Integer Complexity: Experimental and Analytical Results II

Juris Čerṇenoks ${ }^{1}$ Jānis Iraids ${ }^{1}$ Mārtiņ̌̌ Opmanis ${ }^{2}$ Rihards Opmanis ${ }^{2}$ Kārlis Podnieks ${ }^{1}$
${ }^{1}$ University of Latvia
${ }^{2}$ Institute of Mathematics and Computer Science, University of Latvia

DCFS 2015, University of Waterloo, Friday 26 ${ }^{\text {th }}$ June, 2015

Definition of Integer Complexity

Integer complexity

Integer complexity of a positive integer n, denoted by $\|n\|$, is the least amount of 1's in an arithmetic expression for n consisting of 1 's, +, • and brackets.

For example,

$$
\begin{aligned}
\|1\| & =1 \\
\|2\| & =2 ; 2=1+1 \\
\|3\| & =3 ; 3=1+1+1 \\
\|6\| & =5 ; 6=(1+1) \cdot(1+1+1) \\
\|8\| & =6 ; 8=(1+1) \cdot(1+1) \cdot(1+1) \\
\|11\| & =8 ; 11=(1+1+1) \cdot(1+1+1)+1+1
\end{aligned}
$$

http://oeis.org/A005245

Lower and Upper Bounds

Theorem

$$
\|n\| \in \Theta(\log n)
$$

Sketch of proof.

(1) $\|n\| \leq 3 \log _{2} n$-Horner's rule

Expand n in binary: $n=\overline{a_{k} a_{k-1} \cdots a_{1} a_{0}}$.
Express as

$$
a_{0}+(1+1) \cdot\left(a_{1}+(1+1) \cdot \ldots\left(a_{k-1}+(1+1) \cdot a_{k}\right) \ldots\right)
$$

(2) $\|n\| \geq 3 \log _{3} n$

Idea: denote by $E(k)$ the largest number having complexity k.

Lower and Upper Bounds

Theorem

$$
\|n\| \in \Theta(\log n)
$$

Sketch of proof.

We will show that

$$
\begin{aligned}
& E(3 k+2)=2 \cdot 3^{k} \\
& E(3 k+3)=3 \cdot 3^{k} \\
& E(3 k+4)=4 \cdot 3^{k}
\end{aligned}
$$

Largest Number of Complexity k

Theorem

For all $k \geq 0$:

$$
E(3 k+2)=2 \cdot 3^{k} ; E(3 k+3)=3 \cdot 3^{k} ; E(3 k+4)=4 \cdot 3^{k} .
$$

Proof (by H. Altman).

The value of an expression does not decrease if we:

- Replace all $x \cdot 1$ by $x+1$;
- Replace all $x \cdot y+1$ by $x \cdot(y+1)$;
- Replace all $x \cdot y+u \cdot v$ by $x \cdot y \cdot u \cdot v$;
- If $x=1+1+\ldots+1>3$, split it into product of $(1+1)$'s and ($1+1+1$)'s;
- Replace all $(1+1) \cdot(1+1) \cdot(1+1)$ by $(1+1+1) \cdot(1+1+1)$.

Complexity of Powers

From $E(3 k)=3^{k}$ we arrive at

$$
\left\|3^{k}\right\|=3 k
$$

What about powers of other numbers $\left\|n^{k}\right\|$?
There exist n with $\left\|n^{k}\right\|<k \cdot\|n\|$:

$$
\begin{aligned}
&\|5\|=5 \\
&\left\|5^{2}\right\|=10 \\
& \ldots \\
&\left\|5^{5}\right\|=25 \\
&\left\|5^{6}\right\|=29 ; 5^{6}=\left(3^{3} \cdot 2^{3}+1\right) \cdot 3^{2} \cdot 2^{3}+1
\end{aligned}
$$

Complexity of 2^{a}

> Richard K. Guy, "Unsolved Problems in Number Theory", problem F26

> Is $\left\|2^{a} 3^{b}\right\|=2 a+3 b$ for all $(a, b) \neq(0,0) ?$
> In particular, is $\left\|2^{a}\right\|=2 a$ for all a ? [Attributed to Selfridge, Hypothesis H1]

- Having computed $\|n\|$ for n up to 10^{12} hypothesis H 1 holds for all $a \leq 39$ [2010].
- Recently Harry Altman showed H1 holds for all (a, b) with $a \leq 48$ (See the PhD thesis of Altman "Integer Complexity, Addition Chains, and Well-Ordering" for excellent introduction to integer complexity.)

Logarithmic Complexity

Let the logarithmic complexity of n be denoted by
$\|n\|_{\log }=\frac{\|n\|}{\log _{3} n}$.

- $3 \leq\|n\|_{\log } \leq 3 \log _{2} 3 \approx 4.755$

Richard K. Guy, "Unsolved Problems in Number Theory", problem F26

As $n \rightarrow \infty$ does $\|n\|_{\log } \rightarrow 3$? [Hypothesis H2]

- For all n up to 10^{12} :

$$
\|n\|_{\log } \leq\|1439\|_{\log } \approx 3.928
$$

- In 2014 Arias de Reyna and van de Lune showed that for most n :

$$
\|n\|_{\log }<3.635
$$

Logarithmic Complexity

Distribution of Logarithmic Complexity [1]

Figure: Distribution of logarithmic complexity of numbers with $\|n\|=30$

Logarithmic Complexity

Distribution of Logarithmic Complexity [2]

Figure : Distribution of logarithmic complexity of numbers with $\|n\|=40$

Distribution of Logarithmic Complexity [3]

Figure : Distribution of logarithmic complexity of numbers with $\|n\|=70$

Open Problems

Relation of the Open Problems

Richard K. Guy, "Unsolved Problems in Number Theory", problem F26

- Is $\left\|2^{a}\right\|=2 a$ for all a ? [Hypothesis H1]
- As $n \rightarrow \infty$ does $\|n\|_{\log } \rightarrow 3$? [Hypothesis H2]
- $\mathrm{H} 1 \Longrightarrow \neg \mathrm{H} 2$, because

$$
\left\|2^{a}\right\|_{\log }=\frac{2 a}{\log _{3} 2^{a}} \approx 3.170
$$

hence H 2 should be easier to settle.

- We have not succeeded to prove or disprove either of them.

Base-3 Representations of 2^{n}

Observation

$$
\begin{aligned}
& \|8\|=6 ; 8=(1+1)(1+1)(1+1) \\
& \|9\|=6 ; 9=(1+1+1)(1+1+1)
\end{aligned}
$$

Base-3 representation of powers of 2:

$$
\begin{aligned}
(2)_{3} & =2 \\
\left(2^{2}\right)_{3} & =11 \\
\left(2^{3}\right)_{3} & =22 \\
\left(2^{10}\right)_{3} & =1101221 \\
\left(2^{30}\right)_{3} & =2202211102201212201 \\
\left(2^{50}\right)_{3} & =12110122110222110100112122112211
\end{aligned}
$$

The digits seem "random, uniformly distributed".

Pseudorandomness of Powers

Let $S_{q}\left(p^{n}\right)$ denote the sum of digits of p^{n} in base q. If the digits were to be independent, uniformly distributed random variables then the pseudo expectation would be:

$$
E_{n} \approx n \log _{q} p \cdot \frac{q-1}{2}
$$

and pseudo variance

$$
V_{n} \approx n \log _{q} p \cdot \frac{q^{2}-1}{12}
$$

and the corresponding normed and centered variable $s_{q}\left(p^{n}\right)$ should behave as the standard normal distribution.
We can try to verify this experimentally...

Distribution of Normalized Digit Sums

The results for n up to 10^{5} :

Figure: Histogram of the centered and normed variable $s_{3}\left(2^{n}\right)$

Related Theoretical Results

Conjecture by Paul Erdős

For $n>8$, the base- 3 representation of 2^{n} contains digit " 2 ".

Corollary of a theorem by C. L. Stewart
There exists a constant $C_{p, q}>0$ such that:

$$
S_{q}\left(p^{n}\right)>\frac{\log n}{\log \log n+C_{p, q}}-1
$$

Our result

If H 1 holds, i.e., if indeed $\left\|2^{n}\right\|=2 n$, then

$$
S_{3}\left(2^{n}\right)>0.107 n
$$

Does this mean proving H 1 is very difficult?

H1 Implies Linear Sum of Digits

Theorem (Černenoks et al.)

If, for a prime $p, \exists \epsilon>0 \forall n>0:\left\|p^{n}\right\|_{\log } \geq 3+\epsilon$, then

$$
S_{3}\left(p^{n}\right) \geq \epsilon n \log _{3} p .
$$

Proof.

Write p^{n} in base $q: a_{m} a_{m-1} \cdots a_{0}$.
Using Horner's rule we obtain an arithmetic expression for p^{n} :

$$
\left\|p^{n}\right\| \leq q m+S_{q}\left(p^{n}\right)
$$

Since $m \leq \log _{q} p^{n}$,

$$
\left\|p^{n}\right\| \leq q \log _{q} p^{n}+S_{q}\left(p^{n}\right)
$$

Sum of Digits

H1 Implies Linear Sum of Digits

Theorem (Černenoks et al.)

If, for a prime $p, \exists \epsilon>0 \forall n>0:\left\|p^{n}\right\|_{\log } \geq 3+\epsilon$, then

$$
S_{3}\left(p^{n}\right) \geq \epsilon n \log _{3} p
$$

Proof.

$$
\left\|p^{n}\right\| \leq q \log _{q} p^{n}+S_{q}\left(p^{n}\right)
$$

When $q=3$:

$$
\begin{aligned}
S_{3}\left(p^{n}\right) & \geq\left\|p^{n}\right\|_{\log } \log _{3} p^{n}-3 \log _{3} p^{n} \geq \\
& \geq(3+\epsilon) n \log _{3} p-3 n \log _{3} p= \\
& =\epsilon n \log _{3} p .
\end{aligned}
$$

Definition

Integer complexity in basis $\{1,+, \cdot,-\}$

Integer complexity (in basis $\{1,+, \cdot,-\}$) of a positive integer n, denoted by $\|n\|_{-}$, is the least amount of 1 's in an arithmetic expression for n consisting of 1 's, $+, \cdot,-$ and brackets.
The corresponding logarithmic complexity is denoted by $\|n\|_{-\log }$.
Having computed $\|n\|_{-}$for n up to $2 \cdot 10^{11}$ we present our observations.

Integer Complexity in Basis $\{1,+, \cdot,-\}$

Experimental Results in Basis $\{1,+, \cdot,-\}[1]$

Smallest number with $\|n\|_{-}<\|n\|$:

$$
\begin{gathered}
\|23\|_{-}=10 ;\|23\|=11 \\
23=2^{3} \cdot 3-1=2^{2} \cdot 5+2
\end{gathered}
$$

There are numbers for which subtraction of 6 is necessary:

$$
\begin{aligned}
& \|n\|_{-}=75 ; n=55659409816=\left(2^{4} \cdot 3^{3}-1\right)\left(3^{17}-1\right)-2 \cdot 3 ; \\
& \|n\|_{-}=77 ; n=111534056696=\left(2^{5} \cdot 3^{4}-1\right)\left(3^{16}+1\right)-2 \cdot 3 ; \\
& \|n\|_{-}=78 ; n=167494790108=\left(2^{4} \cdot 3^{4}+1\right)\left(3^{17}-1\right)-2 \cdot 3 .
\end{aligned}
$$

Experimental Results in Basis $\{1,+, \cdot,-\}$ [2]

"Worst" numbers

Let

- e(n) denote $\min \{k \mid\|k\|=n\}$ and
- $e_{-}(n)$ denote $\min \left\{k \mid\|k\|_{-}=n\right\}$.

Figure: Logarithmic complexities of the numbers $e(n)$ and $e_{-}(n)$

Upper Bound

Theorem (Černenoks et al.)

$$
\|n\|_{-\log } \leq 3.679+\frac{5.890}{\log _{3} n}
$$

Sketch of proof.

- $n=6 k$; write n as $3 \cdot 2 \cdot k$;
- $n=6 k+1$; write n as $3 \cdot 2 \cdot k+1$;
- $n=6 k+2$; write n as $2 \cdot(3 \cdot k+1)$;
- $n=6 k+3$; write n as $3 \cdot(2 \cdot k+1)$;
- $n=6 k+4$; write n as $2 \cdot(3 \cdot(k+1)-1)$;
- $n=6 k+5$; write n as $3 \cdot 2 \cdot(k+1)-1$;

Upper Bound

Theorem (Černenoks et al.)

$$
\|n\|_{-\log } \leq 3.679+\frac{5.890}{\log _{3} n}
$$

Sketch of proof.

- Apply the rules iteratively
- Each iteration uses at most 6 ones
- Each iteration reduces the problem from n to some $k \leq \frac{n}{6}+\frac{1}{3}$
- After m applications we arrive at a number

$$
k<\frac{n}{6^{m}}+\frac{2}{5}
$$

Our Results

Digit sum problem

Hypothesis $\left\|2^{n}\right\|=2 n$ implies a linear lower bound on the sum of digits:

$$
S_{3}\left(2^{n}\right)>0.107 n
$$

Upper bound in base $\{1,+, \cdot,-\}$

$$
\limsup _{n \rightarrow \infty}\|n\|_{-\log } \leq 3.679
$$

Open Problems

H1

$$
\text { Is }\left\|2^{n}\right\|=2 n ?
$$

Spectrum of $\|n\|_{\text {log }}$
(1) Is limsup $\sin _{n \rightarrow \infty}\|n\|_{\log }=3$? (H2)
(2) Can we at least show

$$
\limsup _{n \rightarrow \infty}\|n\|_{\log }<3 \log _{2} 3 ?
$$

Digit sum

Can we improve the sum of digits bound

$$
S_{p}\left(q^{n}\right) \geq \frac{\log n}{\log \log n+C_{p, q}}-1 ?
$$

Questions?

