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Introduction Main Results Conclusion

Integer Complexity

Definition of Integer Complexity

Integer complexity

Integer complexity of a positive integer n, denoted by ‖n‖, is the
least amount of 1’s in an arithmetic expression for n consisting of
1’s, +, · and brackets.

For example,

‖1‖ = 1

‖2‖ = 2; 2 = 1 + 1

‖3‖ = 3; 3 = 1 + 1 + 1

‖6‖ = 5; 6 = (1 + 1) · (1 + 1 + 1)

‖8‖ = 6; 8 = (1 + 1) · (1 + 1) · (1 + 1)

‖11‖ = 8; 11 = (1 + 1 + 1) · (1 + 1 + 1) + 1 + 1

http://oeis.org/A005245

http://oeis.org/A005245
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Integer Complexity

Lower and Upper Bounds

Theorem

‖n‖ ∈ Θ(log n)

Sketch of proof.

1 ‖n‖ ≤ 3 log2 n – Horner’s rule
Expand n in binary: n = akak−1 · · · a1a0.
Express as

a0 + (1 + 1) · (a1 + (1 + 1) · . . . (ak−1 + (1 + 1) · ak) . . .).

2 ‖n‖ ≥ 3 log3 n
Idea: denote by E (k) the largest number having complexity k .
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Integer Complexity

Lower and Upper Bounds

Theorem

‖n‖ ∈ Θ(log n)

Sketch of proof.

We will show that

E (3k + 2) = 2 · 3k ;

E (3k + 3) = 3 · 3k ;

E (3k + 4) = 4 · 3k .
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Integer Complexity

Largest Number of Complexity k

Theorem

For all k ≥ 0:

E (3k + 2) = 2 · 3k ;E (3k + 3) = 3 · 3k ;E (3k + 4) = 4 · 3k .

Proof (by H. Altman).

The value of an expression does not decrease if we:

Replace all x · 1 by x + 1;

Replace all x · y + 1 by x · (y + 1);

Replace all x · y + u · v by x · y · u · v ;

If x = 1 + 1 + . . .+ 1 > 3, split it into product of (1 + 1)’s
and (1 + 1 + 1)’s;

Replace all (1 + 1) · (1 + 1) · (1 + 1) by (1 + 1 + 1) · (1 + 1 + 1).
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Integer Complexity

Complexity of Powers

From E (3k) = 3k we arrive at∥∥∥3k
∥∥∥ = 3k .

What about powers of other numbers
∥∥nk∥∥?

There exist n with
∥∥nk∥∥ < k · ‖n‖:

‖5‖ = 5∥∥52
∥∥ = 10

. . .∥∥55
∥∥ = 25∥∥56
∥∥ = 29; 56 = (33 · 23 + 1) · 32 · 23 + 1
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Integer Complexity

Complexity of 2a

Richard K. Guy, “Unsolved Problems in Number Theory”, problem
F26

Is
∥∥2a3b

∥∥ = 2a + 3b for all (a, b) 6= (0, 0)?
In particular, is ‖2a‖ = 2a for all a? [Attributed to Selfridge,
Hypothesis H1]

Having computed ‖n‖ for n up to 1012 hypothesis H1 holds
for all a ≤ 39 [2010].

Recently Harry Altman showed H1 holds for all (a, b) with
a ≤ 48 (See the PhD thesis of Altman “Integer Complexity,
Addition Chains, and Well-Ordering” for excellent
introduction to integer complexity.)
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Logarithmic Complexity

Logarithmic Complexity

Let the logarithmic complexity of n be denoted by
‖n‖log = ‖n‖

log3 n
.

3 ≤ ‖n‖log ≤ 3 log2 3 ≈ 4.755

Richard K. Guy, “Unsolved Problems in Number Theory”, problem
F26

As n→∞ does ‖n‖log → 3? [Hypothesis H2]

For all n up to 1012:

‖n‖log ≤ ‖1439‖log ≈ 3.928.

In 2014 Arias de Reyna and van de Lune showed that for most
n:

‖n‖log < 3.635.
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Logarithmic Complexity

Distribution of Logarithmic Complexity [1]
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Figure : Distribution of logarithmic complexity of numbers with ‖n‖ = 30
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Logarithmic Complexity

Distribution of Logarithmic Complexity [2]
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Figure : Distribution of logarithmic complexity of numbers with ‖n‖ = 40
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Logarithmic Complexity

Distribution of Logarithmic Complexity [3]
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Figure : Distribution of logarithmic complexity of numbers with ‖n‖ = 70
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Open Problems

Relation of the Open Problems

Richard K. Guy, “Unsolved Problems in Number Theory”, problem
F26

Is ‖2a‖ = 2a for all a? [Hypothesis H1]

As n→∞ does ‖n‖log → 3? [Hypothesis H2]

H1 =⇒ ¬H2, because

‖2a‖log =
2a

log3 2a
≈ 3.170;

hence H2 should be easier to settle.

We have not succeeded to prove or disprove either of them.
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Sum of Digits

Base-3 Representations of 2n

Observation

‖8‖ = 6; 8 = (1 + 1)(1 + 1)(1 + 1)

‖9‖ = 6; 9 = (1 + 1 + 1)(1 + 1 + 1)

Base-3 representation of powers of 2:

(2)3 = 2

(22)3 = 11

(23)3 = 22

(210)3 = 1101221

(230)3 = 2202211102201212201

(250)3 = 12110122110222110100112122112211

The digits seem “random, uniformly distributed”.
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Sum of Digits

Pseudorandomness of Powers

Let Sq(pn) denote the sum of digits of pn in base q. If the digits
were to be independent, uniformly distributed random variables
then the pseudo expectation would be:

En ≈ n logq p ·
q − 1

2

and pseudo variance

Vn ≈ n logq p ·
q2 − 1

12
;

and the corresponding normed and centered variable sq(pn) should
behave as the standard normal distribution.
We can try to verify this experimentally...
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Sum of Digits

Distribution of Normalized Digit Sums

The results for n up to 105:
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Figure : Histogram of the centered and normed variable s3(2n)
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Sum of Digits

Related Theoretical Results

Conjecture by Paul Erdős

For n > 8, the base-3 representation of 2n contains digit “2”.

Corollary of a theorem by C. L. Stewart

There exists a constant Cp,q > 0 such that:

Sq(pn) >
log n

log log n + Cp,q
− 1.

Our result

If H1 holds, i.e., if indeed ‖2n‖ = 2n, then

S3(2n) > 0.107n.

Does this mean proving H1 is very difficult?
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Sum of Digits

H1 Implies Linear Sum of Digits

Theorem (Čerņenoks et al.)

If, for a prime p, ∃ε > 0∀n > 0 : ‖pn‖log ≥ 3 + ε, then

S3(pn) ≥ εn log3 p.

Proof.

Write pn in base q: amam−1 · · · a0.
Using Horner’s rule we obtain an arithmetic expression for pn:

‖pn‖ ≤ qm + Sq(pn).

Since m ≤ logq p
n,

‖pn‖ ≤ q logq p
n + Sq(pn).
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Sum of Digits

H1 Implies Linear Sum of Digits

Theorem (Čerņenoks et al.)

If, for a prime p, ∃ε > 0∀n > 0 : ‖pn‖log ≥ 3 + ε, then

S3(pn) ≥ εn log3 p.

Proof.

‖pn‖ ≤ q logq p
n + Sq(pn).

When q = 3:

S3(pn) ≥ ‖pn‖log log3 p
n − 3 log3 p

n ≥
≥ (3 + ε)n log3 p − 3n log3 p =

= εn log3 p.
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Integer Complexity in Basis {1,+, ·,−}

Definition

Integer complexity in basis {1,+, ·,−}
Integer complexity (in basis {1,+, ·,−}) of a positive integer n,
denoted by ‖n‖−, is the least amount of 1’s in an arithmetic
expression for n consisting of 1’s, +, ·, − and brackets.
The corresponding logarithmic complexity is denoted by ‖n‖− log.

Having computed ‖n‖− for n up to 2 · 1011 we present our
observations.
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Integer Complexity in Basis {1,+, ·,−}

Experimental Results in Basis {1,+, ·,−} [1]

Smallest number with ‖n‖− < ‖n‖:

‖23‖− = 10; ‖23‖ = 11;

23 = 23 · 3− 1 = 22 · 5 + 2.

There are numbers for which subtraction of 6 is necessary:

‖n‖− = 75; n = 55 659 409 816 = (24 · 33 − 1)(317 − 1)− 2 · 3;

‖n‖− = 77; n = 111 534 056 696 = (25 · 34 − 1)(316 + 1)− 2 · 3;

‖n‖− = 78; n = 167 494 790 108 = (24 · 34 + 1)(317 − 1)− 2 · 3.
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Integer Complexity in Basis {1,+, ·,−}

Experimental Results in Basis {1,+, ·,−} [2]

“Worst” numbers

Let

e(n) denote min {k | ‖k‖ = n} and

e−(n) denote min {k | ‖k‖− = n}.
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Figure : Logarithmic complexities of the numbers e(n) and e−(n)



Introduction Main Results Conclusion

Integer Complexity in Basis {1,+, ·,−}

Upper Bound

Theorem (Čerņenoks et al.)

‖n‖− log ≤ 3.679 +
5.890

log3 n

Sketch of proof.

n = 6k; write n as 3 · 2 · k ;

n = 6k + 1; write n as 3 · 2 · k + 1;

n = 6k + 2; write n as 2 · (3 · k + 1);

n = 6k + 3; write n as 3 · (2 · k + 1);

n = 6k + 4; write n as 2 · (3 · (k + 1)− 1);

n = 6k + 5; write n as 3 · 2 · (k + 1)− 1;
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Integer Complexity in Basis {1,+, ·,−}

Upper Bound

Theorem (Čerņenoks et al.)

‖n‖− log ≤ 3.679 +
5.890

log3 n

Sketch of proof.

Apply the rules iteratively

Each iteration uses at most 6 ones

Each iteration reduces the problem from n to some k ≤ n
6 + 1

3

After m applications we arrive at a number

k <
n

6m
+

2

5
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Our Results

Our Results

Digit sum problem

Hypothesis ‖2n‖ = 2n implies a linear lower bound on the sum of
digits:

S3(2n) > 0.107n.

Upper bound in base {1,+, ·,−}

lim sup
n→∞

‖n‖− log ≤ 3.679
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Open Problems

Open Problems

H1

Is ‖2n‖ = 2n?

Spectrum of ‖n‖log
1 Is lim supn→∞ ‖n‖log = 3? (H2)

2 Can we at least show

lim sup
n→∞

‖n‖log < 3 log2 3?

Digit sum

Can we improve the sum of digits bound

Sp(qn) ≥ log n

log log n + Cp,q
− 1?



Introduction Main Results Conclusion

Questions?
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