
Compressibility of finite languages by grammars

Stefan Hetzl

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

joint work with Sebastian Eberhard

Descriptional Complexity of Formal Systems (DCFS) 2015
Waterloo, Ontario, Canada

June 26, 2015

1/ 17

Introduction

I Grammar based compression

I Smallest grammar problem
(compression of a single word by a CFG)

I This talk: compression of a finite language by a grammar
incompressible sequence of finite languages

I Motivation: application in proof theory

2/ 17

Outline

I The smallest grammar problem(s)

I Incompressible languages

I Trees and proofs

3/ 17

The smallest grammar problem

I Problem.
Given w ∈ Σ∗, find minimal CFG G with L(G) = {w}
here: minimal w.r.t. sum of lengths of rhs of production rules

I Decision Problem.
Given w ∈ Σ∗ and k ∈ N, is there a CFG G with L(G) = {w}
and size(G) ≤ k?

I Decision problem NP-complete [Storer, Szymanski ’78]

I Approximation: linear-time algorithms with logarithmic
approximation ratio
[Charikar et al. ’02], [Rytter ’03], [Sakomoto ’05],
[Charikar et al. ’05], [Jeż ’13], [Jeż ’14]

I Practically efficient approximation algorithms
I Sequitur [Nevill-Manning, Witten ’97]
I Re-Pair [Larsson, Moffat ’99]

4/ 17

Our variant of the smallest grammar problem

I A grammar G = (N,Σ,P,S) is called right-linear if all
productions are of the form A→ wB or A→ w for w ∈ Σ∗.

I Definition. A <1
G B if there is A→ u ∈ P s.t. B occurs in u.

Define <G as transitive closure of <1
G .

I Definition. RLAG: right-linear acyclic grammar

I Problem.
Given finite L ⊆ Σ∗, find minimal RLAG G with L(G) ⊇ L.
here: minimal w.r.t. number of production rules

I |G | is number of production rules

5/ 17

Many smallest grammar problems

I Problem (traditional).
Given w ∈ Σ∗, find minimal CFG G with L(G) = {w}
here: minimal w.r.t. sum of lengths of rhs of production rules

I Problem (this talk).
Given finite L ⊆ Σ∗, find minimal RLAG G with L(G) ⊇ L.
here: minimal w.r.t. number of production rules

I Many smallest grammar problems:
I RLAG / ACFG / TRATG / . . .
I Size / number of production rules / . . .
I L(G) ⊇ L, L(G) = L

I Compression of a finite language

I Emphasis on formalism for compression

I Operations on compressed representation

6/ 17

Many smallest grammar problems

I Problem (traditional).
Given w ∈ Σ∗, find minimal CFG G with L(G) = {w}
here: minimal w.r.t. sum of lengths of rhs of production rules

I Problem (this talk).
Given finite L ⊆ Σ∗, find minimal RLAG G with L(G) ⊇ L.
here: minimal w.r.t. number of production rules

I Many smallest grammar problems:
I RLAG / ACFG / TRATG / . . .
I Size / number of production rules / . . .
I L(G) ⊇ L, L(G) = L

I Compression of a finite language

I Emphasis on formalism for compression

I Operations on compressed representation

6/ 17

Outline

X The smallest grammar problem(s)

I Incompressible languages

I Trees and proofs

7/ 17

Incompressibility

I Definition. Finite L is called incompressible if every RLAG G
with L(G) ⊇ L satisfies |G | ≥ |L|.

I Definition. A sequence (Ln)n≥1 is called incompressible if
there is an M ∈ N s.t. for all n ≥ M the language Ln is
incompressible.

I Ln = {a} is incompressible.

I Ln = {a1, . . . , an} is incompressible.

I Is there incompressible (Ln)n≥1 s.t.
I alphabet is finite and
I |Ln| is unbounded ?

8/ 17

Incompressibility

I Definition. Finite L is called incompressible if every RLAG G
with L(G) ⊇ L satisfies |G | ≥ |L|.

I Definition. A sequence (Ln)n≥1 is called incompressible if
there is an M ∈ N s.t. for all n ≥ M the language Ln is
incompressible.

I Ln = {a} is incompressible.

I Ln = {a1, . . . , an} is incompressible.

I Is there incompressible (Ln)n≥1 s.t.
I alphabet is finite and
I |Ln| is unbounded ?

8/ 17

Incompressible languages

I Σ = {0, 1, s}
I Write bl(i) ∈ {0, 1}l for l-bit binary representation of i .

I For n ≥ 1 define

l(n) = dlog2(n)e

k(n) = d 9n

l(n) + 1
e

Ln = {(sbl(n)(i))k(n) | 0 ≤ i ≤ n − 1}

I |Ln| = n

I Length of all w ∈ Ln is O(n)

9/ 17

Incompressible languages – Example

For n = 10 we have l(n) = 4 and k(n) = 18 and Ln =

s0000s0000 · · · s0000
s0001s0001 · · · s0001

...
...

...
s1001s1001 · · · s1001

Definition. Building block, segment.

10/ 17

Incompressible languages – Result

Theorem. (Ln)n≥1 is incompressible.

Proof Sketch.

1. W.r.t. compressibility: reduced RLAGs enough

2. Reduced RLAG that covers Ln has only short productions

3. Short productions cannot cover many segments

4. Compressing grammar must cover many segments per
production

3 and 4 contradict.

11/ 17

Incompressible languages – Remarks

I Corollary. There is no sequence (Gn)n≥1 of RLAGs and
M ∈ N s.t. L(Gn) = Ln and |Gn| < |Ln| for all n ≥ M.

I Theorem. There is a sequence (Gn)n≥1 of acyclic CFGs
which compresses (Ln)n≥1.

Proof. Let Pn be

S → (sA1)k(n),

A1 → 0A2 | 1A2,

...

Al(n) → 0 | 1.

Then |Pn| = 2dlog(n)e+ 1 < n = |Ln|.

12/ 17

Outline

X The smallest grammar problem(s)

X Incompressible languages

I Trees and proofs

13/ 17

TRAT grammars

I Rigid tree languages [Jacquemard, Clay, Vacher ’09]

I Definition. A regular tree grammar is a tuple (N,Σ,P, S) s.t.
all productions are of the form A→ t with t ∈ T(Σ ∪ N).

I Definition. <G on N as for word grammars.

I Definition. A derivation S =⇒∗
G t satisfies rigidity condition

if it uses at most one A-production for every nonterminal A.

I Definition. A totally rigid acyclic tree (TRAT) grammar is an
acyclic regular tree grammar G = (N,Σ,P, S). Define
L(G) = {t ∈ T(Σ) | S =⇒∗

G t satisfying rigidity condition}.

I Example. S → f (A,B), A→ g(B), B → c | d
as regular tree grammar:

L = {f (g(c), c), f (g(c), d), f (g(d), c), f (g(d), d)}
as TRATG:

L = {f (g(c), c), f (g(d), d)}
14/ 17

From word languages to tree languages

I For alphabet Σ define ΣT = {fx | x ∈ Σ} ∪ {e}
I Map words to trees, e.g.: (abaac)T = fa(fb(fa(fa(fc(e)))))

I ·T maps RLAG to TRATG

I Lemma. If L is RLA-incompressible, then LT is
TRAT-incompressible.

I Corollary. (LT
n)n≥1 is TRAT-incompressible.

15/ 17

A corollary in proof theory

I Inference rule “cut”: use of a lemma in a proof

I Theorem [H ’12].

cut-free proof . . . trivial tree grammar: tree language
proof with Π1-cuts . . . (non-trivial) TRAT grammar

I Cut-elimination gives trivial bounds on compressibility

⇒ Π1-compression: exponential

I We construct formulas ψn in first-order predicate logic s.t.
I cut-free complexity O((2n)2)
I Π1-cut complexity 2n

⇒ only quadratic

16/ 17

Conclusion

I Sequence of incompressible languages

I Compressing finite languages is interesting

Open Questions / Future Work

I Complexity of smallest grammar problem(s) for finite
languages

We know: Decision problem for TRATG(2), number of
production rules, L(G) ⊇ L is NP-complete.

I Approximation ratios?

I Practically efficient algorithms?

17/ 17

