When Canadian Theoretical Computer Science was Born, a Personal Perspective
Andrew L. Szilard
Professor Emeritus
Department of Computer Science
Western University
London, Ontario, Canada
als@csd.uwo.ca
Invited Lecture to Honour Professor Janusz Brzozowski on the occasion of his $80^{\text {th }}$ birthday
University of Waterloo, Canada
June 24, 2015,

When Canadian Theoretical Computer Science was Born, a Personal Perspective

Abstract

: The sixties are remembered for many important revolutionary events in the world. From Mathematics and Electrical Engineering, Computer Science was born then. Expensive mainframe computers started to be installed at some giant financial institutions and at large universities. Machine and programming languages were created to communicate algorithms, and a large number of analysts and programmers were needed to design and to code applications for the giant computers. Undergraduate and graduate programs were conceived to teach computer languages, file and data structures and advanced computer concepts. Good teachable undergraduate texts were nonexistent and the fundamentals of Computer Science were lacking. The first Canadian Theoretical Computer Science Summer School was held in Toronto, the main speakers were two young researchers Janusz Brzozowski and Arto Salomaa. This talk is an attempt to recreate some of Prof. Brzozowski's brilliant inspirational seminal lectures that became fundamental to the teaching of Computer Science Theory in Canada and beyond.

The 60's were defined \& remembered by revolutionary events

1. the introduction of commercial main-frame computing and the birth of Computer Science courses.
2. The civil rights movement in the U.S.
3. The arrival of the space age.
4. Cold war crises: Berlin Wall, Missiles in Cuba
5. Assassinations of political figures in the U.S.
6. Advances in office and computer technology
7. The Vietnam war and protests
8. Historical events in Canada
9. Music \& festivals of the 60's

Some historical events that defined the sixties

1960, Remington Rand Corp installs commercial Univac II computers.

Febr. 1, 1960,
July 1960, Nov. 8, 1960, 1961, April 12, 1961, April 17, 1961, May 25, 1961, July 31, 1961, Aug 13, 1961, May 1962, Oct. 22, 1962,

April 1963, Jun 12, 1963, July 11, 1963, Nov. 22, 1963, Nov. 24, 1963 At a meeting of the European language design group in Paris, Peter Naur presents the Algol 60 report, a formal language definition of Algol. 4 black University students sat down at the lunch counter in a Woolworth store in Greensboro, North Carolina, the first sit-in civil-right demonstration.
IBM announces 7070/7074 computers with discrete transistors, no vacuum tubes. John F. Kennedy elected to be President of U.S.
U.S. The FDA-approved oral contraceptive is made available. Yuri Gagarin becomes the first human being in space.
CIA-trained operatives invade Cuba at Bay of Pigs, (were defeated in 3 days). John F. Kennedy gives his we-will-put-a-man-on-the-Moon speech. IBM introduces the IBM Selectric Typewriter. The erection of the Berlin Wall Janusz Brzozowski graduates from Princeton University, Princeton, NJ President Kennedy's TV address, the Cuban missile crisis, risk of nuclear war, The Doomsday clock was to be set to at 1 minute till midnight. IBM ships its 7040 computers future customers incl. UWO, U. of Waterloo Civil Rights advocate Medgar Evers assassinated in Jackson, Mississipi. Nelson Mandela arrested, jailed, served 27 years. John F. Kennedy assassinated. Jack Ruby fatally shoots Lee Harvey Oswald.

1969 Arto Salomaa's book Theory of Automata is published by Pergamon Press.
July 16, 1969, Apollo 11 launch,

February 1964 April 7, 1964, August 2, 1964, September, 1964, 1965,

October 15, 1965, July 1966, August 1966,

October April 27, 1967, June 5 - 10, 1967, June 16-18, 1967, 1968, 1968, 1968, 1968, Aug. 20,21 1968,
April 4, 1968,

April 20,	1968,
May 6,	1968,

The Beatles arrive to NY, JFK airport, Beatlemania comes to the U.S. IBM announces its family of System/360 computers
Gulf of Tonkin incident that leads to the Authorization of the Vietnam War Western U. offers an undergraduate program in Computer Science 4 undergraduate students, at Univ. of Waterloo, write a 100 statements/sec load-and-go, in-core, Fortran interpreter for the IBM 7040/7044 computer. First draft card burned, David Miller, New York, arrested, 2 years in prison Arto Salomaa becomes Visiting Professor at Western
First Canadian Summer School on Theoretical Computer Science, featuring J. Brzozowski and A. Salomaa
the Black Panther Party is founded.
EXPO 67 opens in Montreal The Six-Day War, Israel survives Monterey International Pop Festival Mass-mailed Chargex credit cards are introduced in Canada Dr. Martin Luther King, Jr. assassinated.
Pierre Elliott Trudeau becomes Prime Minister of Canada Students-led revolution in Paris
The Soviet Army supported by other Eastern Block countries invade Prague The Prague Spring is buried 1st advanced undergraduate text on regular expressions \& finite automata. lands men on the Moon, Sea of Tranquility July 20; returns July 24, 1969 Woodstock Music Festival

Remington Rand Corp installs Univac II computers magnetic core memory: 2,000-10,000 words \$1,500,000-3,000,000

1960 Remington Rand Corp installs Univac IIs.
Metropolitan Life Insurance Co., NY Pacific Mutual Life Insurance Co., LA United States Steel, Pittsburgh London Life Insurance Co. London, Ont.
Sun Life Insurance Co. Montreal, Que.

The sixties
 Business Computers

IBM 7070 50,000 'bytes'

IBM 14018,000 'bytes'

Programming Languages of the 60s

Fortran IV WATFOR

Algol 60 Simula

COBOL

APL Lisp 1.5 LOGO

The IBM 7040 Scientific computer

16,384 36 -bit words

IBM Selectric typewriter

Characters

ABCDEFGHIJK
LMNOPQRSTU
VWXYZ
abcdefghijklm nopqrstuvwxyz
0123456789
@ \#! \$ \% \& (): ; ' < > ?

+ - $^{*} / _[]=" \circ \frac{1}{4} 1 / 2$

ABCDEFGHIJK LMNOPQRSTU V W X Y Z
abcdefghijkIm nopqrstuvwxyz
0123456789
@ \# ! \% \& (): ; ' < > ?

+ - */_[]=" $01 / 41 / 2$

Mathematical and composite characters

$\alpha \beta \chi \delta \varepsilon \phi \gamma \eta \imath \varphi \kappa$ $\lambda \mu \vee \circ \pi \theta \rho \sigma \tau \cup \varpi \zeta$

A B X $\Delta \mathrm{E} Ф Г \mathrm{HI}$ Я K Λ M N O П Θ P Σ TY $\varsigma \Omega \Xi \Psi \mathrm{Z}$
() [] \{\} $\partial \supset+-/ \mid *$ \longrightarrow
$d\left(e^{x}\right)$
$-----=e^{x} \quad d\left(e^{x}\right) / d x=e^{x}$
Over-strike, composition and underline tricks

$$
\begin{aligned}
& \leq \geq \quad \equiv \quad \pm \\
& --><\gg \\
& \forall \in \theta a^{n} A_{n} 0
\end{aligned}
$$

dx

$$
d(f(g(x)) / d x=d(f(y)) d y) \cdot d(g(x)) d x
$$

$$
d(f(x) \cdot g(x))=d(f(x)) / d x \cdot g(x)+f(x) \cdot d(g(x)) / d x
$$

$$
(f \circ g)^{\prime}=f ' \circ g+f \circ g '
$$

The mimeograph machine

The print quality and inexpensive reproduction of print materials were limited.

For each page a "master" was first produced on a special wax-covered stencil by a ribonless typewriter.

The typewriter thus made impressions in the stencil, which were filled with ink and squeezed onto paper by the mimeograph's roller. The stencils could also be marked with drawings made by hand.
n copies were made by rolling each master n times on pages fed to the machine whose purple, hallucinogenic, indelible ink was hated by our secretaries. The copies had to be collated by hand in the correct order and stapled to produce the n complete sets.

Lecture notes were produced through this painful way,
corrections were especially difficult.
Hand-outs were restricted mostly to exam paper\$4 and home-work assignments.

The Xerox revolution

Xerox corporation
introduces affordable
photocopying machines:
5-10 cents/page
Minimum wage in the U.S \$1.00-1.60/hour
throughout the 60s

Journals for automata theory in the 60s

Information and Control
Communications of the ACM
Journal of the ACM
IBM Journal of Research \& Development
Pacific Journal of Mathematics
Michigan Mathematical Journal
IEEE Transactions Electronic Computers

Authors on Automata Theory before 1965

 publishing in EnglishJ. Brzozowski
J. Büchi
N. Chomsky
L.C. Eggan
S. Ginsburg
J. Hartmanis
R. McNaughton
S.C. Kleene
M.O. Rabin
A. Salomaa
M.P. Schützenberger
D.S. Scott

Graduate Textbooks on Automata Theory before 1965

Automata Studies C. Shannon \& J. McCarthy
Theory of Self-Reproducing Automata John Von Neumann

Undergraduate Textbooks on Automata Theory before 1965

A small sample of the 100s of books on automata theory available today

Chalk board

Some of us are still using chalk boards

Rec II $\cap \operatorname{Rat} H \subset$ Rat M

$$
\begin{aligned}
& \text { then } 1 \text { er prom of } \mathbb{N}^{k^{2}}
\end{aligned}
$$

In spite of his enormous musical talent, Janusz decided to pursue studies in Electrical
 Engineering

1959 Master of E.E Toronto

PhD at Princeton '62
1962 Appointed to the Faculty of Electrical Engineering and Computer Science, at the University of Ottawa

School of Electrical Engineering \& Computer Science, U. of Ottawa

University of Turku

Arto Salomaa \& Janusz Brzozowski

The main speakers
at the first Canadian Theoretical Computer Science summer school / workshop conference at the University of Toronto

This is how Janusz Brzozowski introduced me to regular expressions \& languages

\varnothing denotes the empty set
Σ denotes an alphabet, a finite set of letters, for example if $\Sigma=\{0,1\}$
then Σ is the binary alphabet of characters 0 and 1 .

A finite letter sequence, where the letters are from Σ, is called a word over Σ.
The length of the sequence is called the length of the word.
$\Sigma *$ denotes the set of all words over Σ.
λ denotes the empty word, namely the empty sequence of letters.

Subsets of Σ^{*} are called languages over Σ
Λ or \emptyset^{*} denote the empty-word language,
the singleton language that contains only the empty word, $\Lambda=\{\lambda\}=\varnothing^{*}$

Operation on words over Σ,

word concatenation product, or just product of two words x, y : x.y

$$
\text { let } x=x_{1} \ldots x_{n}, y=y_{1} \ldots y_{m} \text { then } x \cdot y=x_{1} \ldots x_{n} \cdot y_{1} \ldots y_{m} \text {, where all } x_{i}, y_{j} \in \Sigma
$$

Note: for any word $x, \lambda \cdot x=x \cdot \lambda=x$ and for any three words $x, y, z \quad(x \cdot y) \cdot z=x \cdot(y \cdot z)=x \cdot y \cdot z=x y z$.

Operation on languages

Boolean set operation on languages A and B : union \mathbf{U}, intersection \cap, set difference - , etc.
$A \cup B=\{x \mid x \in A$ or $x \in B\}, A \cap B=\{x \mid x \in A$ and $x \in B\}, \quad A-B=\{x \mid x \in A$ and $x \notin B\}$.
All identities from Boolean algebra of sets apply to all languages A, B, C over Σ.
$A \cup A=A \cap A=A \cup \varnothing=A-\varnothing=A \cap \Sigma^{*}=A \mathbf{U}(A \cap B)=A \cap(A \cup B)=\Sigma^{*}-\left(\Sigma^{*}-A\right)=A$,

$$
\begin{array}{lll}
A \cup B=B \cup A, & A \cap B=B \cap A, & \Sigma^{*}-(A \cup B)=\left(\Sigma^{*}-A\right) \cap\left(\Sigma^{*}-B\right), \\
A \cup \Sigma^{*}=\Sigma^{*}, & A-B=A \cap\left(\Sigma^{*}-B\right), & A-\Sigma^{*}=A \cap \varnothing=A-A=\varnothing-A=\varnothing, \\
(A \cup B) \cup C=A \cup(B \cup C), \quad(A \cap B) \cap C=A \cap(B \cap C), & (A-B)-C=A-(B \cup C), \\
(A \cup B)-C=(A-C) \cup(B-C), & (A \cap B)-C=(A-C) \cap(B-C), \\
A \cap(B \cup C)=(A \cap B) \cup(A \cap C), & A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{array}
$$

The concatenation product, or just product of languages $A, B: A \cdot B=\{x \cdot y \mid x \in A, y \in B\}$
Basic identities for products of languages A, B, C over Σ :

$$
\begin{array}{ll}
A \cdot(B \cdot C)=(A \cdot B) \cdot C, & A \cdot(B \cup C)=A \cdot B \cup A \cdot C, \quad(B \cup C) \cdot A=B \cdot A \cup C \cdot A \\
A \cdot \varnothing^{*}=\varnothing^{*} \cdot A=A, & A \cdot \varnothing=\varnothing \cdot A=\varnothing
\end{array}
$$

Iterated concatenation product, or just the $\boldsymbol{n}^{\text {th }}$ power of a language A over Σ :

$$
A^{0}=\varnothing^{*}=\{\lambda\}, \quad A^{n}=A \cdot A^{n-1}=A^{n-1} \cdot A \text { for all } n>0
$$

The Kleene-star closure

Kleene star of a language A over Σ, A^{*} : set of all finite-sequence products of words from A

$$
\mathrm{A}^{*}=\varnothing^{*} \mathbf{U} \mathrm{~A} \cup \mathrm{~A}^{2} \cup \mathrm{~A}^{3} \cup \mathrm{~A}^{4} \mathbf{U} \ldots=\left\{\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{n} \mid \mathrm{w}_{i} \in \mathrm{~A}, n \in \mathbb{N}, i \in[1 \ldots n]\right\} \mathbf{U}\{\lambda\},
$$ including λ, the empty sequence, when $n=0$

Important identities for star closure

$$
A^{*}=\varnothing^{*} \mathbf{U} A \cdot A^{*}=A^{*} \cdot A^{*}=\left(A^{*}\right)^{*}=\left(A \mathbf{U} \varnothing^{*}\right)^{*}=\left(A-\varnothing^{*}\right)^{*}, \quad A \cdot A^{*}=A^{*} \cdot A
$$

Regular expressions, regular languages, Brzozowski derivatives.

Let Σ be a finite set of symbols with no elements from $\left\{(),,+, \bullet,{ }^{\prime},{ }^{*}, \cap,-,=, \Sigma, \delta, \partial\right\}$

Syntax

The following syntax rules define the form of regular expressions over $\Sigma, R_{e g} \Sigma$:
S1. $\varnothing \in R_{e g} \Sigma$
S2. if $x \in \Sigma$ then $x \in R_{e g} \Sigma$
S3. if $A, B \in R_{e g}(\Sigma)$ then so are $(A+B),(A \cdot B),\left(A^{*}\right)$
S4. nothing else is in $R_{e g} \Sigma$
unless its being is the result of a finite no. of applications of steps S1., S2., and S3.
Denotations. The meaning of a regular expression $A,|A|$
M1. \varnothing denotes the empty set $\}, \quad|\varnothing|=\{ \}$
M2. for all $x \in \Sigma, x$ denotes the singleton $\{x\},|x|=\{x\}$
the language of a one-letter word, namely x
M3. for all $A, B \in R_{e g} \Sigma$,
$(A+B)$ denotes the union of the two sets denoted by A and $B, \quad|(A+B)|=|A| U|B|$
$(A \cdot B)$ denotes the product of the two sets denoted by A and $B, \quad|(A \cdot B)|=|A| \cdot|B|$
$\left(A^{*}\right)$ denotes the Kleene star closure of the set denoted by $A \quad\left|\left(A^{*}\right)\right|=|A|^{*}$

Simplifications and abbreviations.

We may omit the • and the parentheses where possible:
we write $A+B+C$ for $((A+B)+C)$ and for $(A+(B+C))$ we write $A B C \quad$ for $((A B) \cdot C)$ and for $(A \cdot(B \cdot C))$
we assume the • has higher precedence than the + , and the * has the highest precedence for example, we write $A+B C^{*}$ for $\left(A+\left(B \cdot(C)^{*}\right)\right)$

Let $\Sigma=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then we write Σ for ($\left.x_{1}+x_{2}+\ldots+x_{n}\right)$
For $|A| \cap\{\lambda\}$ we write $\delta|A|$ and we write δA to denote this set.
Brzozowski's X-regular expressions, Boolean operations \cap and - are included:
The syntax of X-regular expressions over $\Sigma, X_{e g}{ }^{\Sigma}$, is defined as follows:
XS1. $\varnothing \in X R_{e g}{ }^{\Sigma}$
X S2. if $x \in \Sigma$ then $x \in X R_{e g} \Sigma$
$X S 3$. if $A, B \in X R_{e g}(\Sigma)$ then so are $(A+B),(A \cap B),(A-B),(A \bullet B),(A)^{*}$
XS4. nothing else is in $X R_{e g}{ }^{\Sigma}$
unless its being is the result of a finite no. of applications of steps XS1., XS2., and XS3.
We abbreviate $A \cap \boldsymbol{\emptyset}^{*}$ as $\bar{\delta} A$

Meaning. The meaning of an X-regular expression

XM1. Ø denotes the empty set $\}$
$X M 2$. for all $x \in \Sigma, x$ denotes the singleton $\{x\}$, a language of a one-letter word, namely x XM3. for all $A, B \in X R_{e g} \Sigma$,
$\mathbf{(A + B})$ denotes the union of the two sets denoted by \mathbf{A} and \mathbf{B}
$(A \cap B)$

$$
|(A \cap B)|=|A| \cap|B|
$$

($A-B$)
(A•B)
(A^{*}) the intersection of the sets denoted by \mathbf{A} and \mathbf{B}

$$
|(A+B)|=|A| \cup|B|
$$ the difference of the sets denoted by \mathbf{A} and \mathbf{B} the product of the two sets denoted by \mathbf{A} and \mathbf{B} $|(A-B)|=|A|-|B|$

$|(A \cdot B)|=|A| \cdot|B|$ the Kleene star closure of the set denoted by \mathbf{A}

For all $\mathbf{A} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$, $\mathbf{\delta} \mathbf{A}$ denotes the X -regular expression $\left(\mathbf{A} \cap \boldsymbol{\emptyset}^{*}\right)$, $\boldsymbol{\delta} \mathbf{A}=\left(\mathbf{A} \cap \boldsymbol{\emptyset}^{*}\right)$
i.e., $\delta \mathbf{A}=\boldsymbol{\varnothing}^{*}$ iff $\lambda \in|\mathbf{A}|$, and $\delta \mathbf{A}=\boldsymbol{\varnothing}$ iff $\lambda \notin|\mathbf{A}|$.

Therefore for any $\mathbf{B} \in \mathrm{XR}_{\mathrm{eg}} \Sigma(\mathbf{D A}) \cdot \mathbf{B}=\mathbf{B}$ iff $\lambda \in|\mathbf{A}|$ and $(\delta A) \cdot \mathbf{B}=\boldsymbol{\varnothing}$ iff $\lambda \notin|A|$
The Brzozowski derivatives of X-Regular Expressions.
For each word $w \in \Sigma^{*}$, we define a mapping $\partial_{w}: X R_{e g} \Sigma \rightarrow X R_{e g} \Sigma$ recursively as follows:
For all $\mathbf{A} \in \mathrm{XR}_{\mathrm{eg}} \Sigma, \partial_{\lambda}(\mathbf{A})=\mathbf{A}, \quad$ for all $x \in \Sigma, \quad \partial_{x}(\boldsymbol{\varnothing})=\boldsymbol{\varnothing}$.
For all $\mathrm{x} \in \boldsymbol{\Sigma}, \quad \partial_{\mathrm{x}}(\mathrm{x})=\boldsymbol{\varnothing}^{*}$, and for all $\mathrm{x}, \mathrm{y} \in \boldsymbol{\Sigma}$, where $\mathrm{x} \neq \mathrm{y} \quad \partial_{\mathrm{x}}(\mathrm{y})=\boldsymbol{\varnothing}$.
For all $\mathbf{A}, \mathbf{B} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$ and for all $\mathrm{x} \in \Sigma, \quad \partial_{\mathrm{x}}((\mathbf{A}+\mathbf{B}))=\left(\partial_{\mathrm{x}}(\mathbf{A})+\partial_{\mathrm{x}}(\mathbf{B})\right)$

$$
\partial_{x}((\mathbf{A} \cap \mathbf{B}))=\left(\partial_{x}(\mathbf{A}) \cap \partial_{x}(\mathbf{B})\right)
$$

$$
\partial_{x}((\mathbf{A}-\mathbf{B}))=\left(\partial_{x}(\mathbf{A})-\partial_{x}(\mathbf{B})\right)
$$

$$
\partial_{x}((\mathbf{A} \cdot \mathbf{B}))=\left(\partial_{x}(\mathbf{A}) \cdot \mathbf{B}+\delta \mathbf{A} \cdot \partial_{x}(\mathbf{B})\right)
$$

$$
\partial_{x}\left(\mathbf{A}^{*}\right)=\left(\partial_{x}(\mathbf{A}) \cdot \mathbf{A}^{*}\right)
$$

For all $\mathbf{A} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$ and for all $\mathrm{x} \in \Sigma$ and all words $\mathrm{w} \in \Sigma^{\star}$, we define $\partial_{\mathrm{xw}}(\mathbf{A})=\partial_{\mathrm{w}}\left(\partial_{\mathrm{x}}(\mathbf{A})\right)$

Exercise 1, Show that for all $\mathbf{A}, \mathbf{B} \in X R_{e g} \Sigma$ and for all $w \in \Sigma^{*}, \partial_{w}((\mathbf{A}+\mathbf{B}))=\left(\partial_{w}(\mathbf{A})+\partial_{w}(\mathbf{B})\right)$,

$$
\partial_{w}((\mathbf{A} \cap \mathbf{B}))=\left(\partial_{w}(\mathbf{A}) \cap \partial_{w}(\mathbf{B})\right) \quad \text { and } \quad \partial_{w}((\mathbf{A}-\mathbf{B}))=\left(\partial_{w}(\mathbf{A})-\partial_{w}(\mathbf{B})\right)
$$

Exercise 2, the meaning of the Brzozowski derivative

Show that the language denoted by $\partial_{w}(\mathbf{A})$, where $w \in \Sigma^{*}$ and $\mathbf{A} \in X R_{e g} \Sigma$, is the following:

$$
\left|\partial_{w}(\mathbf{A})\right|=\left\{z \in \Sigma^{*}|w z \in| A \mid\right\}
$$

Similarity and equivalence of Extended Regular expressions.
For $\mathbf{A}, \mathbf{B} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$, we say they are similar, $\mathbf{A} \approx \mathbf{B}$,
if starting from \mathbf{A} and applying a finite sequence of the Boolean-,
product- and star identities given below, one can obtain \mathbf{B}.
$A+A \equiv A \cap A \equiv A+\varnothing \equiv A-\varnothing \equiv A \cap \Sigma^{*} \equiv A+(A \cap B) \equiv A \cap(A+B) \equiv \Sigma^{*}-\left(\Sigma^{*}-A\right) \equiv A$, $A+B \equiv B+A, \quad A \cap B \equiv B \cap A, \quad A+\Sigma^{*} \equiv \Sigma^{*}, \quad \Sigma^{*}-(A \cup B) \equiv\left(\Sigma^{*}-A\right) \cap\left(\Sigma^{*}-B\right)$,
$A-B \equiv A \cap\left(\Sigma^{*}-B\right)$ $A-\Sigma^{*} \equiv A \cap \varnothing \equiv A-A \equiv \varnothing-A \equiv \varnothing$, $(A+B)+C \equiv A+(B+C), \quad(A \cap B) \cap C \equiv A \cap(B \cap C), \quad(A-B)-C \equiv A-(B+C)$,
$(A+B)-C \equiv(A-C)+(B-C)$, $(A \cap B)-C \equiv(A-C) \cap(B-C)$,
$A \cap(B+C) \equiv(A \cap B)+(A \cap C), \quad A+(B \cap C) \equiv(A+B) \cap(A+C)$,
$A \cdot(B \cdot C) \equiv(A \cdot B) \cdot C, \quad A \cdot \varnothing^{*} \equiv \varnothing^{*} \cdot A \equiv A, \quad A \cdot(B+C) \equiv A \cdot B+A \cdot C, \quad(B+C) \cdot A \equiv B \cdot A+C \cdot A$ $A \cdot \varnothing \equiv \varnothing \cdot A \equiv \varnothing \quad A \cdot A^{*} \equiv A^{*} \cdot A \quad \varnothing^{*}+A \cdot A^{*} \equiv A^{*} \cdot A^{*} \equiv\left(A^{*}\right)^{*} \equiv\left(A+\varnothing^{*}\right)^{*} \equiv\left(A-\varnothing^{*}\right)^{*} \equiv A^{*}$

Exercise 3 , Give three languages A, B, C over $\{0,1\}$ such that $A \cdot(B-C) \neq A \cdot B-A \cdot C$
A solution: $A=\{0,01\}, B=\{0,10\}, C=\{\lambda, 0,1\}$

$$
\begin{aligned}
A \cdot(B-C) & =\{0,01\} \cdot(\{0,10\}-\{\lambda, 0,1\})=\{0,01\} \cdot\{10\}=\{010,0110\} \\
A \cdot B-A \cdot C & =\{0,01\} \cdot\{0,10\}-\{0,01\} \cdot\{\lambda, 0,1\}=\{00,010,0110\}-\{0,00,01,010,011\}= \\
& =\{0110\}
\end{aligned}
$$

Equivalence

For $\mathbf{A}, \mathbf{B} \in X R_{e g} \Sigma$, we say \mathbf{A} and \mathbf{B} are equivalent, $\mathbf{A} \equiv \mathbf{B}$, if $|\mathbf{A}|=|\mathbf{B}|$.
Note: $A \approx B$ implies $A \equiv B$.

Dissimilarity

Two (extended) regular expressions A and B are termed dissimilar if they are NOT similar.

Similarity simplifications

In what follows, we assume that regular expressions are expressed in a form that is the result of a scan from left to right and any simplifying identities that are applicable are applied.
We assume therefore that all singletons $\{w\}$ where $w \in \Sigma^{*}$ are represented by the regular expression simply as \mathbf{w}.

Exercise 4: Show that for any $w \in \Sigma^{*}$, and any $\mathbf{A} \in X R_{e g}(\Sigma), \partial_{w}(\mathbf{w} \cdot \mathbf{A})=\mathbf{A}$
Solution: If $w=\lambda$ then $\mathbf{w}=\boldsymbol{\varnothing}^{*}$ and then $\partial_{\lambda}(\mathbf{w} \cdot \mathbf{A})=\partial_{\lambda}\left(\boldsymbol{\varnothing}^{*} \cdot \mathbf{A}\right)=\partial_{\lambda}(\mathbf{A})=\mathbf{A}$
We proceed by induction on the length of the letter sequence making up the word w. Because of the first line, the statement of Exercise 4 holds for length 0. Assume that the statement $\partial_{w}(\mathbf{w} \cdot \mathbf{A})=\mathbf{A}$ holds for all words $\mathrm{w} \in \Sigma^{*}$ of length $\leq n$, then for any word w of length $n+1$, we have $w=x v$, where $x \in \Sigma$ and $v \in \Sigma^{n}$,

$$
\text { then } \begin{aligned}
\partial_{w}(\mathbf{w} \cdot \mathbf{A}) & =\partial_{\mathrm{xv}}(\mathbf{x} \cdot \mathbf{v} \cdot \mathbf{A})=\partial_{\mathrm{v}}\left(\partial_{\mathrm{x}}(\mathbf{x} \cdot \mathbf{v} \cdot \mathbf{A})\right)=\partial_{\mathrm{v}}\left(\partial_{\mathrm{x}}(\mathbf{x}) \cdot \mathbf{v} \cdot \mathbf{A}+\boldsymbol{\delta} \mathbf{x} \cdot \partial_{\mathrm{x}}(\mathbf{v} \cdot \mathbf{A})\right)= \\
& =\partial_{\mathrm{v}}\left(\boldsymbol{\varnothing}^{*} \cdot \mathbf{v} \cdot \mathbf{A}+\boldsymbol{\varnothing} \cdot \partial_{\mathrm{x}}(\mathbf{v} \cdot \mathbf{A})\right)=\partial_{\mathrm{v}}(\mathbf{v} \cdot \mathbf{A}+\boldsymbol{\varnothing})=\partial_{\mathrm{v}}(\mathbf{v} \cdot \mathbf{A})=\mathbf{A}, \text { since } \mathrm{v} \boldsymbol{\in} \Sigma^{n}
\end{aligned}
$$

This completes the inductive proof for words w of any length.

Exercise 5:

Show that for any $u, v \in \Sigma, u \neq v$ and any $\mathbf{A} \in X R_{e g} \Sigma, \partial_{u}(v \cdot \mathbf{A})=\boldsymbol{\varnothing}$,
Solution: $\partial_{u}(\mathbf{v} \cdot \mathbf{A})=\left(\partial_{u}(\mathbf{v}) \cdot \mathbf{A}+\boldsymbol{\delta} \cdot \partial_{u}(v \cdot A)\right)=\left(\boldsymbol{\varnothing} \cdot \mathbf{A}+\boldsymbol{\varnothing} \cdot \partial_{u}(v \cdot A)\right)=(\boldsymbol{\varnothing}+\boldsymbol{\varnothing})=\boldsymbol{\varnothing}$

Exercise 6: Show that for all words $w \in \Sigma^{*}$, a) $\partial_{w}\left(\Sigma^{*}\right)=\Sigma^{*}$ and b) $\partial_{w}(\boldsymbol{\varnothing})=\boldsymbol{\varnothing}$.

Solution: The b) part is obvious.
a) We note $\partial_{\lambda}\left(\Sigma^{*}\right)=\Sigma^{*}$

Because of this, the statement of Exercise 6 holds for words of length 0 .
We proceed with the following induction hypothesis, IH on the length w. Assume that the statement $\partial_{w}\left(\Sigma^{*}\right)=\Sigma^{*}$ holds for all words w of length up to n, then for any word w of length $n+1$, we have
$w=x v$, where $x \in \Sigma$ and $v \in \Sigma^{n}$, then let $|\mathbf{x}|=\{x\}$ and $|v|=\{v\}$
$\partial_{x v}\left(\Sigma^{*}\right)=\partial_{v}\left(\partial_{x}\left(\Sigma^{*}\right)\right)=\partial_{v}\left(\partial_{x}(\Sigma) \Sigma^{*}\right)=\partial_{v}\left(\partial_{x}((\Sigma-x)+x) \Sigma^{*}\right)=\partial_{v}\left(\left(\partial_{x}(\Sigma-x)+\partial_{x}(x)\right) \Sigma^{*}\right)=$ $=\partial_{v}\left(\left(\boldsymbol{\varnothing}+\boldsymbol{\emptyset}^{*}\right) \Sigma^{*}\right)=\partial_{\mathrm{v}}\left(\boldsymbol{\Xi}^{*} \Sigma^{*}\right)=\partial_{\mathrm{v}}\left(\Sigma^{*}\right)=\Sigma^{*}$. The last step follows from IH.

Exercise 7: Show that for any $\mathbf{A} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$, the cardinality of the set of dissimilar (distinct) derivatives of \mathbf{A}, is the same as that of $\Sigma^{*}-\mathbf{A}$.

Hint: 1-1 correspondence exists between the set of dissimilar (distinct) derivatives of A and those of $\Sigma^{*}-\mathbf{A}$, for each $w \in \Sigma^{*}, \partial_{w}(\mathbf{A})$ goes to $\partial_{w}\left(\Sigma^{*}-\mathbf{A}\right)=\partial_{w}\left(\Sigma^{*}\right)-\partial_{w}(\mathbf{A})=\Sigma^{*}-\partial_{w}(\mathbf{A})$.

Exercise 8:

Show that there are three dissimilar derivatives of L, the language of all binary $(\mathbf{0}, \mathbf{1})$ strings without consecutive 1s, i.e., $L=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}$ and $\Sigma=\{0,1\}$.

Solution: We try to obtain dissimilar derivatives
by taking derivatives with respect to words of increasing lengths.

$$
\partial_{\lambda}(L)=L=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}
$$

$$
\partial_{0}(\mathrm{~L})=\partial_{0}\left(\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}\right)=\partial_{0}\left(\Sigma^{*}\right)-\partial_{0}\left(\Sigma^{*} 11 \Sigma^{*}\right)=\partial_{0}(A)-\partial_{0}(B) \text { where } A=\Sigma^{*} \text { and } B=\Sigma^{*} 11 \Sigma^{*}
$$

$$
\partial_{0}(A)=\partial_{0}\left(\Sigma^{*}\right)=\Sigma^{*}
$$

$$
\partial_{0}(B)=\partial_{0}\left(\Sigma^{*} 11 \Sigma^{*}\right)=\left(\partial_{0}\left(\Sigma^{*}\right) 11 \Sigma^{*}+\delta A \bullet \partial_{0}\left(11 \Sigma^{*}\right)\right)=\left(\Sigma^{*} 11 \Sigma^{*}+\boldsymbol{\emptyset}^{*} \bullet \partial_{0}\left(11 \Sigma^{*}\right)\right)=
$$

$$
=\left(B+\partial_{0}\left(11 \Sigma^{*}\right)\right)=\left(B+\left(\partial_{0}(1) 1 \Sigma^{*}+\delta 1 \bullet \partial_{0}\left(1 \Sigma^{*}\right)\right)\right)=\left(B+\left(\varnothing \bullet 1 \Sigma^{*}+\varnothing \bullet \partial_{0}\left(1 \Sigma^{*}\right)\right)\right)
$$

$$
=(B+(\varnothing+\varnothing))=B
$$

From (1), (2) and (3) we have $\partial_{0}(L)=\partial_{0}(A)-\partial_{0}(B)=\Sigma^{*}-B=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}=\mathbf{L}$

$$
\begin{equation*}
\partial_{1}(L)=\partial_{1}\left(\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}\right)=\partial_{1}\left(\Sigma^{*}\right)-\partial_{1}\left(\Sigma^{*} 11 \Sigma^{*}\right)=\partial_{1}(A)-\partial_{1}(B), \text { where } A=\Sigma^{*} \text { and } B=\Sigma^{*} 11 \Sigma^{*} \tag{5}
\end{equation*}
$$

$\partial_{1}(A)=\partial_{1}\left(\Sigma^{*}\right)=\Sigma^{*}$
$\partial_{1}(B)=\partial_{1}\left(\Sigma^{*} 11 \Sigma^{*}\right)=\partial_{1}\left(A \cdot 11 \Sigma^{*}\right)=\left(\partial_{1}(A) 11 \Sigma^{*}+\delta A \bullet \partial_{1}\left(11 \Sigma^{*}\right)\right)=\left(\Sigma^{*} 11 \Sigma^{*}+\boldsymbol{\varnothing}^{*} \bullet \partial_{1}\left(11 \Sigma^{*}\right)\right)=$ $=\left(B+\varnothing^{*} \bullet \partial_{1}\left(11 \Sigma^{*}\right)\right)=\left(B+1 \Sigma^{*}\right)=\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)$

From (5), (6) and (7) we have $\partial_{1}(\mathrm{~L})=\partial_{1}(\mathrm{~A})-\partial_{1}(\mathrm{~B})=\Sigma^{\star}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)$
From (4) we see that for any word $w \in \Sigma^{*}, \partial_{0 w}(\mathbf{L})=\partial_{w}\left(\partial_{0}(\mathbf{L})\right)=\partial_{w}(\mathbf{L})$
i.e., No new dissimilar Brzozowski derivative is obtained by taking derivatives with respect to a word w lengthened by a prefix 0 .

In particular $\partial_{00}(\mathbf{L})=\partial_{0}(\mathbf{L})=\mathbf{L} \quad$ and $\quad \partial_{01}(\mathbf{L})=\partial_{1}(\mathbf{L})=\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)$
Dissimilar derivatives might still be obtained, however, from $\partial_{1}(L)$.

$$
\begin{align*}
\partial_{10}(\mathrm{~L}) & =\partial_{0}\left(\partial_{1}(\mathrm{~L})\right)=\partial_{0}\left(\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)\right)=\partial_{0}\left(\Sigma^{*}\right)-\partial_{0}\left(\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)\right)= \\
& =\Sigma^{*}-\partial_{0}\left(\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)\right)=\Sigma^{*}-\left(\partial_{0}\left(\Sigma^{*} 11 \Sigma^{*}\right)+\partial_{0}\left(1 \Sigma^{*}\right)\right)=\Sigma^{*}-\left(\partial_{0}\left(\Sigma^{*} 11 \Sigma^{*}\right)+\boldsymbol{\varnothing}\right)= \\
& =\Sigma^{*}-\partial_{0}\left(\Sigma^{*} 11 \Sigma^{*}\right)=\Sigma^{*}-\left(\partial_{0}\left(\Sigma^{*}\right) 11 \Sigma^{*}+\delta \Sigma^{*} \bullet \partial_{0}\left(11 \Sigma^{*}\right)\right)= \\
& =\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+\boldsymbol{\emptyset}^{*} \bullet \partial_{0}\left(11 \Sigma^{*}\right)\right)=\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+\boldsymbol{\emptyset}^{*} \bullet \varnothing\right)=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}=\mathbf{L} \tag{11}
\end{align*}
$$

$$
\begin{align*}
\partial_{11}(\mathrm{~L}) & =\partial_{1}\left(\partial_{1}(\mathrm{~L})\right)=\partial_{1}\left(\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)\right)=\Sigma^{*}-\partial_{1}\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)= \\
& =\Sigma^{*}-\left(\partial_{1}\left(\Sigma^{*} 11 \Sigma^{*}\right)+\partial_{1}\left(1 \Sigma^{*}\right)\right)=\Sigma^{*}-\left(\partial_{1}\left(\Sigma^{*} 11 \Sigma^{*}\right)+\Sigma^{*}\right)=\Sigma^{*}-\Sigma^{*}=\varnothing \tag{12}
\end{align*}
$$

$\partial_{110}(\mathbf{L})=\partial_{0}\left(\partial_{11}(\mathbf{L})\right)=\partial_{0}(\boldsymbol{\varnothing})=\boldsymbol{\varnothing} \quad$ and $\quad \partial_{111}(\mathbf{L})=\partial_{1}\left(\partial_{11}(\mathbf{L})\right)=\partial_{1}(\boldsymbol{\varnothing})=\boldsymbol{\varnothing}$
i.e., No new dissimilar Brzozowski derivative can be obtained by further taking derivatives.

$$
\partial_{\lambda}(\mathrm{L})=\mathrm{L}=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}, \quad \partial_{1}(\mathrm{~L})=\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right) \text { and } \partial_{11}(\mathrm{~L})=\varnothing
$$

this shows that there are at most three distinct dissimilar Brzozowski derivatives of \mathbf{L}.
It is easy to show that these derivatives represent three distinct languages.

The deterministic finite automaton \mathbf{M} that accepts L can be given by a state table as follows:

| \\| ${ }^{\text {S }}$ States of M | II 0 | 1 | \|| \quad | II |
| :---: | :---: | :---: | :---: | :---: |
| \|| $\partial_{\lambda}(\mathrm{L})=\mathrm{L}=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}$ | II L | $\partial_{1}(\mathrm{~L})$ | \|| $\boldsymbol{\square}^{\text {* }}$ | II |
| II $\partial_{1}(L)=\Sigma^{*}-\left(\Sigma^{*} 11 \Sigma^{*}+1 \Sigma^{*}\right)$ | II L | \\| $\partial_{11}(\mathrm{~L})$ | \\| $\boldsymbol{\sigma}^{*}$ | II |
| I\| $\partial_{11}(\mathrm{~L})=\varnothing$ | II $\partial_{11}(\mathrm{~L})$ | \\| $\partial_{11}(\mathrm{~L})$ | 110 | II |

The states of M are languages over Σ^{*},
the initial state is L; a state \mathbf{S} is a final state iff $\mathbf{\delta S}=\boldsymbol{\varnothing}^{*}$.

In a state \mathbf{S} reading a letter $\mathrm{x} \in \Sigma$, the automaton \mathbf{M} goes into the state $\partial_{\mathrm{x}}(\mathbf{S})$.
A word $w \in \Sigma^{*}$ is accepted
if \mathbf{M} ends up a final state on reading the sequence of letters of w from start to end.
Exercise 9: Show that there are only a finite number of dissimilar derivatives for any regular expression $E \in \mathrm{XR}_{\mathrm{eg}} \Sigma$.

Solution: We proceed by induction on the depth of parenthetical nestedness of in $E, \Delta(E)$.
The basis of the induction: when $\Delta(E)=0$.
If $\mathbf{E}=\boldsymbol{\varnothing}$, then the cardinality of the set of dissimilar derivatives of \mathbf{E} is one, since for any $w \in \Sigma^{*}, \partial_{w}(\mathbf{E})=\boldsymbol{\varnothing}$.

If $\mathbf{E}=\boldsymbol{\varnothing}^{*}$, then the cardinality of the set of dissimilar derivatives of \mathbf{E} is two, 1. $\partial_{\lambda}\left(\boldsymbol{\Xi}^{*}\right)=\boldsymbol{\Pi}^{*}$ 2. for any $w \in \Sigma^{*}-\{\lambda\}, \partial_{w}\left(\boldsymbol{\Xi}^{*}\right)=\boldsymbol{\varnothing}$

If $\mathbf{E}=\mathrm{x}$, where $\mathrm{x} \in \boldsymbol{\Sigma}$, then there are at most three distinct/dissimilar derivatives of \mathbf{E}, as follows:

$$
\text { 1. } \partial_{\lambda}(\mathbf{x})=\mathbf{x}, \quad \text { 2. } \partial_{\mathbf{x}}(\mathbf{x})=\boldsymbol{\emptyset}^{*}, \quad \text { 3. } \partial_{\mathrm{w}}(\mathbf{x})=\boldsymbol{\varnothing}, \text { for all } \mathrm{w} \in \Sigma^{*}-\{\lambda, \mathbf{x}\} .
$$

If $\operatorname{Card}(\Sigma)>1$, then these are, in fact, exactly three derivatives.

The induction hypothesis.
Assume that the statement of Exercise 9 is true for all $\mathbf{A}, \mathbf{B} \in \mathrm{XR}_{\mathrm{eg}} \Sigma$ if $\Delta(\mathbf{A}), \Delta(\mathbf{B})<k$, then we show that the statement is true also for $E \in X_{e g} \Sigma$, where $\Delta(E)=k$.

Let $\mathbb{D}(\mathbf{A}), \mathbb{D}(\mathbf{B})$ and $\mathbb{D}(\mathbf{E})$ be the set of dissimilar derivatives of \mathbf{A}, \mathbf{B} and \mathbf{E} resp. Let $\mathbb{D}(A)=\left\{\mathbf{A}_{1}, \mathbf{A}_{\mathbf{2}}, \ldots \mathbf{A}_{n}\right\}$ and let $\mathbb{D}(B)=\left\{\mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}, \ldots \mathbf{B}_{\mathbf{m}}\right\}$, for some positive integers n and m .

Case A.
Assume $\mathbf{E}=(\mathbf{A}+\mathbf{B})$ then we have $\partial_{w}((\mathbf{A}+\mathbf{B}))=\left(\partial_{w}(\mathbf{A})+\partial_{w}(\mathbf{B})\right)$, for all $w \in \Sigma^{*}$
let n and m be the number of dissimilar derivatives of \mathbf{A} and \mathbf{B} respectively, then that of \mathbf{E} will not exceed $n \cdot m$.
A similar statement can be said when $E=(A \cap B)$ and also when $E=(A-B)$.
Case B
Assume $\mathbf{E}=(\mathbf{A} \bullet \mathbf{B})$ then $\partial_{\lambda}(\mathbf{E})=(\mathbf{A} \bullet \mathbf{B})$ and for all $\mathrm{x} \in \Sigma$, then
we have $\partial_{x}(A \bullet B)=\left(\partial_{x}(\mathbf{A}) \bullet B\right), \quad$ or $\partial_{x}(A \cdot B)=\left(\left(\partial_{x}(\mathbf{A}) \cdot B\right)+\partial_{x}(B)\right)$
Then all further derivatives of \mathbf{E} are also in the form
$\left(\mathbf{A}_{\mathbf{i}} \bullet \mathbf{B}\right)$ or $\left(\left(\mathbf{A}_{\mathbf{i}} \bullet \mathbf{B}\right)+\mathbf{B}_{\mathrm{j}}\right)$ where $\mathrm{i} \boldsymbol{\epsilon}[1 . . n]$ and $\mathrm{j} \boldsymbol{\epsilon}[1 . . m]$.
Thus $\mathbb{D}(\mathbf{E})$ is a subset of $\left\{\left(\mathbf{A}_{\mathbf{i}} \bullet \mathbf{B}\right) \mid \boldsymbol{i} \in[1 . . n]\right\} \mathbf{U}\left\{\left(\left(\mathbf{A}_{\mathbf{i}} \bullet \mathbf{B}\right)+\mathbf{B}_{\mathbf{j}}\right) \mid \boldsymbol{i} \in[1 . . n], \mathrm{j} \in[1 . . m]\right\}$
which is a finite set whose cardinality is not more than $n+n \cdot m$.

Case C

Assume $E=\left(A^{*}\right)$, since $A^{*}=\left(A+\boldsymbol{\sigma}^{*}\right)^{*}=\left(A-\boldsymbol{\varnothing}^{*}\right)^{*}$, without loss of generality we further assume that $\boldsymbol{\delta} \mathbf{A}=\boldsymbol{\varnothing}$,
then $\partial_{\lambda}(\mathbf{E})=\left(\mathbf{A}^{*}\right)$ and for all $x \in \Sigma$, then we have $\partial_{x}\left(\mathbf{A}^{*}\right)=\left(\partial_{x}(\mathbf{A}) \bullet\left(\mathbf{A}^{*}\right)\right)$.
Then all further derivatives of \mathbf{E} are also in the same form

$$
\left(\left(A_{i} \bullet\left(A^{*}\right)\right)+\left(\delta A \bullet\left(A^{*}\right)\right)=\left(\left(A_{i} \bullet\left(A^{*}\right)\right)+\left(\varnothing \bullet\left(A^{*}\right)\right)=\left(A_{i} \bullet\left(A^{*}\right)\right) .\right.\right.
$$

Thus $\mathbb{D}(\mathbf{E})$ is a subset of $\left\{\left(\mathbf{A}_{\mathbf{i}} \bullet\left(\mathbf{A}^{*}\right)\right) \mid i \in[1 . . n]\right\}$
which is a finite set whose cardinality is not more than n.
This completes the inductive proof.

Formal power series associated with languages.

Let L be a language over Σ, the formal power series, $L(x)$, associated with L is defined as follows:

$$
\measuredangle(x)=\delta L+(L \cap \Sigma) x+\left(L \cap \Sigma^{2}\right) x^{2}+\left(L \cap \Sigma^{3}\right) x^{3}+\left(L \cap \Sigma^{4}\right) x^{4}+\ldots
$$

Example 1: Let $\Sigma=\{0,1\}$ and $L=\Sigma^{*}-\Sigma^{*} 11 \Sigma^{*}$, then

$$
\delta L=\boldsymbol{\sigma}^{*}, L \cap \Sigma=\{0,1\}, L \cap \Sigma^{2}=\{00,01,10\}, \quad L \cap \Sigma^{3}=\{000,001,010,100,101\}
$$

$$
L \cap \Sigma^{4}=\{0000,0001,0010,0100,0101,1000,1001,1010\}
$$

$$
\curvearrowleft(x)=\boldsymbol{\emptyset}^{*}+\{0,1\} x+\{00,01,10\} x^{2}+\{000,001,010,100,101\} x^{3}+\{0000,0001,0010,0100,0101,1000,1001,1010\} x^{4}+\ldots
$$

Let us look at the following two formal power series $\{0\} \circ \llbracket(x) x$ and $\{10\} \circ \llbracket(x) x^{2}$, where the scalar multiplication \circ and the multiplication by powers of x are defined as component-wise multiplication on each coefficient and powers of x.

$$
\begin{aligned}
\{0\} \triangleright 乌(x) x=\{0\} \boldsymbol{\varnothing}^{*} x+\{0\} \bullet\left\{\{0,1\} x^{2}\right. & +\{0\} \bullet\{00,01,10\} x^{3}+\{0\} \bullet\left\{\{000,001,010,100,101\} x^{4}+\right. \\
& +\{0\} \bullet\left\{\{0000,0001,0010,0100,0101,1000,1001,1010\} x^{5}+\ldots\right.
\end{aligned}
$$

$$
\begin{aligned}
\{10\} \oslash(x) x^{2}=\{10\} \bullet \varnothing^{*} x^{2}+\{10\} \bullet\{0,1\} x^{3} & +\{10\} \bullet\{00,01,10\} x^{4}+\{10\} \bullet\{000,001,010,100,101\} x^{5}+ \\
& +\{10\} \bullet\{0000,0001,0010,0100,0101,1000,1001,1010\} x^{6}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\{0\} \circ 乌(x) x=\{0\} x+\{00,01\} x^{2} & +\{000,001,010\} x^{3}+\{0000,0001,0010,0100,0101\} x^{4}+ \\
& +\{00000,00001,00010,00100,00101,01000,01001,01010\} x^{5}+\ldots
\end{aligned}
$$

$\{10\} \circ \curvearrowleft(x) x^{2}=\{10\} x^{2}+\{100,101\} x^{3}+\{1000,1001,1010\} x^{4}+\{10000,10001,10010,10100,10101\} x^{5}$ $+\{100000,100001,100010,100100,100101,101000,101001,101010\} x^{6}+\ldots$
 where the operation ξ is defined by taking the union of the coefficients of like powers of x.

$$
\begin{array}{rl}
\{0\} \bigcirc(x) x & x\{10\} \square(x) x^{2}=\{0\} x+\{00,01,10\} x^{2}+\{000,001,010,100,101\} x^{3}+ \\
+ & +\{0000,0001,0010,0100,0101,1000,1001,1010\} x^{4}+ \\
+\{00000,00001,00010,00100,00101,01000,01001,01010,10000,10001,10010,10100,10101\} x^{5}+\ldots
\end{array}
$$

Let us form the formal power series as the difference $\left\lfloor(x)-\left(\{0\} \circ \bigsqcup(x) x \leftrightarrows\{10\} \circ \bigsqcup(x) x^{2}\right)\right.$, where the operation - is defined by taking the set difference of the coefficients of like powers of x.

Let \mathfrak{q} denote the formal power series where the constant is $\boldsymbol{\varnothing}^{*}$ and the coefficients of positive powers of x are all \varnothing.
$\swarrow(x)$ is expressed as a formal rational polynomial.
$\left(1-\left(\{0\} x\{10\} x^{2}\right)\right) \circ 乌(x)=\{+\{1\} x$

$$
\curvearrowleft(x)=(0+\{1\} x) \\left(1-\left(\{0\} x\{10\} x^{2}\right)\right) \quad ? ?
$$

The meaning of these operations needs more explanations.
We may note that if we replace the coefficient sets by the cardinality of these sets we obtain the rational polynomial $\mathrm{L}(\mathrm{x})$:
$\left.\mathrm{L}(\mathrm{x})=(1+1 \mathrm{x}) /\left(1-\left(1 \mathrm{x}+1 \mathrm{x}^{2}\right)\right)=(1+\mathrm{x}) /\left(1-\mathrm{x}-\mathrm{x}^{2}\right)\right)=1+2 \mathrm{x}+3 \mathrm{x}^{2}+5 \mathrm{x}^{3}+8 \mathrm{x}^{4}+13 \mathrm{x}^{5}+21 \mathrm{x}^{6} \ldots$
$L(0.001)=1.001 / 0.998999=1.002003005008013021034055089144233377610988$

