 + \epsilon$, then

 $S_3(p^n) \geq \epsilon n \log_3 p.$

Proof.

Write p^n in base $q: a_m a_{m-1} \cdots a_0$.

Using Horner's rule we obtain an arithmetic expression for p^n :

$$\|p^n\| \leq qm + S_q(p^n).$$

Since $m \leq \log_q p^n$,

$$\|p^n\| \le q \log_q p^n + S_q(p^n).$$

Introduction 000000000 Main Results

Conclusion 00

Sum of Digits

H1 Implies Linear Sum of Digits

Theorem (Čerņenoks et al.)

If, for a prime p, $\exists \epsilon > 0 \forall n > 0 : \|p^n\|_{\log} \ge 3 + \epsilon$, then

 $S_3(p^n) \geq \epsilon n \log_3 p.$

Proof.

$$\|p^n\| \le q \log_q p^n + S_q(p^n).$$

When q = 3:

$$S_3(p^n) \ge \|p^n\|_{\log} \log_3 p^n - 3\log_3 p^n \ge$$

$$\ge (3+\epsilon)n\log_3 p - 3n\log_3 p =$$

$$= \epsilon n\log_3 p.$$

000

Integer Complexity in Basis $\{1, +, \cdot, -\}$

Definition

Integer complexity in basis $\{1,+,\cdot,-\}$

Integer complexity (in basis $\{1, +, \cdot, -\}$) of a positive integer n, denoted by $||n||_{-}$, is the least amount of 1's in an arithmetic expression for n consisting of 1's, $+, \cdot, -$ and brackets. The corresponding logarithmic complexity is denoted by $||n||_{-\log}$.

Having computed $||n||_{-}$ for n up to $2 \cdot 10^{11}$ we present our observations.

Smallest number with $||n||_{-} < ||n||$:

$$||23||_{-} = 10; ||23|| = 11;$$

 $23 = 2^3 \cdot 3 - 1 = 2^2 \cdot 5 + 2.$

There are numbers for which subtraction of 6 is necessary:

$$\|n\|_{-} = 75; n = 55\,659\,409\,816 = (2^{4} \cdot 3^{3} - 1)(3^{17} - 1) - 2 \cdot 3;$$

$$\|n\|_{-} = 77; n = 111\,534\,056\,696 = (2^{5} \cdot 3^{4} - 1)(3^{16} + 1) - 2 \cdot 3;$$

$$\|n\|_{-} = 78; n = 167\,494\,790\,108 = (2^{4} \cdot 3^{4} + 1)(3^{17} - 1) - 2 \cdot 3.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Results

Integer Complexity in Basis $\{1, +, \cdot, -\}$

Experimental Results in Basis $\{1, +, \cdot, -\}$ [2]

"Worst" numbers

Let

- e(n) denote min $\{k | ||k|| = n\}$ and
- $e_{-}(n)$ denote min $\{k | ||k||_{-} = n\}$.

Figure : Logarithmic complexities of the numbers e(n) and $e_{-}(n)$

Introduction 000000000	Main Results ○○○○○○○●	Conclusion 00
Integer Complexity in Basis $\{1,+,\cdot,-\}$		
Upper Bound		

Theorem (Čerņenoks et al.)

$$\|n\|_{-\log} \le 3.679 + \frac{5.890}{\log_3 n}$$

Sketch of proof.

•
$$n = 6k$$
; write n as $3 \cdot 2 \cdot k$;

•
$$n = 6k + 1$$
; write *n* as $3 \cdot 2 \cdot k + 1$;

•
$$n = 6k + 2$$
; write *n* as $2 \cdot (3 \cdot k + 1)$;

•
$$n = 6k + 3$$
; write n as $3 \cdot (2 \cdot k + 1)$;

•
$$n = 6k + 4$$
; write n as $2 \cdot (3 \cdot (k + 1) - 1)$;

•
$$n = 6k + 5$$
; write n as $3 \cdot 2 \cdot (k + 1) - 1$;

Introduction 000000000	Main Results ○○○○○○○○●	Conclusion 00
Integer Complexity in Basis $\{1,+,\cdot,-\}$		
Upper Bound		

Theorem (Čerņenoks et al.)

$$\|n\|_{-\log} \le 3.679 + \frac{5.890}{\log_3 n}$$

Sketch of proof.

- Apply the rules iteratively
- Each iteration uses at most 6 ones
- Each iteration reduces the problem from *n* to some $k \le \frac{n}{6} + \frac{1}{3}$
- After *m* applications we arrive at a number

$$k < \frac{n}{6^m} + \frac{2}{5}$$

Introduction 000000000	Main Results 00000000	Conclusion ●○
Our Results		
Our Results		

Digit sum problem

Hypothesis $||2^n|| = 2n$ implies a **linear** lower bound on the sum of digits:

 $S_3(2^n) > 0.107n.$

Upper bound in base $\{1, +, \cdot, -\}$

$$\limsup_{n \to \infty} \left\| n \right\|_{-\log} \le 3.679$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000000	Main Results	Conclusion ○●
Open Problems		
Open Problems		
H1 Is $ 2^n = 2n$?		
Spectrum of $ n _{\log}$		
• Is $\limsup_{n \to \infty} \ r$ • Can we at least	•	
	$\limsup_{n\to\infty} \ n\ _{\log} < 3\log_2 3?$	
Digit sum		

Can we improve the sum of digits bound

$$S_p(q^n) \ge rac{\log n}{\log \log n + C_{p,q}} - 1?$$

Conclusion

Questions?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>