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Once Upon a Time….
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Stacks and Clockless Circuits

• Stack = Last-In First-Out (LIFO) Data Structure  
– Pushdown automaton 
– Like FIFOs, an often used data structure 

• Why clockless circuits? 
– Clockless circuit aka asynchronous circuit 
– Speed, Energy Efficiency, … 
– “There is some meat in there” 
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Stacks

• Have many applications 
– function call/return 
– expression evaluation 

• Software implementation 
–  linked lists, arrays 

• Hardware implementation 
–  SRAMs,  shift registers 

• Can we find a better implementation? 
– “better” = less delay 
– “better” = less energy 

• Delay = # gate delays per PUT or GET 
• Energy = # data moves per PUT or GET
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A Pointer Stack

• PUT(1)
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A Pointer Stack

• PUT(2)
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A Pointer Stack

• PUT(3)
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A Pointer Stack

• GET
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A Pointer Stack

• Has only one move per PUT or GET, but ... 
• Has large fan-out and fan-in 
• Has large delay 
– SRAM access time > 4 ns, in TSMC 180nm 

• Consumes much energy per PUT or GET 
– energy per SRAM access > 15 pJ in TSMC 180nm 

• A stack doesn’t need random access
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A Simple Linear Stack

• Shift register, synchronized to clock 

• Ripple shift register, clockless
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Simple Linear Stack

• Has small fan-in and fan-out 
– Enables short cycle time, but ... 

• Has many moves per PUT or GET 
– Consumes much energy per PUT or GET 

• Can we combine good properties of pointer and linear 
stack? 

• Main goals: 
– Keep number of moves per PUT or GET small 
– Keep fan-in and fan-out small
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Linear + Pointer Stack 

• PUT(1)
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Linear + Pointer Stack 

• PUT(2)
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Linear + Pointer Stack 

• PUT(3)
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Linear + Pointer Stack 

• PUT(4)
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Linear + Pointer Stack 

• PUT(5)
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Linear + Pointer Stack 

• GET
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Linear + Pointer Stack 

• GET
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Linear + Pointer Stack 

• GET
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Linear and Pointer Stack

• Has small fan-in and fan-out  
• Has small cycle time 
• Other attractive properties 
– Moves occur only between neighboring cells 
– Only a fraction of all stack items move per PUT or GET 
– a PUT propagates further only when column-stack has 2 items 
– a GET propagates further only when column-stack has 1 item

20

1

2

3



OL 2015-0192

Tree Stack

• PUT(1)
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Tree Stack

• PUT(2)

22

1
2



OL 2015-0192

Tree Stack

• PUT(3)
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Tree Stack

• PUT(4)
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Tree Stack

• GET
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Tree Stack

• GET
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Tree Stack

• GET
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Tree Stack

• Has small fan-in and fan-out  
• Has small cycle time 
• Other attractive properties 
– Moves occur only between neighboring cells 
– Only a fraction of all stack items move per PUT or GET
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Hybrid Stack

• Combination of pointer, linear, and tree stack
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Properties of Hybrid Stack: Response Time

• Constant response time
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Properties of Hybrid Stack: number of moves

• Average number of data moves per PUT or GET
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Properties of Hybrid Stack: Cycle Times

• Cycle times at leaf nodes can be 4X larger than cycle 
time at root node
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Stack Implementation
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Throughput vs Occupancy

• 2.75GHz at 2.0V 
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Power Consumption vs Occupancy

• Power consumption is proportional to number of 
moves 
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Concluding Remarks

• A stack implementation 
– Cycle time of 6 gate delays, (368ps at 2V or 2.72GHz in 180nm) 
– Cycle time is independent of # items or data path width 
– Average number of moves per PUT or GET grows (very) slowly  

• Dynamic energy per move is small (6-8pJ) 
– and can be made smaller by using more efficient latches 

• Exhibits much concurrency 
• A problem for you 
– How does avg number of moves depend on input sequences of 

PUTs and GETs? 
– What is lower bound for avg number of moves for a stack 

implementation given bounded fan-out?
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More Reading

– “An Evaluation of Asynchronous Stacks,” IEEE Design and 
Test,  Sept/Oct 2011, pp 52--61. 

– A Fast and Energy-Efficient Stack, “Proc of 10th IEEE Int’l 
Symp. Advanced Research in Asynchronous Circuits and 
Systems (ASYNC),” IEEE CS Press, 2004, pp. 7--16.
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