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Introduction

I Grammar based compression

I Smallest grammar problem
(compression of a single word by a CFG)

I This talk: compression of a finite language by a grammar
incompressible sequence of finite languages

I Motivation: application in proof theory

2/ 17



Outline

I The smallest grammar problem(s)

I Incompressible languages

I Trees and proofs
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The smallest grammar problem

I Problem.
Given w ∈ Σ∗, find minimal CFG G with L(G ) = {w}
here: minimal w.r.t. sum of lengths of rhs of production rules

I Decision Problem.
Given w ∈ Σ∗ and k ∈ N, is there a CFG G with L(G ) = {w}
and size(G ) ≤ k?

I Decision problem NP-complete [Storer, Szymanski ’78]

I Approximation: linear-time algorithms with logarithmic
approximation ratio
[Charikar et al. ’02], [Rytter ’03], [Sakomoto ’05],
[Charikar et al. ’05], [Jeż ’13], [Jeż ’14]

I Practically efficient approximation algorithms
I Sequitur [Nevill-Manning, Witten ’97]
I Re-Pair [Larsson, Moffat ’99]
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Our variant of the smallest grammar problem

I A grammar G = (N,Σ,P,S) is called right-linear if all
productions are of the form A→ wB or A→ w for w ∈ Σ∗.

I Definition. A <1
G B if there is A→ u ∈ P s.t. B occurs in u.

Define <G as transitive closure of <1
G .

I Definition. RLAG: right-linear acyclic grammar

I Problem.
Given finite L ⊆ Σ∗, find minimal RLAG G with L(G ) ⊇ L.
here: minimal w.r.t. number of production rules

I |G | is number of production rules
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Many smallest grammar problems

I Problem (traditional).
Given w ∈ Σ∗, find minimal CFG G with L(G ) = {w}
here: minimal w.r.t. sum of lengths of rhs of production rules

I Problem (this talk).
Given finite L ⊆ Σ∗, find minimal RLAG G with L(G ) ⊇ L.
here: minimal w.r.t. number of production rules

I Many smallest grammar problems:
I RLAG / ACFG / TRATG / . . .
I Size / number of production rules / . . .
I L(G ) ⊇ L, L(G ) = L

I Compression of a finite language

I Emphasis on formalism for compression

I Operations on compressed representation
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Incompressibility

I Definition. Finite L is called incompressible if every RLAG G
with L(G ) ⊇ L satisfies |G | ≥ |L|.

I Definition. A sequence (Ln)n≥1 is called incompressible if
there is an M ∈ N s.t. for all n ≥ M the language Ln is
incompressible.

I Ln = {a} is incompressible.

I Ln = {a1, . . . , an} is incompressible.

I Is there incompressible (Ln)n≥1 s.t.
I alphabet is finite and
I |Ln| is unbounded ?
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Incompressible languages

I Σ = {0, 1, s}
I Write bl(i) ∈ {0, 1}l for l-bit binary representation of i .

I For n ≥ 1 define

l(n) = dlog2(n)e

k(n) = d 9n

l(n) + 1
e

Ln = {(sbl(n)(i))k(n) | 0 ≤ i ≤ n − 1}

I |Ln| = n

I Length of all w ∈ Ln is O(n)
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Incompressible languages – Example

For n = 10 we have l(n) = 4 and k(n) = 18 and Ln =

s0000s0000 · · · s0000
s0001s0001 · · · s0001

...
...

...
s1001s1001 · · · s1001

Definition. Building block, segment.
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Incompressible languages – Result

Theorem. (Ln)n≥1 is incompressible.

Proof Sketch.

1. W.r.t. compressibility: reduced RLAGs enough

2. Reduced RLAG that covers Ln has only short productions

3. Short productions cannot cover many segments

4. Compressing grammar must cover many segments per
production

3 and 4 contradict.
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Incompressible languages – Remarks

I Corollary. There is no sequence (Gn)n≥1 of RLAGs and
M ∈ N s.t. L(Gn) = Ln and |Gn| < |Ln| for all n ≥ M.

I Theorem. There is a sequence (Gn)n≥1 of acyclic CFGs
which compresses (Ln)n≥1.

Proof. Let Pn be

S → (sA1)k(n),

A1 → 0A2 | 1A2,

...

Al(n) → 0 | 1.

Then |Pn| = 2dlog(n)e+ 1 < n = |Ln|.
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TRAT grammars

I Rigid tree languages [Jacquemard, Clay, Vacher ’09]

I Definition. A regular tree grammar is a tuple (N,Σ,P, S) s.t.
all productions are of the form A→ t with t ∈ T(Σ ∪ N).

I Definition. <G on N as for word grammars.

I Definition. A derivation S =⇒∗
G t satisfies rigidity condition

if it uses at most one A-production for every nonterminal A.

I Definition. A totally rigid acyclic tree (TRAT) grammar is an
acyclic regular tree grammar G = (N,Σ,P, S). Define
L(G ) = {t ∈ T(Σ) | S =⇒∗

G t satisfying rigidity condition}.

I Example. S → f (A,B), A→ g(B), B → c | d
as regular tree grammar:

L = {f (g(c), c), f (g(c), d), f (g(d), c), f (g(d), d)}
as TRATG:

L = {f (g(c), c), f (g(d), d)}
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From word languages to tree languages

I For alphabet Σ define ΣT = {fx | x ∈ Σ} ∪ {e}
I Map words to trees, e.g.: (abaac)T = fa(fb(fa(fa(fc(e)))))

I ·T maps RLAG to TRATG

I Lemma. If L is RLA-incompressible, then LT is
TRAT-incompressible.

I Corollary. (LT
n )n≥1 is TRAT-incompressible.
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A corollary in proof theory

I Inference rule “cut”: use of a lemma in a proof

I Theorem [H ’12].

cut-free proof . . . trivial tree grammar: tree language
proof with Π1-cuts . . . (non-trivial) TRAT grammar

I Cut-elimination gives trivial bounds on compressibility

⇒ Π1-compression: exponential

I We construct formulas ψn in first-order predicate logic s.t.
I cut-free complexity O((2n)2)
I Π1-cut complexity 2n

⇒ only quadratic
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Conclusion

I Sequence of incompressible languages

I Compressing finite languages is interesting

Open Questions / Future Work

I Complexity of smallest grammar problem(s) for finite
languages

We know: Decision problem for TRATG(2), number of
production rules, L(G ) ⊇ L is NP-complete.

I Approximation ratios?

I Practically efficient algorithms?
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