The State Complexity of Permutations on Finite Languages Over Binary Alphabets

Alexandros Palioudakis ${ }^{1}$ Da-Jung Cho ${ }^{1}$ Daniel Goč ${ }^{2}$
Yo-Sub Han ${ }^{1}$ Sang-Ki Ko ${ }^{1}$ Kai Salomaa ${ }^{2}$

${ }^{1}$ Department of Computer Science
Yonsei University
${ }^{2}$ School of Computing
Queen's University

Descriptional Complexity of Formal Systems, 2015

Outline

(1) Introduction

- Motivation
- Definition
(2) Main Results
- Upper Bound Construction for $\operatorname{per}(L)$ with restriction
- State Complexity of per (L)
(3) Conclusion
- Summary
- Open Problems

DCFS 2014, Turku, Finland

- Cho et al., Pseudo-Inversion on Formal Languages, UCNC 2014
- Cho et al., State Complexity of Inversion Operations, DCFS 2014

DCFS 2014, Turku, Finland

We proved the following theorem:
Theorem
Given a string w over $\Sigma, \mathbb{P}^{*}(w)=\pi(w)$, where $\pi(w)$ is the set of all permutations of w.

What is the property of permutation operation?

Permutation

- Permutation is well-known in combinatorics.

An example of different permutations of three distinct balls

- In formal language theory, permutation per on a string w is

$$
\operatorname{per}(w)=\left\{\left.u \in \Sigma^{*}| | w\right|_{a}=|u|_{a}, \text { for } a \in \Sigma\right\}
$$

Permutation

- Regular languages are not closed under permutation.

Example

Let a language $L=L(a \cdot b)^{*}$. Then,

$$
\operatorname{per}(L)=\left\{\left.w| | w\right|_{a}=|w|_{b}\right\} .
$$

State Complexity

- Deterministic State Complexity (sc): the number of states in a minimal DFA.
- Nondeterministic State Complexity (nsc): the number of states in an NFA.
- State complexity of some operations:
- $\operatorname{sc}\left(L_{1}\right)=m$ and $\operatorname{sc}\left(L_{2}\right)=n$
- $\operatorname{sc}\left(L_{1} \cap L_{2}\right)=m n$
- $\operatorname{sc}\left(L_{1} \cup L_{2}\right)=m n$
- $\operatorname{sc}\left(L_{1}\right)^{R}=2^{m}$

State Complexity of Permutations on Finite Languages

- Upper bound construction for per of a binary finite language with restriction.
- restriction: length of strings s.t. $L \subseteq\{a, b\}^{n-1}$
- State complexity of per on a binary finite language.

Upper Bound Construction for sc(per(L))

Lemma

Let n be a positive integer and $L \subseteq\{a, b\}^{n-1}$ be a finite language such that $\mathrm{sc}(L)=n$. Then, we have the following inequality for the state complexity of the permutation of L :

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}+n+1}{3}
$$

Let A be the minimal DFA for $L \subseteq\{a, b\}^{n-1}$.

A DFA A forms a chain.

Upper Bound Construction for sc(per(L))

Lemma

Let n be a positive integer and $L \subseteq\{a, b\}^{n-1}$ be a finite language such that $\mathrm{sc}(L)=n$. Then, we have the following inequality for the state complexity of the permutation of L :

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}+n+1}{3}
$$

Let A be the minimal DFA for $L \subseteq\{a, b\}^{n-1}$.

(1) a-transition

(2) b-transition

(3) $a \& b$-transition

Upper Bound Construction for sc(per(L))

Lemma

Let n be a positive integer and $L \subseteq\{a, b\}^{n-1}$ be a finite language such that $\mathrm{sc}(L)=n$. Then, we have the following inequality for the state complexity of the permutation of L :

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}+n+1}{3}
$$

The order of a, b and $a \& b$-transitions does not affect $\operatorname{per}(L)$.

- Assume that for $i, j, k \geq 1$ and $i+j+k=n-1, L$ is of the form

$$
a^{i} b^{j}(a+b)^{k}
$$

Upper Bound Construction for $\operatorname{sc}\left(\operatorname{per}\left(a b^{2}(a+b)^{2}\right)\right)$

Upper Bound Construction for sc(per(L))

Lemma

Let n be a positive integer and $L \subseteq\{a, b\}^{n-1}$ be a finite language such that $\mathrm{sc}(L)=n$. Then, we have the following inequality for the state complexity of the permutation of L :

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}+n+1}{3}
$$

We can construct a DFA B for $\operatorname{per}(L(A))$ with

$$
(i+1) \cdot(j+1)+(k \cdot i)+(k \cdot j)+k \text { states } .
$$

Upper Bound Construction for $\operatorname{sc}(\operatorname{per}(L))$

Lemma

Let n be a positive integer and $L \subseteq\{a, b\}^{n-1}$ be a finite language such that $\mathrm{sc}(L)=n$. Then, we have the following inequality for the state complexity of the permutation of L :

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}+n+1}{3}
$$

- Let function $f(i, j, k)=(i+1) \cdot(j+1)+(k \cdot i)+(k \cdot j)+k$.
- Then, f is maximized when $i=j=k=\frac{n-1}{3}$.

$$
\max f(i, j, k)= \begin{cases}\frac{n^{2}+n+1}{3} & \text { if } n \equiv 1 \quad(\bmod 3) \\ \frac{n^{2}+n}{3} & \text { otherwise }\end{cases}
$$

Upper Bound Construction for sc(per(L))

Lemma

Let L be a binary finite language and $m=\max \{|w| \mid w \in L\}$ for some positive integer m. Then, we have $\mathrm{sc}(\operatorname{per}(L)) \leq \frac{m^{2}+m+2}{2}$.

Given a DFA A for L over the binary alphabet,

- We construct a DFA B for $\operatorname{per}(L(A))$.
- B has states of the form (i, j), for $w \in L(A)$:
- i tracks $|w|_{a}$,
- j tracks $|w|_{b}$.
- For all states $(i, j), i+j \leq m$.

Upper Bound Construction for $\operatorname{sc}(\operatorname{per}(L))$

- For $(i, j), i$ tracks $|w|_{a}$ and j tracks $|w|_{b}$.
- For $(i, j), i+j \leq m$.

Upper Bound Construction for $\operatorname{sc}(\operatorname{per}(L))$

- For $(i, j), i$ tracks $|w|_{a}$ and j tracks $|w|_{b}$.
- For $(i, j), i+j \leq m$.

Upper Bound Construction for $\operatorname{sc}(\operatorname{per}(L))$

- For $(i, j), i$ tracks $|w|_{a}$ and j tracks $|w|_{b}$.
- For $(i, j), i+j \leq m$.

Upper Bound Construction for sc(per(L))

The total number of states of B for $\operatorname{per}(L(A))$:

$$
\begin{aligned}
& 1+2+\cdots+m+1=\frac{m \cdot(m+1)}{2}+1 \\
& i+j=0 \\
& i+j=1
\end{aligned}
$$

Upper Bound Construction for sc(per(L))

Corollary

Let L be a binary finite languages and $\operatorname{sc}(L)=n$ for some positive integer n. Then, we have

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^{2}-n+2}{2} .
$$

Since $1+\max \{|w| \mid w \in L\} \leq \operatorname{sc}(L)$,

$$
m \leq \operatorname{sc}(L)-1=n-1 .
$$

Then,

$$
\operatorname{sc}(\operatorname{per}(L)) \leq \frac{m^{2}+m+2}{2}=\frac{(n-1)^{2}+(n-1)+2}{2} .
$$

Lower Bound for sc(per(L))

Theorem

For any $n_{0} \in \mathbb{N}$, there exists a regular language L with $\operatorname{sc}(L)=n$, for $n \geq n_{0}$, such that

$$
\operatorname{sc}(\operatorname{per}(L)) \geq \frac{n^{2}+n+1}{3} .
$$

Let $n=3 k+1 \geq n_{0}, k \in \mathbb{N}$ and $L_{n}=L\left(a^{k} b^{k}(a+b)^{k}\right)$.

DFA A for L_{n}

Lower Bound for sc(per(L))

Let $n=3 k+1 \geq n_{0}, k \in \mathbb{N}$ and $L_{n}=L\left(a^{k} b^{k}(a+b)^{k}\right)$.
Then,

$$
\operatorname{per}\left(L_{n}\right)=\left\{\left.w \in \Sigma^{3 \cdot k}| | w\right|_{a},|w|_{b} \geq k \text { and } n=3 \cdot k+1\right\} .
$$

Let X and Y be the sets of strings:

- $X=\left\{a^{i} b^{j} \mid 0 \leq i \leq 2 k\right.$ and $\left.1 \leq j \leq k\right\}$,
- $Y=\left\{a^{i} b^{j} \mid 0 \leq i<k\right.$ and $\left.k<j \leq 2 k\right\}$.

Inequivalent check

All strings of $X \cup Y$ are pairwise inequivalent with respect to the Myhill-Nerode congruence of $\operatorname{per}\left(L_{n}\right)$.

Lower Bound for sc(per(L))

Let $u=a^{\prime} b^{j}$ and $u^{\prime}=a^{\prime} b^{\prime}$ be two arbitrary distinct strings $\in X \cup Y$.
(i) $u, u^{\prime} \in X$
(ii) $u, u^{\prime} \in Y$
(iii) $u \in X$ and $u^{\prime} \in Y$

Case (iii)

- Let $u \in X, u^{\prime} \in Y$ and $|u|=\left|u^{\prime}\right|$.
- Because of following condition:

$$
\begin{aligned}
& X=\left\{a^{i} b^{j} \mid 0 \leq i \leq 2 k \text { and } 1 \leq j \leq k\right\} \\
& Y=\left\{a^{j} b^{j} \mid 0 \leq i<k \text { and } k<j \leq 2 k\right\}
\end{aligned}
$$

- $|u|_{b} \leq k$ and $\left|u^{\prime}\right|_{b}>k$.
- Then, $|u|_{a}>\left|u^{\prime}\right|_{a}$.
- For $z=a^{k-i} b^{2 k-j}, u z=a^{i} b^{j} \cdot a^{k-i} b^{2 k-j} \in \operatorname{per}\left(L_{n}\right)$.
- But, $u^{\prime} z=a^{i^{\prime}} b^{\prime \prime} \cdot a^{k-i} b^{2 k-j} \notin \operatorname{per}\left(L_{n}\right)$.

Lower Bound for $\operatorname{sc}\left(\operatorname{per}\left(a^{2} b^{2}(a+b)^{2}\right)\right)$

Lower Bound for $\operatorname{sc}\left(\operatorname{per}\left(a^{2} b^{2}(a+b)^{2}\right)\right)$

Lower Bound for sc(per(L))

Theorem

For any $n_{0} \in \mathbb{N}$, there exists a regular language L with $\operatorname{sc}(L)=n$, for $n \geq n_{0}$, such that

$$
\operatorname{sc}(\operatorname{per}(L)) \geq \frac{n^{2}+n+1}{3} .
$$

- $X=\left\{a^{i} b^{j} \mid 0 \leq i \leq 2 k\right.$ and $\left.1 \leq j \leq k\right\}$,
- $Y=\left\{a^{i} b^{j} \mid 0 \leq i<k\right.$ and $\left.k<j \leq 2 k\right\}$.

Thus, the \# of states of the minimal DFA has at least

$$
(2 \cdot k+1) \cdot(k+1)+k^{2}=3 \cdot k^{2}+3 \cdot k+1 \text { states } .
$$

Since $n=3 \cdot k+1, k=\frac{n-1}{3}$,

$$
3 \cdot\left(\frac{n-1}{3}\right)^{2}+3 \cdot\left(\frac{n-1}{3}\right)+1=\frac{n^{2}+n+1}{3}
$$

Summary

Deterministic state complexity

- Upper bound for $\operatorname{per}(L)$, where $L \subseteq\{a, b\}^{n-1}: \frac{n^{2}+n+1}{3}$
- Upper bound for $\operatorname{per}(L): \frac{n^{2}-n+2}{2}$
- Lower bound for $\operatorname{per}(L): \frac{n^{2}+n+1}{3}$

Open Problems

- State complexity of permutation over non-binary languages
- State complexity of permutation of set of equal length strings
- Nondeterministic state complexity of permutation on finite languages

Thank you!

WELCOME TO CIAA 2016 SEOUL, SOUTH KOREA JULY 19-- 22, 2016

