
<Insert Picture Here>

The Design of a Fast, Energy-Efficient StackThe Design of a Fast, Energy-Efficient

The Design of a Fast Energy-Efficient Stack
Jo Ebergen
Oracle Labs
Joint work with Daniel Finchelstein, Jon Lexau, Russell Kao, David Hopkins

1

OL 2015-0192

Once Upon a Time….

2

OL 2015-0192

Stacks and Clockless Circuits

• Stack = Last-In First-Out (LIFO) Data Structure
– Pushdown automaton
– Like FIFOs, an often used data structure

• Why clockless circuits?
– Clockless circuit aka asynchronous circuit
– Speed, Energy Efficiency, …
– “There is some meat in there”

3

OL 2015-0192

Stacks

• Have many applications
– function call/return
– expression evaluation

• Software implementation
– linked lists, arrays

• Hardware implementation
– SRAMs, shift registers

• Can we find a better implementation?
– “better” = less delay
– “better” = less energy

• Delay = # gate delays per PUT or GET
• Energy = # data moves per PUT or GET

4

PUT

GET
Top of
stack

OL 2015-0192

A Pointer Stack

• PUT(1)

5

1

top of stack

OL 2015-0192

A Pointer Stack

• PUT(2)

6

1

top of stack
2

OL 2015-0192

A Pointer Stack

• PUT(3)

7

1

top of stack

2
3

OL 2015-0192

A Pointer Stack

• GET

8

1

top of stack

2

3

OL 2015-0192

A Pointer Stack

• Has only one move per PUT or GET, but ...
• Has large fan-out and fan-in
• Has large delay
– SRAM access time > 4 ns, in TSMC 180nm

• Consumes much energy per PUT or GET
– energy per SRAM access > 15 pJ in TSMC 180nm

• A stack doesn’t need random access

9

OL 2015-0192

A Simple Linear Stack

• Shift register, synchronized to clock

• Ripple shift register, clockless

10

1234

1234

OL 2015-0192

Simple Linear Stack

• Has small fan-in and fan-out
– Enables short cycle time, but ...

• Has many moves per PUT or GET
– Consumes much energy per PUT or GET

• Can we combine good properties of pointer and linear
stack?

• Main goals:
– Keep number of moves per PUT or GET small
– Keep fan-in and fan-out small

11

OL 2015-0192

Linear + Pointer Stack

• PUT(1)

12

1

OL 2015-0192

Linear + Pointer Stack

• PUT(2)

13

1

2

OL 2015-0192

Linear + Pointer Stack

• PUT(3)

14

1

23

OL 2015-0192

Linear + Pointer Stack

• PUT(4)

15

1

2

3

4

OL 2015-0192

Linear + Pointer Stack

• PUT(5)

16

1

2

3

4

5

OL 2015-0192

Linear + Pointer Stack

• GET

17

1

2

3

4

5

OL 2015-0192

Linear + Pointer Stack

• GET

18

1

2

3

4

OL 2015-0192

Linear + Pointer Stack

• GET

19

1

2

3

OL 2015-0192

Linear and Pointer Stack

• Has small fan-in and fan-out
• Has small cycle time
• Other attractive properties
– Moves occur only between neighboring cells
– Only a fraction of all stack items move per PUT or GET
– a PUT propagates further only when column-stack has 2 items
– a GET propagates further only when column-stack has 1 item

20

1

2

3

OL 2015-0192

Tree Stack

• PUT(1)

21

1

OL 2015-0192

Tree Stack

• PUT(2)

22

1
2

OL 2015-0192

Tree Stack

• PUT(3)

23

1

2
3

OL 2015-0192

Tree Stack

• PUT(4)

24

1

2

3
4

OL 2015-0192

Tree Stack

• GET

25

1

2

3

4

OL 2015-0192

Tree Stack

• GET

26

1

2

3

OL 2015-0192

Tree Stack

• GET

27

1

2

OL 2015-0192

Tree Stack

• Has small fan-in and fan-out
• Has small cycle time
• Other attractive properties
– Moves occur only between neighboring cells
– Only a fraction of all stack items move per PUT or GET

28

OL 2015-0192

Hybrid Stack

• Combination of pointer, linear, and tree stack

29

Interface Tree stack 3-place
linear stack

OL 2015-0192

Properties of Hybrid Stack: Response Time

• Constant response time

30

Interface Tree stack 3-place
linear stack

OL 2015-0192

Properties of Hybrid Stack: number of moves

• Average number of data moves per PUT or GET

31

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n in PUT
n
 GET

n

A
v
g
 #

 o
f
m

o
v
e
s

Avg # of moves per PUT or GET

Interface Tree stack 3-place
linear stack

OL 2015-0192

Properties of Hybrid Stack: Cycle Times

• Cycle times at leaf nodes can be 4X larger than cycle
time at root node

32

Interface Tree stack 3-place
linear stack

Cycle time T

Cycle time 4T

Cycle time 4T

Cycle time 4T

Cycle time 4T

OL 2015-0192

Stack Implementation

33

64-stage FIFO Hybrid stack

...
...

Tree stack Linear stack

OL 2015-0192

Throughput vs Occupancy

• 2.75GHz at 2.0V

34

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

Occupancy (# of items)

T
h

ro
u

g
h

p
u

t
(G

H
z
)

Throughput vs Occupancy for Several Vdd

Vdd=2.0V

Vdd=2.2V

OL 2015-0192

Power Consumption vs Occupancy

• Power consumption is proportional to number of
moves

35

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

Occupancy (# of items)

P
o

w
e

r
(m

W
)

Power vs Occupancy for Several Vdd

Vdd=1.6V

Vdd=1.8V

Vdd=2.0V

Vdd=2.2V

OL 2015-0192

Concluding Remarks

• A stack implementation
– Cycle time of 6 gate delays, (368ps at 2V or 2.72GHz in 180nm)
– Cycle time is independent of # items or data path width
– Average number of moves per PUT or GET grows (very) slowly

• Dynamic energy per move is small (6-8pJ)
– and can be made smaller by using more efficient latches

• Exhibits much concurrency
• A problem for you
– How does avg number of moves depend on input sequences of

PUTs and GETs?
– What is lower bound for avg number of moves for a stack

implementation given bounded fan-out?

36

OL 2015-0192

More Reading

– “An Evaluation of Asynchronous Stacks,” IEEE Design and
Test, Sept/Oct 2011, pp 52--61.

– A Fast and Energy-Efficient Stack, “Proc of 10th IEEE Int’l
Symp. Advanced Research in Asynchronous Circuits and
Systems (ASYNC),” IEEE CS Press, 2004, pp. 7--16.

37

OL 2015-0192 38

