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When Canadian Theoretical Computer Science was Born,
a Personal Perspective

Abstract:

The sixties are remembered for many important revolutionary events in the world. From 
Mathematics and Electrical Engineering, Computer Science was born then. 
Expensive mainframe computers started to be installed at some giant financial institutions and 
at large universities. Machine and programming languages were created to communicate 
algorithms, and a large number of analysts and programmers were needed to design and to 
code applications for the giant computers. Undergraduate and graduate programs were 
conceived to teach computer languages, file and data structures and advanced computer 
concepts. Good teachable undergraduate texts were nonexistent and the fundamentals of 
Computer Science were lacking. The first Canadian Theoretical Computer Science Summer 
School was held in Toronto, the main speakers were two young researchers Janusz Brzozowski 
and Arto Salomaa. This talk is an attempt to recreate some of Prof. Brzozowski's brilliant 
inspirational seminal lectures that became fundamental to the teaching of Computer Science 
Theory in Canada and beyond.
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The 60's were defined & remembered by revolutionary events

1. the introduction of commercial main-frame computing and 
the birth of Computer Science courses.

2. The civil rights movement in the U.S.

3. The arrival of the space age.

4. Cold war crises: Berlin Wall, Missiles in Cuba

5. Assassinations of political figures in the U.S.

6. Advances in office and computer technology

7. The Vietnam war and protests

8. Historical events in Canada

9. Music & festivals of the 60's
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            Some historical events that defined the sixties

1960, Remington Rand Corp installs commercial Univac II computers.
January 1960, At a meeting of the European language design group in Paris, Peter Naur
 presents the Algol 60 report, a formal language definition of Algol.
Febr. 1, 1960, 4 black University students sat down at the lunch counter in a Woolworth store
 in Greensboro, North Carolina, the first sit-in civil-right demonstration. 
July     1960, IBM announces 7070/7074 computers with discrete transistors, no vacuum tubes.
Nov. 8, 1960, John F. Kennedy elected to be President of U.S.
         1961, U.S. The FDA-approved oral contraceptive is made available.
April 12, 1961, Yuri Gagarin becomes the first human being in space.
April 17, 1961, CIA-trained operatives invade Cuba at Bay of Pigs, (were defeated in 3 days).
May 25, 1961, John F. Kennedy gives his we-will-put-a-man-on-the-Moon speech. 
July 31, 1961, IBM introduces the IBM Selectric Typewriter.
Aug 13, 1961, The erection of the Berlin Wall
May    1962, Janusz Brzozowski graduates from Princeton University, Princeton, NJ
Oct. 22, 1962, President Kennedy's TV address, the Cuban missile crisis, risk of nuclear war,

The Doomsday clock was to be set to at 1 minute till midnight. 
April    1963, IBM ships its 7040 computers future customers incl. UWO, U. of Waterloo 
Jun 12, 1963, Civil Rights advocate Medgar Evers assassinated in Jackson, Mississipi.
July 11, 1963, Nelson Mandela arrested, jailed, served 27 years.
Nov. 22, 1963, John F. Kennedy assassinated.
Nov. 24, 1963    Jack Ruby fatally shoots Lee Harvey Oswald.
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February 1964,  The Beatles arrive to NY, JFK airport, Beatlemania comes to the U.S.
April 7, 1964, IBM announces its family of System/360 computers 
August 2, 1964, Gulf of Tonkin incident that leads to the Authorization of the Vietnam War
September, 1964,  Western U. offers an undergraduate program in Computer Science

1965, 4 undergraduate students, at Univ. of Waterloo, write a 100 statements/sec 
  load-and-go, in-core, Fortran interpreter for the IBM 7040/7044 computer.

October 15, 1965, First draft card burned, David Miller, New York, arrested,  2 years in prison
July 1966, Arto Salomaa becomes Visiting Professor at Western
August 1966, First Canadian Summer School on Theoretical Computer Science, 

featuring J. Brzozowski and A. Salomaa 
October 1966, the Black Panther Party is founded.
April 27, 1967,  EXPO 67 opens in Montreal
June 5 – 10, 1967, The Six-Day War, Israel survives
June 16-18, 1967, Monterey International Pop Festival 
 1968, Mass-mailed Chargex credit cards are introduced in Canada
April 4, 1968, Dr. Martin Luther King, Jr.  assassinated.
April 20, 1968, Pierre Elliott Trudeau becomes Prime Minister of Canada 
May 6, 1968, Students-led revolution in Paris
Aug. 20,21 1968, The Soviet Army supported by other Eastern Block countries invade Prague

The Prague Spring is buried 
1969 Arto Salomaa's book Theory of Automata is published by Pergamon Press. 

1st advanced undergraduate text on regular expressions & finite automata.
July 16, 1969, Apollo 11 launch, 

lands men on the Moon, Sea of Tranquility July 20; returns July 24, 1969
Aug. 15-18,  1969 Woodstock Music Festival
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 Remington Rand Corp installs Univac II computers
magnetic core memory: 2,000-10,000 words

$1,500,000 – 3,000,000 
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1960 Remington Rand Corp installs Univac IIs.
Metropolitan Life Insurance Co., NY   Pacific Mutual Life Insurance Co., LA
United States Steel, Pittsburgh London Life Insurance Co. London, Ont.
Sun Life Insurance Co. Montreal, Que.

   PROGRAMMING AND NUMERICAL SYSTEM
    Internal number system      Binary coded decimal Decimal digits/word           12         
    Decimal digits/instruction    6     Instructions per word          2
    Instructions used               54   Arithmetic system         Fixed point
    Instruction type  One address    Number range Between  -1 and +1
    Decimal point occurs at the right of the sign digit.
   ARITHMETIC UNIT
    Including Store Access in Microsec    Add  160     Mult  1,720     Div    3,030
   Construction  Vacuum tubes             Arithmetic mode Serial
   Timing            Synchronous               Operation            Sequential

         COST, PRICE AND RENTAL RATES
                               Monthly Rental 1 Shift Outright Sale Price
    Description              5 Day Week          F.O.B. Factory
    Univac II Central Computer w/power supply $18,540.00                $970,000
     & supervisory ctl desk
    Uniservo II                            450.00        20,000
    Uniprinter                             390.00       22,000
    Extra Dolly for Uniprinter             122.50             7,000     
    Unityper II                               90.00           4,500
    High Speed Printer                         3,300.00              185,000
    Card-to-Tape Unit               2,520.00            142,100
    Tape-to-Card Unit                            2,300.00        130,000
    Perforated Tape to  Magnetic Tape Converter     1,800.00             108,000
    Magnetic Tape to Perforated Tape Converter     1,500.00 90,000
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The sixties    Business Computers

 IBM 7070   50,000 'bytes'

IBM 1401   8,000 'bytes'
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Programming Languages of the 60s

Fortran IV     WATFOR

Algol 60    Simula

COBOL

APL     Lisp 1.5    LOGO
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The IBM 7040 Scientific computer
●  

16,384  36-bit words  
.    
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IBM Selectric typewriter
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Characters

A B C D E F G H I J K 
L M N O P Q R S T U 
V W X Y Z

a b c d e f g h i j k l m 
n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

  @#! $ % & ( ): ; ' < > ?
   + - * / _ [ ] = " ° ¼ ½

A B C D E F G H I J K 
L M N O P Q R S T U 
V W X Y Z

a b c d e f g h i j k l m
n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

@ # ! $ % & ( ): ; ' < > ?
 + - * / _ [ ] = " ° ¼ ½
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Mathematical and composite 
characters

a b c d e f g h i j k
l m n o p q r s t u v z

A B C D E F G H I J K
L M N O P Q R S T U
V W X Y Z 

( ) [ ] { }   + - / | * 
  

Over-strike, composition and
         underline tricks

    <     >     =     + 
       -->       <>         <-->

        v  (   0   an  An  0//  

 d(ex)  

 ------  =  ex     d(ex)/dx =  ex

   dx
             d(f(g(x))/dx = d(f(y)/dy)d(g(x)/dx

  d(f(x)g(x)) = d(f(x))/dx  g(x) + f(x)  d(g(x))/dx

                     (fg)' = f 'g + fg'
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The mimeograph machine

 
The print quality and inexpensive reproduction of 
print materials were limited. 

For each page a “master” was first produced on a 
special wax-covered stencil by a ribonless 
typewriter. 
 
The typewriter thus made impressions in the stencil, 
which were filled with ink and squeezed onto paper 
by the mimeograph’s roller. The stencils could also 
be marked with drawings made by hand.

 n copies were made by rolling each master n times 
on pages fed to the machine whose purple, 
hallucinogenic, indelible ink was hated by our 
secretaries. The copies had to be collated by hand 
in the correct order and stapled to produce the n 
complete sets.

Lecture notes were produced through this painful 
way, 
corrections were especially difficult.

Hand-outs were restricted mostly to exam papers 
and home-work assignments.
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The Xerox revolution

 Xerox corporation 
introduces affordable 
photocopying machines:

5-10 cents/page

Minimum wage in the U.S 
$1.00-1.60/hour

throughout the 60s



 16

Journals for automata theory in the 60s

Information and Control

Communications of the ACM

Journal of the ACM

IBM Journal of Research & Development

Pacific Journal of Mathematics

Michigan Mathematical Journal

IEEE Transactions Electronic Computers
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Authors on Automata Theory before 1965
publishing in English

J. Brzozowski
J. Büchi
N. Chomsky
L.C. Eggan
S. Ginsburg
J. Hartmanis
R. McNaughton
S.C. Kleene
M.O. Rabin
A. Salomaa
M.P. Schützenberger
D.S. Scott
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Graduate Textbooks 
on Automata Theory before 1965 

Automata Studies    C. Shannon & J. McCarthy

Theory of Self-Reproducing Automata
John Von Neumann
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Undergraduate Textbooks 
on Automata Theory before 1965

    
      Ø
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A small sample of the 100s of books on automata theory
available today

   

●  

 

  .  
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Chalk board
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Some of us are still using chalk boards
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In spite of his
enormous musical 

talent,
Janusz decided to 
 pursue studies in 

Electrical 
Engineering
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1959 Master of E.E Toronto

  . 

 
PhD at Princeton '62

 1962 Appointed to the Faculty of Electrical Engineering
 and Computer Science, at the University of Ottawa 
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School of Electrical Engineering & Computer Science, U. of Ottawa
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University of Turku
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Arto Salomaa & Janusz Brzozowski

   

 

The main speakers 
at the first Canadian Theoretical Computer Science

summer school / workshop conference 
at the University of Toronto
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This is how Janusz Brzozowski  introduced me to regular expressions & languages 

Ø denotes the empty set

Ʃ denotes an alphabet, a finite set of letters, for example if Ʃ = {0, 1} 
then Ʃ is the binary alphabet of characters 0 and 1.

A finite letter sequence, where the letters are from Ʃ, is called a word over Ʃ. 
The length of the sequence is called the length of the word.

Ʃ* denotes the set of all words over Ʃ.

λ denotes the empty word, namely the empty sequence of letters.

Subsets of Ʃ* are called languages over Ʃ

Λ or Ø* denote the empty-word language, 
the singleton language that contains only the empty word, Λ = {λ} = Ø*
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Operation on words over Ʃ, 
word concatenation product, or just product of two words x, y:    xy
 

let x = x1...xn ,  y = y1... ym  then xy =  x1...xny1... ym , where all xi, yj  ϵ Ʃ

Note: for any word x, λx = xλ = x and for any three words x,y,z   (xy)z = x(yz) = xyz = xyz.

Operation on languages
Boolean set operation on languages A and B: union U, intersection ∩, set difference ─ , etc.

A U B = {x | x ϵ A  or  x ϵ B },   A ∩ B = {x | x ϵ A and x ϵ B },   A ─ B = {x | x ϵ A and x Ï B}.

All identities from Boolean algebra of sets apply to all languages A, B, C over Ʃ.

A U A =  A ∩ A = A U Ø = A ─ Ø = A ∩ Ʃ* = A U (A ∩ B) = A ∩ (A U B) = Ʃ* ─ (Ʃ* ─ A) =  A,
     

A U B = B U A,       A ∩ B = B ∩ A,                                   Ʃ* ─ (A U B)  = (Ʃ* ─  A) ∩ (Ʃ* ─  B),
 

A U Ʃ* = Ʃ*,           A ─ B  = A ∩ (Ʃ* ─ B),                        A ─ Ʃ* = A ∩ Ø = A ─ A = Ø ─ A = Ø,
  

(A U B) U C  =  A U (B U C),      (A ∩ B) ∩ C  = A ∩ (B ∩ C),         (A ─ B) ─ C  = A ─ (B U C),
  

(A U B) ─ C  = (A ─ C) U (B ─ C),                                        (A ∩ B) ─ C  = (A ─ C) ∩ (B ─ C),
  

 A ∩ (B U C) = (A ∩ B) U (A ∩ C),                                          A U (B ∩ C) = (A U B) ∩ (A U C) 
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The concatenation product, or just product of languages  A, B:  A•B = {xy | x ϵ A, y ϵ B}
 
Basic identities for products of languages  A, B, C over Ʃ :

A•(B•C) = (A•B)•C,        A•(B U C) = A•B U A•C,      (B U C)•A = B•A U C•A

     A•Ø* = Ø*•A = A,                A•Ø = Ø•A = Ø   
  
Iterated concatenation product, or just the nth power of a language A over Ʃ:

A0 = Ø* = {λ},   An = A•An-1  =  An-1• A for all n > 0

The Kleene-star closure

Kleene star of a language A over Ʃ, A*: set of all finite-sequence products of words from A

A* = Ø* U A U A2  U A3  U A4  U ...  = {w1w2 ... wn| wi ϵ A, n ϵ NN, i ϵ [1...n]} U {λ}, 

           including λ,  the empty sequence, when n = 0

Important identities for star closure

A* =  Ø* U A•A* = A*•A* = (A*)* = (A U Ø*)* = (A ─ Ø*)*,      A•A* = A*•A     
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Regular expressions, regular languages, Brzozowski derivatives.

Let Ʃ be a finite set of symbols with no elements from {(, ), +, •, Ø,*, ∩, ─, =, Ʃ, δ, ∂}  

Syntax
The following syntax rules define the form of regular expressions over Ʃ, RegƩ:

S1.  Ø ϵ RegƩ

S2.  if x ϵ Ʃ then x ϵ RegƩ

S3.  if A, B ϵ Reg(Ʃ) then so are (A + B), (A•B), (A*)

S4.  nothing else is in RegƩ 

     unless its being is the result of a finite no. of applications of steps S1., S2., and S3.

Denotations. The meaning of a regular expression A, |A|  
 

M1.  Ø denotes the empty set { } ,                     |Ø| =  { } 
M2.  for all  x ϵ Ʃ, x denotes the singleton {x},  |x| =  {x}

the language of a one-letter word, namely x 
M3.  for all  A, B ϵ RegƩ,  

 (A + B) denotes the union of the two sets denoted by A and B,      |(A + B)|  = |A| U |B|
         (A•B)   denotes the product of the two sets denoted by A and B,      |(A•B)| =  |A| • |B|
          (A*)    denotes the Kleene star closure of the set denoted by A         |(A*)|  =   |A|*
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Simplifications and abbreviations.

We may omit the •  and the parentheses where possible: 
 
  we write  A+B+C     for ((A+B)+C) and for (A+(B+C))
  we write  ABC         for ((AB)•C)   and for  (A•(B•C))

  we assume the • has higher precedence than the +, and the * has the highest precedence
  for example, we write A+BC* for (A+(B•(C)*))

 Let  Ʃ = {x1, x2, ..., xn}, then we write Ʃ  for  (x1+ x2+ ...+ xn)

 For |A| ∩ {λ} we write δ|A| and we write δA  to denote this set.

Brzozowski's X-regular expressions,  Boolean operations ∩ and ─ are included:

The syntax of X-regular expressions over Ʃ, XRegƩ, is defined as follows:

 XS1.  Ø ϵ XRegƩ

 XS2.  if x ϵ Ʃ then x ϵ XRegƩ

 XS3.  if A, B ϵ XReg(Ʃ) then so are (A + B), (A ∩ B), (A ─ B), (AB), (A)*

 XS4.  nothing else is in XRegƩ 

        unless its being is the result of a finite no. of applications of steps XS1., XS2., and XS3.

We abbreviate A ∩ Ø* as δA
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     Meaning. The meaning of an X-regular expression
 XM1.  Ø denotes the empty set { } 

 XM2.  for all  x ϵ Ʃ, x denotes the singleton {x}, a language of a one-letter word, namely x 

 XM3.  for all  A, B ϵ XRegƩ,  

(A + B) denotes the union of the two sets denoted by A and B          |(A + B)| = |A| U |B|
(A ∩ B)              the intersection of the sets denoted by A and B      |(A ∩ B)| = |A| ∩ |B|

       (A ─ B)              the difference of the sets denoted by A and B         |(A ─ B)| = |A| ─ |B|
         (A•B)               the product of the two sets denoted by A and B         |(A•B)|  =  |A| • |B|
          (A*)                 the Kleene star closure of the set denoted by A           |(A*)|   =    |A|*

For all A ϵ XRegƩ, δA denotes the X-regular expression (A ∩ Ø*),  δA = (A ∩ Ø*)

i.e.,  δA =  Ø* iff  λ ϵ |A|,  and  δA =  Ø iff  λ Ï |A|. 
         Therefore for any  B ϵ XRegƩ   (δA)•B = B  iff  λ ϵ |A|   and  (δA)•B =  Ø iff  λ Ï |A|

 The Brzozowski derivatives of X-Regular Expressions.
For each word w ϵ Ʃ*, we define a mapping  ∂w : XRegƩ → XRegƩ recursively as follows:

For all  A ϵ XRegƩ,   ∂λ(A) = A,                  for all xϵ Ʃ,                      ∂x(Ø) = Ø.

For all xϵ Ʃ,              ∂x(x) = Ø*, and for all x, y ϵ Ʃ, where x  ≠ y          ∂x(y) = Ø.
For all A, B ϵ XRegƩ and for all x ϵ Ʃ,      ∂x((A + B)) = (∂x(A) +  ∂x(B))

                                                                ∂x((A ∩ B)) = (∂x(A) ∩  ∂x(B))
                                                                 ∂x((A ─ B)) = (∂x(A) ─  ∂x(B))
                                                                  ∂x((A•B))  = (∂x(A)•B + δA• ∂x(B))
                                                                       ∂x(A*)  = (∂x(A)•A*)
For all A ϵ XRegƩ and for all x ϵ Ʃ and all words w ϵ Ʃ*, we define ∂xw(A)  =  ∂w(∂x(A)) 
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Exercise 1, Show that for all A, B ϵ XRegƩ and for all w ϵ Ʃ*, ∂w((A + B)) = (∂w(A) + ∂w(B)),

                   ∂w((A ∩ B)) = (∂w(A) ∩ ∂w(B))   and   ∂w((A ─ B)) = (∂w(A) ─ ∂w(B)).

Exercise 2, the meaning of the Brzozowski derivative
Show that the language denoted by ∂w(A), where w ϵ Ʃ* and A ϵ XRegƩ, is the following: 

   |∂w(A)| = {zϵ Ʃ*| wz ϵ |A|}

Similarity and equivalence of Extended Regular expressions.
For A, B ϵ XRegƩ, we say they are similar, A ≈ B, 

if  starting from A and applying a finite sequence of the Boolean-,
 product-  and star identities given below, one can obtain B.

A + A  ≡  A ∩ A  ≡  A + Ø ≡  A ─ Ø  ≡  A ∩ Ʃ*  ≡  A + (A ∩ B)  ≡  A ∩ (A + B)  ≡  Ʃ* ─ (Ʃ* ─ A) ≡ A,
  

A + B  ≡  B + A,      A ∩ B  ≡  B ∩ A,        A + Ʃ* ≡  Ʃ*,        Ʃ* ─  (A U B)  ≡  (Ʃ* ─  A) ∩ (Ʃ* ─  B),
    

A ─ B  ≡  A ∩ (Ʃ* ─ B)                                                    A ─ Ʃ*  ≡  A ∩ Ø  ≡  A ─ A  ≡  Ø ─ A  ≡  Ø,
    

(A + B) + C  ≡  A + (B + C),        (A ∩ B) ∩ C  ≡  A ∩ (B ∩ C),          (A ─ B) ─ C  ≡  A ─ (B + C),
 

(A + B) ─ C  ≡  (A ─ C) + (B ─ C),                                           (A ∩ B ) ─ C  ≡  (A ─ C) ∩ (B ─ C),

A ∩ (B + C)  ≡  (A ∩ B) + (A ∩ C),                                             A + (B ∩ C)  ≡  (A + B) ∩ (A + C),
  

A•(B•C)  ≡  (A•B)•C,     A•Ø* ≡ Ø*•A ≡ A,     A•(B + C)  ≡  A•B + A•C,     (B + C)•A  ≡  B•A + C•A

A•Ø  ≡  Ø•A  ≡  Ø       A•A*  ≡  A*•A      Ø* + A•A* ≡ A*•A* ≡  (A*)* ≡  (A + Ø*)*  ≡  (A ─ Ø*)*  ≡  A*



 35

Exercise 3, Give three languages A, B, C over {0,1} such that  A•(B ─ C)  ≠  A•B ─ A•C

A solution:  A = {0, 01},  B = {0, 10},  C = {λ, 0, 1}

           A•(B ─ C) = {0, 01}•({0, 10} ─ {λ, 0, 1}) = {0, 01}•{10} = {010, 0110}

          A•B ─ A•C = {0, 01}•{0, 10}  ─  {0, 01}•{λ, 0, 1} = {00, 010, 0110} ─ {0, 00, 01, 010, 011} = 
                        = {0110}

Equivalence
 For A, B ϵ XRegƩ, we say A and B are equivalent,  A ≡ B, if  |A| = |B|.

Note:    A ≈ B   implies  A ≡ B.

Dissimilarity
Two (extended) regular expressions A and B are termed dissimilar if they are NOT similar.

Similarity simplifications
In what follows, we assume that regular expressions are expressed in a form that is the result of 
a scan from left to right and any simplifying identities that are applicable are applied.
We assume therefore that all singletons {w} where w ϵ Ʃ* are represented 
by the regular expression simply as w.  
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Exercise 4:  Show that for any w ϵ Ʃ*, and any A ϵ XReg(Ʃ), ∂w(wA) = A  

Solution: If w = λ then  w = Ø* and then ∂λ(wA) = ∂λ(Ø*A) = ∂λ(A) =  A

We proceed by induction on the length of the letter sequence making up the word w.
Because of the first line, the statement of Exercise 4 holds for length 0.
Assume that the statement ∂w(wA) = A holds for all words w  ϵ Ʃ* of length ≤ n, 

 then for any word w of length n+1, we have w = xv, where x ϵ Ʃ and v ϵ Ʃn, 

 then  ∂w(wA) = ∂xv(xvA) = ∂v(∂x(xvA)) = ∂v(∂x(x)vA + δx∂x(vA)) =

                      = ∂v(Ø*vA + Ø∂x(vA)) = ∂v(vA + Ø) = ∂v(vA) =  A, since  v ϵ Ʃn

This completes the inductive proof for words w of any length.

Exercise 5: 
Show that for any u,v ϵ Ʃ, u  ≠ v and any A ϵ XRegƩ, ∂u(vA) = Ø, 

       Solution: ∂u(vA) = (∂u(v)A + δv∂u(vA)) = (ØA + Ø∂u(vA)) =  (Ø + Ø) = Ø
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Exercise 6: Show that for all words  w  ϵ Ʃ*,  a)  ∂w(Ʃ*) = Ʃ* and  b)  ∂w(Ø) = Ø.

Solution: The b) part is obvious.
  a) We note ∂λ(Ʃ*) = Ʃ*

Because of this, the statement of Exercise 6 holds for words of length 0.
We proceed with the following induction hypothesis, IH on the length w. 
Assume that the statement ∂w(Ʃ*) = Ʃ* holds for all words w of length up to n, 

then for any word w of length n+1, we have

  w = xv, where x ϵ Ʃ and vϵ Ʃn, then let |x| = {x} and |v| = {v}
 ∂xv(Ʃ*) =∂v(∂x(Ʃ*)) = ∂v(∂x(Ʃ)Ʃ*) = ∂v(∂x((Ʃ ─ x) + x)Ʃ*) = ∂v((∂x(Ʃ ─ x) + ∂x(x))Ʃ*) = 

    = ∂v((Ø + Ø*)Ʃ*) = ∂v(Ø*Ʃ*) = ∂v(Ʃ*) = Ʃ*.  The last step follows from IH.

Exercise 7: Show that for any A  ϵ XRegƩ, the cardinality of the set of dissimilar

 (distinct) derivatives of A, is the same as that of Ʃ* ─ A.

Hint:  1-1 correspondence exists between the set of dissimilar
 (distinct) derivatives of A and those of  Ʃ* ─ A ,
 for each w  ϵ Ʃ*, ∂w(A) goes to ∂w(Ʃ* ─ A) = ∂w(Ʃ*) ─ ∂w(A) = Ʃ*─ ∂w(A). 
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Exercise 8: 
Show that there are three dissimilar derivatives of L, the language of all binary (0,1) strings 

without consecutive 1s, i.e.,   L = Ʃ*  ─  Ʃ*11Ʃ* and Ʃ = {0,1}.

Solution:  We try to obtain dissimilar derivatives 
      by taking derivatives with respect to words of increasing lengths.

 
∂λ(L) = L = Ʃ* ─ Ʃ*11Ʃ*                                                                                                                    (0)

∂0(L) = ∂0(Ʃ* ─ Ʃ*11Ʃ*) = ∂0(Ʃ*) ─  ∂0(Ʃ*11Ʃ*)  = ∂0(A) ─  ∂0(B)   where A = Ʃ* and B = Ʃ*11Ʃ*    (1)

∂0(A) = ∂0(Ʃ*) = Ʃ*                                                                                                                           (2)

∂0(B) = ∂0(Ʃ*11Ʃ*) = (∂0(Ʃ*)11Ʃ* + δA∂0(11Ʃ*)) = (Ʃ*11Ʃ* + Ø*∂0(11Ʃ*)) =

  =  (B + ∂0(11Ʃ*)) = (B + (∂0(1)1Ʃ* + δ1∂0(1Ʃ*))) = (B + (Ø1Ʃ* + Ø∂0(1Ʃ*)))

  =  (B + (Ø + Ø)) =  B                                                                                                                      (3)

From  (1), (2) and (3) we have  ∂0(L) = ∂0(A) ─ ∂0(B) =  Ʃ* ─ B =  Ʃ* ─ Ʃ*11Ʃ* = L                        (4)
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∂1(L) = ∂1(Ʃ* ─ Ʃ*11Ʃ*) = ∂1(Ʃ*) ─  ∂1(Ʃ*11Ʃ*)  = ∂1(A) ─ ∂1(B), where A = Ʃ* and B = Ʃ*11Ʃ*     (5)

∂1(A) = ∂1(Ʃ*) = Ʃ*                                                                                                                          (6)

∂1(B) = ∂1(Ʃ*11Ʃ*) = ∂1(A11Ʃ*) = (∂1(A)11Ʃ* + δA∂1(11Ʃ*)) = (Ʃ*11Ʃ* + Ø*∂1(11Ʃ*)) =

          = (B + Ø*∂1(11Ʃ*)) = (B + 1Ʃ*) = (Ʃ*11Ʃ*+ 1Ʃ*)                                                                  (7)

From  (5), (6) and (7) we have  ∂1(L) = ∂1(A) ─ ∂1(B) =  Ʃ* ─ (Ʃ*11Ʃ*+ 1Ʃ*)                                  (8)

From (4) we see that for any word w  ϵ Ʃ*, ∂0w(L) = ∂w(∂0(L)) = ∂w(L)                                             (9)

i.e., No new dissimilar Brzozowski derivative is obtained 
by taking derivatives with respect to a word w lengthened by a prefix 0.

       In particular ∂00(L) = ∂0(L) = L       and     ∂01(L) = ∂1(L) =  Ʃ* ─ (Ʃ*11Ʃ*+ 1Ʃ*)                     (10)

Dissimilar derivatives might still be obtained, however, from  ∂1(L).

∂10(L) = ∂0(∂1(L)) = ∂0(Ʃ* ─ (Ʃ*11Ʃ* + 1Ʃ*)) =  ∂0(Ʃ*) ─ ∂0((Ʃ*11Ʃ* + 1Ʃ*)) = 

         = Ʃ* ─ ∂0((Ʃ*11Ʃ* + 1Ʃ*)) = Ʃ* ─ (∂0(Ʃ*11Ʃ*) + ∂0(1Ʃ*)) =  Ʃ* ─ (∂0(Ʃ*11Ʃ*) + Ø) =

         = Ʃ* ─ ∂0(Ʃ*11Ʃ*)  = Ʃ* ─  (∂0(Ʃ*)11Ʃ* + δƩ*∂0(11Ʃ*))  = 

         = Ʃ* ─ (Ʃ*11Ʃ* + Ø*∂0(11Ʃ*))  = Ʃ* ─ (Ʃ*11Ʃ* + Ø*Ø) = Ʃ* ─ Ʃ*11Ʃ*  =  L                       (11) 
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∂11(L) = ∂1(∂1(L)) = ∂1(Ʃ* ─ (Ʃ*11Ʃ*+ 1Ʃ*)) = Ʃ* ─ ∂1(Ʃ*11Ʃ*+ 1Ʃ*) =

          = Ʃ* ─ (∂1(Ʃ*11Ʃ*) + ∂1(1Ʃ*)) = Ʃ* ─ (∂1(Ʃ*11Ʃ*) + Ʃ*) = Ʃ* ─  Ʃ* =  Ø                              (12)

∂110(L) = ∂0(∂11(L)) = ∂0(Ø) = Ø        and       ∂111(L) = ∂1(∂11(L)) = ∂1(Ø) = Ø                             (13)

i.e., No new dissimilar Brzozowski derivative can be obtained by further taking derivatives.
 
 ∂λ(L) = L = Ʃ* ─  Ʃ*11Ʃ*,    ∂1(L) = Ʃ* ─  (Ʃ*11Ʃ*+ 1Ʃ*)   and  ∂11(L) =  Ø 

             this shows that there are at most three distinct dissimilar Brzozowski derivatives of L.

It is easy to show that these derivatives represent three distinct languages.

The deterministic finite automaton M that accepts L can be given by a state table as follows:
    ======================================================
    ||       States of M      ||    0 |        1 ||    δ   ||
    ======================================================
    ||   ∂λ(L) = L = Ʃ* ─ Ʃ*11Ʃ*     ||      L |      ∂1(L) ||    Ø*   ||

    -----------------------------------------------------------------------------------------------
    ||   ∂1(L) = Ʃ* ─ (Ʃ*11Ʃ*+ 1Ʃ*) ||        L |     ∂11(L) ||    Ø*   ||

    -----------------------------------------------------------------------------------------------
    ||  ∂11(L) =  Ø                          ||     ∂11(L) |     ∂11(L) ||    Ø   ||

    ======================================================
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The states of M are languages over Ʃ*, 
the initial state is L; 
a state S is a final state iff  δS =  Ø*.

In a state S reading a letter x  ϵ Ʃ , the automaton M goes into the state ∂x(S).  

A word w  ϵ Ʃ* is accepted
 if M ends up a final state on reading the sequence of letters of w from start to end.

Exercise 9: Show that there are only a finite number of dissimilar derivatives 
for any regular expression  E  ϵ XRegƩ.

Solution: We proceed by induction on the depth of parenthetical nestedness of in E, Δ(E).

The basis of the induction: when Δ(E) = 0.  
If E = Ø, then the cardinality of the set of dissimilar derivatives of E is one, 

since for any w  ϵ Ʃ*, ∂w(E) =  Ø.

If E = Ø*, then the cardinality of the set of dissimilar derivatives of E is two, 
1. ∂λ( Ø*) =  Ø*   2.  for any w  ϵ Ʃ*  ─ {λ} , ∂w(Ø*) =  Ø

If E = x, where x  ϵ Ʃ, then there are at most three distinct/dissimilar derivatives of E, as follows:
1. ∂λ(x) = x,         2.   ∂x(x) = Ø*,        3. ∂w(x) = Ø, for all w  ϵ Ʃ* ─ {λ, x}.

If Card(Ʃ) > 1, then these are, in fact, exactly three derivatives.
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The induction hypothesis.
Assume that the statement of  Exercise 9 is true for all A, B  ϵ XRegƩ if Δ(A), Δ(B)  <  k ,  

then we show that the statement is true also for E  ϵ  XRegƩ, where Δ(E) =  k.

Let DD(A), DD(B) and DD(E) be the set of dissimilar derivatives of A, B and E resp.  
Let DD(A) = {A1, A2, ...  An} and let  DD(B)  = {B1, B2, ...  Bm}, for some positive integers n and m.

Case A.
Assume E = (A + B) then we have ∂w((A + B)) = (∂w(A) + ∂w(B)), for all w ϵ  Ʃ*

 let n and m be the number of dissimilar derivatives of  A and B respectively, 
then that of E will not exceed nm.

A similar statement can be said when E = (A ∩ B)  and also when E = (A ─ B).

Case B
Assume E = (A  B) then ∂λ(E) = (A  B) and for all x  ϵ Ʃ, then

           we have ∂x(A  B) = (∂x(A)  B),    or  ∂x(A  B) =  ((∂x(A)  B) + ∂x(B)) 

 
Then all further derivatives of E are also in the form  

(Ai , B) or ((Ai  B) + Bj) where i   ϵ [1.. n] and j  ϵ [1.. m] . 

Thus DD(E) is a subset of  { (Ai  B) | i  ϵ [1.. n] } U { ((Ai  B) + Bj) | i  ϵ [1.. n], j  ϵ [1.. m] } 

which is a finite set whose cardinality is not more than n + nm.
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Case C
Assume E = (A*) , since  A*  =  (A + Ø*)* = (A ─ Ø*)*, 

without loss of generality we further assume that δA = Ø,
 

then ∂λ(E) = (A*) and for all x  ϵ Ʃ, then we have ∂x(A*) = (∂x(A)  (A*)).

Then all further derivatives of E are also in the same form
         ((Ai  (A*)) + (δA(A*)) = ((Ai  (A*)) + (Ø (A*)) = (Ai  (A*)).

Thus DD(E) is a subset of  { (Ai  (A*)) | i  ϵ [1.. n] } 

which is a finite set whose cardinality is not more than n.

This completes the inductive proof. 
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Formal power series associated with languages.

 Let L be a language over Ʃ, the formal power series, LL(x), associated with L is defined as follows:
                 LL(x) = δL + (L ∩ Ʃ)x + (L ∩ Ʃ2)x2  + (L ∩ Ʃ3)x3  +  (L ∩ Ʃ4)x4  + ... 

 Example 1:   Let  Ʃ = {0, 1}  and  L = Ʃ* ─ Ʃ*11Ʃ*, then

 δL = Ø*,  L ∩ Ʃ = {0,1},  L ∩ Ʃ2 = {00,01,10},   L ∩ Ʃ3 = {000,001,010,100,101}

               L ∩ Ʃ4 = {0000,0001,0010,0100,0101,1000,1001,1010}

LL(x) = Ø* + {0,1}x + {00,01,10}x2 + {000,001,010,100,101}x3 + {0000,0001,0010,0100,0101,1000,1001,1010}x4 + ... 

 Let us look at the following two formal power series {0}  LL(x)x and {10}  LL(x)x2 , 
 where the scalar multiplication      and the multiplication by powers of x are defined 
    as component-wise multiplication on each coefficient and powers of x.
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{0}  LL(x)x =  {0}Ø*x + {0}{{0,1}x2 + {0}{00,01,10}x3  + {0}{{000,001,010,100,101}x4  + 

                                                    + {0}{{0000,0001,0010,0100,0101,1000,1001,1010}x5  + ...

{10}  LL(x)x2 = {10}Ø*x2 + {10}{0,1}x3 + {10}{00,01,10}x4 + {10}{000,001,010,100,101}x5  + 

                                                          + {10}{0000,0001,0010,0100,0101,1000,1001,1010}x6  + ...
 
{0}  LL(x)x =  {0}x + {00,01}x2 + {000,001,010}x3 + {0000,0001,0010,0100,0101}x4  + 
                                            + {00000,00001,00010,00100,00101,01000,01001,01010}x5  + ...

{10}  LL(x)x2 ={10}x2+{100,101}x3 + {1000,1001,1010}x4+{10000,10001,10010,10100,10101}x5

                                                + {100000,100001,100010,100100,100101,101000,101001,101010}x6  + ...

Let us form the formal power series {0}  LL(x)x ++ {10}  LL(x)x2, 
   where the operation  ++  is defined by taking the union of the coefficients of like powers of x.

 {0}  LL(x)x ++ {10}  LL(x)x2 = {0}x + {00,01,10}x2 + {000,001,010,100,101}x3 +
                                        + {0000,0001,0010,0100,0101,1000,1001,1010}x4  +

+ {00000,00001,00010,00100,00101,01000,01001,01010,10000,10001,10010,10100,10101}x5  + ...
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Let us form the formal power series as the difference LL(x)  ──  ({0}  LL(x)x ++ {10}  LL(x)x2), 
where the operation ──  is defined by taking the set difference of the coefficients of like powers of x.

LL(x)  ──  ({0}  LL(x)x ++ {10}  LL(x)x2) =  Ø* + {1}x + Øx2  + Øx3  + Øx4  + ...  =   Ø* + {1}x  

Let 11 denote the formal power series where the constant is  Ø* 
and the coefficients of positive powers of x are all Ø.

LL(x) is expressed as a formal rational polynomial.

(11  ──  ({0}x ++ {10}x2))   LL(x)  =   11  + {1}x  

                                      LL(x) =   (11  + {1}x) /  / (11  ──  ({0}x ++ {10}x2))   ??

The meaning of these operations needs more explanations.
   We may note that if we replace the coefficient sets by the cardinality of these sets

we obtain the rational polynomial L(x):

  L(x) =  (1  + 1x)/(1 – (1x +1x2)) = (1  + x)/(1 – x – x2)) = 1 + 2x + 3x2 + 5x3 + 8x4 + 13x5 + 21x6 ...

  L(0.001) = 1.001/0.998999 = 1.002003005008013021034055089144233377610988
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