Compressibility of finite languages by grammars

Stefan Hetzl

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
joint work with Sebastian Eberhard

Descriptional Complexity of Formal Systems (DCFS) 2015
Waterloo, Ontario, Canada
June 26, 2015

Introduction

- Grammar based compression
- Smallest grammar problem (compression of a single word by a CFG)
- This talk: compression of a finite language by a grammar incompressible sequence of finite languages
- Motivation: application in proof theory

Outline

- The smallest grammar problem(s)
- Incompressible languages
- Trees and proofs

The smallest grammar problem

- Problem.

Given $w \in \Sigma^{*}$, find minimal CFG G with $\mathrm{L}(G)=\{w\}$ here: minimal w.r.t. sum of lengths of rhs of production rules

- Decision Problem.

Given $w \in \Sigma^{*}$ and $k \in \mathbb{N}$, is there a CFG G with $\mathrm{L}(G)=\{w\}$ and $\operatorname{size}(G) \leq k$?

- Decision problem NP-complete [Storer, Szymanski '78]
- Approximation: linear-time algorithms with logarithmic approximation ratio
[Charikar et al. '02], [Rytter '03], [Sakomoto '05],
[Charikar et al. '05], [Jeż '13], [Jeż '14]
- Practically efficient approximation algorithms
- Sequitur [Nevill-Manning, Witten '97]
- Re-Pair [Larsson, Moffat '99]

Our variant of the smallest grammar problem

- A grammar $G=(N, \Sigma, P, S)$ is called right-linear if all productions are of the form $A \rightarrow w B$ or $A \rightarrow w$ for $w \in \Sigma^{*}$.
- Definition. $A<{ }_{G}^{1} B$ if there is $A \rightarrow u \in P$ s.t. B occurs in u. Define $<_{G}$ as transitive closure of $<_{G}^{1}$.
- Definition. RLAG: right-linear acyclic grammar
- Problem.

Given finite $L \subseteq \Sigma^{*}$, find minimal RLAG G with $L(G) \supseteq L$. here: minimal w.r.t. number of production rules

- $|G|$ is number of production rules

Many smallest grammar problems

- Problem (traditional).

Given $w \in \Sigma^{*}$, find minimal CFG G with $L(G)=\{w\}$
here: minimal w.r.t. sum of lengths of rhs of production rules

- Problem (this talk).

Given finite $L \subseteq \Sigma^{*}$, find minimal RLAG G with $L(G) \supseteq L$. here: minimal w.r.t. number of production rules

Many smallest grammar problems

- Problem (traditional).

Given $w \in \Sigma^{*}$, find minimal CFG G with $L(G)=\{w\}$
here: minimal w.r.t. sum of lengths of rhs of production rules

- Problem (this talk).

Given finite $L \subseteq \Sigma^{*}$, find minimal RLAG G with $L(G) \supseteq L$.
here: minimal w.r.t. number of production rules

- Many smallest grammar problems:
- RLAG / ACFG / TRATG / ...
- Size / number of production rules / ...
- $L(G) \supseteq L, L(G)=L$
- Compression of a finite language
- Emphasis on formalism for compression
- Operations on compressed representation

Outline

\checkmark The smallest grammar problem(s)

- Incompressible languages
- Trees and proofs

Incompressibility

- Definition. Finite L is called incompressible if every RLAG G with $L(G) \supseteq L$ satisfies $|G| \geq|L|$.
- Definition. A sequence $\left(L_{n}\right)_{n \geq 1}$ is called incompressible if there is an $M \in \mathbb{N}$ s.t. for all $n \geq M$ the language L_{n} is incompressible.

Incompressibility

- Definition. Finite L is called incompressible if every RLAG G with $L(G) \supseteq L$ satisfies $|G| \geq|L|$.
- Definition. A sequence $\left(L_{n}\right)_{n \geq 1}$ is called incompressible if there is an $M \in \mathbb{N}$ s.t. for all $n \geq M$ the language L_{n} is incompressible.
- $L_{n}=\{a\}$ is incompressible.
- $L_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is incompressible.
- Is there incompressible $\left(L_{n}\right)_{n \geq 1}$ s.t.
- alphabet is finite and
- $\left|L_{n}\right|$ is unbounded ?

Incompressible languages

- $\Sigma=\{\mathbf{0}, \mathbf{1}, \mathbf{s}\}$
- Write $\mathrm{b}_{/}(i) \in\{\mathbf{0}, \mathbf{1}\}^{\prime}$ for l-bit binary representation of i.
- For $n \geq 1$ define

$$
\begin{aligned}
I(n) & =\left\lceil\log _{2}(n)\right\rceil \\
k(n) & =\left\lceil\frac{9 n}{l(n)+1}\right\rceil \\
L_{n} & =\left\{\left(\mathbf{s b}_{I(n)}(i)\right)^{k(n)} \mid 0 \leq i \leq n-1\right\}
\end{aligned}
$$

- $\left|L_{n}\right|=n$
- Length of all $w \in L_{n}$ is $O(n)$

Incompressible languages - Example

For $n=10$ we have $I(n)=4$ and $k(n)=18$ and $L_{n}=$

s0000s0000	\cdots	$\mathbf{s 0 0 0 0}$
s0001s0001	\cdots	$\mathbf{s 0 0 0 1}$
\vdots	\vdots	\vdots
s1001s1001	\cdots	$s \mathbf{s} 1001$

Definition. Building block, segment.

Incompressible languages - Result

Theorem. $\left(L_{n}\right)_{n \geq 1}$ is incompressible.
Proof Sketch.

1. W.r.t. compressibility: reduced RLAGs enough
2. Reduced RLAG that covers L_{n} has only short productions
3. Short productions cannot cover many segments
4. Compressing grammar must cover many segments per production
3 and 4 contradict.

Incompressible languages - Remarks

- Corollary. There is no sequence $\left(G_{n}\right)_{n \geq 1}$ of RLAGs and $M \in \mathbb{N}$ s.t. $\mathrm{L}\left(G_{n}\right)=L_{n}$ and $\left|G_{n}\right|<\left|L_{n}\right|$ for all $n \geq M$.
- Theorem. There is a sequence $\left(G_{n}\right)_{n \geq 1}$ of acyclic CFGs which compresses $\left(L_{n}\right)_{n \geq 1}$.
Proof. Let P_{n} be

$$
\begin{aligned}
S & \rightarrow\left(\mathbf{s} A_{1}\right)^{k(n)} \\
A_{1} & \rightarrow \mathbf{0} A_{2} \mid \mathbf{1} A_{2}
\end{aligned}
$$

$$
A_{l(n)} \rightarrow \mathbf{0} \mid \mathbf{1}
$$

Then $\left|P_{n}\right|=2\lceil\log (n)\rceil+1<n=\left|L_{n}\right|$.

Outline

\checkmark The smallest grammar problem(s)
\checkmark Incompressible languages

- Trees and proofs

TRAT grammars

- Rigid tree languages [Jacquemard, Clay, Vacher '09]
- Definition. A regular tree grammar is a tuple (N, Σ, P, S) s.t. all productions are of the form $A \rightarrow t$ with $t \in \mathrm{~T}(\Sigma \cup N)$.
- Definition. $<_{G}$ on N as for word grammars.
- Definition. A derivation $S \Longrightarrow{ }_{G}^{*} t$ satisfies rigidity condition if it uses at most one A-production for every nonterminal A.
- Definition. A totally rigid acyclic tree (TRAT) grammar is an acyclic regular tree grammar $G=(N, \Sigma, P, S)$. Define $\mathrm{L}(G)=\left\{t \in \mathrm{~T}(\Sigma) \mid S \Longrightarrow{ }_{G}^{*} t\right.$ satisfying rigidity condition $\}$.
- Example. $S \rightarrow f(A, B), A \rightarrow g(B), B \rightarrow c \mid d$ as regular tree grammar:

$$
L=\{f(g(c), c), f(g(c), d), f(g(d), c), f(g(d), d)\}
$$

as TRATG:

$$
L=\{f(g(c), c), f(g(d), d)\}
$$

From word languages to tree languages

- For alphabet Σ define $\Sigma^{\top}=\left\{f_{x} \mid x \in \Sigma\right\} \cup\{e\}$
- Map words to trees, e.g.: $(a b a a c)^{\top}=f_{a}\left(f_{b}\left(f_{a}\left(f_{a}\left(f_{c}(e)\right)\right)\right)\right)$
- . ${ }^{\top}$ maps RLAG to TRATG
- Lemma. If L is RLA-incompressible, then L^{\top} is TRAT-incompressible.
- Corollary. $\left(L_{n}^{\top}\right)_{n \geq 1}$ is TRAT-incompressible.

A corollary in proof theory

- Inference rule "cut": use of a lemma in a proof
- Theorem [H '12]. cut-free proof ... trivial tree grammar: tree language proof with Π_{1}-cuts \ldots (non-trivial) TRAT grammar
- Cut-elimination gives trivial bounds on compressibility
$\Rightarrow \Pi_{1}$-compression: exponential
- We construct formulas ψ_{n} in first-order predicate logic s.t.
- cut-free complexity $O\left(\left(2^{n}\right)^{2}\right)$
- Π_{1}-cut complexity 2^{n}
\Rightarrow only quadratic

Conclusion

- Sequence of incompressible languages
- Compressing finite languages is interesting

Open Questions / Future Work

- Complexity of smallest grammar problem(s) for finite languages
We know: Decision problem for TRATG(2), number of production rules, $\mathrm{L}(G) \supseteq L$ is NP-complete.
- Approximation ratios?
- Practically efficient algorithms?

