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Abstract. We consider a framework in which the clustering algorithm
gets as input a sample generated i.i.d by some unknown arbitrary dis-
tribution, and has to output a clustering of the full domain set, that is
evaluated with respect to the underlying distribution. We provide general
conditions on clustering problems that imply the existence of sampling
based clusterings that approximate the optimal clustering. We show that
the K-median clustering, as well as the Vector Quantization problem,
satisfy these conditions. In particular our results apply to the sampling -
based approximate clustering scenario. As a corollary, we get a sampling-
based algorithm for the K-median clustering problem that finds an al-
most optimal set of centers in time depending only on the confidence
and accuracy parameters of the approximation, but independent of the
input size. Furthermore, in the Euclidean input case, the running time
of our algorithm is independent of the Euclidean dimension.

1 Introduction

We consider the following fundamental problem:

Some unknown probability distribution, over some large (possibly in-
finite) domain set, generates an i.i.d. sample. Upon observing such a
sample, a learner wishes to generate some simple, yet meaningful, de-
scription of the underlying distribution.

The above scenario can be viewed as a high level definition of unsupervised
learning. Many well established statistical tasks, such as Linear Regression, Prin-
ciple Component Analysis and Principal Curves, can be viewed in this light. In
this work, we restrict our attention to clustering tasks. That is, the description
that the learner outputs is in the form of a finite collection of subsets (or a
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partition) of the domain set. As a measure of the quality of the output of the
clustering algorithm, we consider objective functions defined over the underlying
domain set and distribution.

This formalization is relevant to many realistic scenarios, in which it is nat-
ural to assume that the information we collect is only a sample of a larger body
which is our object of interest. One such example is the problem of Quantizer De-
sign [2] in coding theory, where one has to pick a small number of vectors, ‘code
words’, to best represent the transmission of some unknown random source.

Results in this general framework can be applied to the worst-case model of
clustering as well, and in some cases, yield significant improvements to the best
previously known complexity upper bounds. We elaborate on this application in
the subsection on worst-case complexity view below.

The paradigm that we analyze is the simplest sampling-based meta-algorithm.
Namely,

1. Draw an i.i.d random sample of the underlying probability
distribution.

2. Find a good clustering of the sample.

3. Extend the clustering of the sample to a clustering of the full
domain set.

A key issue in translating the above paradigm into a concrete algorithm is
the implementation of step 3; How should a clustering of a subset be extended
to a clustering of a full set? For clusterings defined by a choice of a fixed num-
ber if centers, like the K median problem and vector quantization, there is a
straightforward answer; namely, use the cluster centers that the algorithm found
for the sample, as the cluster centers for the full set. While there are ways to
extend clusterings of subsets for other types of clustering, in this paper we focus
on the K-median and vector quantization problems.

The focus of this paper is an analysis of the approximation quality of sampling
based clustering. We set the ground for a systematic discussion of this issue in
the general context of statistical clustering, and demonstrate the usefulness of
our approach by considering the concrete case of K-median clustering.

We prove that certain properties of clustering objective functions suffice to
guarantee that an implicit description of an almost optimal clustering can be
found in time depending on the confidence and accuracy parameters of the ap-
proximation, but independent of the input size. We show that the K-median
clustering objective function, as well as the vector quantization cost, enjoy these
properties. We are therefore able to demonstrate the first known constant-time
approximation algorithm for the K-median problem.

The paradigm outlined above has been considered in previous work in the
context of sampling based approximate clustering. Buhmann [3] describes a sim-
ilar meta-algorithm under the title ” Empirical Risk Approximation”. Buhmann
suggests to add an intermediate step of averaging over a set of empirically good
clusterings, before extending the result to the full data set. Such a step helps
reduce the variance of the output clustering. However, Buhmann’s analysis is
under the assumption that the data- generating distribution is known to the



learner. We address the distribution free (or, worst case) scenario, where the
only information available to the learner is the input sample and the underlying
metric space.

Our main technical tool is a uniform convergence result that upper bounds,
as a function of the sample sizes, the discrepancy between the empirical cost of
certain families of clusterings to their true cost (as defined by the underlying
probability distribution). Convergence results of the empirical estimates of the
k-median cost of clusterings where previously obtained for the limiting behavior,
as sample sizes go to infinity (see, e.g. Pollard [6]). Finite-sample convergence
bounds where obtained for the k-median problem by Mishra et al [5], and for the
vector quantization problem by Bartlett et al [2], which also provide a discus-
sion of vector quantization in the context of coding theory see [2]. Smola et al [7]
provide a framework for more general quantization problems, as well as conver-
gence results for a regularized versions of these problems. However, the families
of cluster centers that our method covers are much richer than the families of
centers considered in these papers.

1.1 Worst-Case Complexity view

Recently there is a growing interest in sampling based algorithms for approxi-
mating NP-hard clustering problems (see, e.g, Mishra et al [5], de la Vega et al
[8] and Meyerson et al [4]). In these problems, the input to an algorithm is a
finite set X in a metric space, and the task is to come up with a clustering of X
that minimizes some objective function. The sampling based algorithm performs
this task by considering a relatively small S C X that is sampled uniformly at
random from X, and applying a (deterministic) clustering algorithm to S. The
motivating idea behind such an algorithm is the hope that relatively small sam-
ple sizes may suffice to induce good clusterings, and thus result in computational
efficiency. In these works one usually assumes that a point can be sampled uni-
formly at random over X in constant time. Consequently, using this approach,
the running time of such algorithms is reduced to a function of the size of the
sample (rather than of the full input set X) and the computational complexity
analysis boils down to the statistical analysis of sufficient sample sizes.

The analysis of the model proposed here is relevant to these settings too. By
taking the underlying distribution to be the uniform distribution over the input
set X, results that hold for our general scenario readily apply to the sampling
based approximate clustering as well.

The worst case complexity of sampling based K-median clustering is ad-
dressed in Mishra et al [5] where such an algorithm is shown to achieve a sub-
linear upper bound on the computational complexity for the approximate K-

median problem. They prove their result by showing that with high probability,

a sample of size O ((kl%%("v suffices to achieve a clustering with average cost

(over all the input points) of at most 20pt + € (where Opt is the average cost
of an optimal k clustering). By proving a stronger upper bound on sufficient
sample sizes, we are able to improve these results. We prove upper bounds on



the sufficient sample sizes (and consequently on the computational complexity)
that are independent of the input size n.

2 The Formal Setup

We start by providing a definition of our notions of a statistical clustering prob-
lem. Then, in the ”basic tool box’ subsection, we define the central tool for this
work, the notion of a clustering description scheme, as well as the properties of
these notions that are required for the performance analysis of our algorithm.
Since the generic example that this paper addresses is that of K-median clus-
tering, we shall follow each definition with its concrete manifestation for the
K-median problem.

Our definition of clustering problems is in the spirit of combinatorial opti-
mization. That is, we consider problems in which the quality of a solution (i.e.
clustering) is defined in terms of a precise objective function. One should note
that often, in practical applications of clustering, there is no such well defined
objective function, and many useful clustering algorithms cannot be cast in such
terms.

Definition 1 (Statistical clustering problems).

— A clustering problem is defined by a triple (X,7T, R), where X is some do-
main set (possibly infinite), T is a set of legal clusterings (or partitions) of
X, and R: P x T — [0,1] is the objective function (or risk) the clustering
algorithm aims to minimize, where P is a set of probability distributions over
XL

— For a finite S C X, the empirical risk of a clustering T on a sample S,
R(S,T), is the risk of the clustering T with respect to the uniform distribution
over S.

— For the K-median problem, the domain set X is endowed with a metric d
and 7 is the set of all k-cell Voronoi diagrams over X that have points of
X as centers. Clearly each T € 7 is determined by a set {z{,...z{} C X,
consisting of the cell’s centers. Finally, for a probability distribution P over
X,andT €7, R(P,T) =Eyecp (minie{lwk} d(y,x?)) That is, the risk of a
partition defined by a set of k£ centers is the expected distance of a P-random
point from its closest center.

Note that we have restricted the range of the risk function, R to the unit
interval. This corresponds to assuming that, for the K-median and vector quan-
tization problems, the data points are all in the unit ball . This restriction allows
simpler formulas for the convergence bounds that we derive. Alternatively, one

! In this paper, we shall always take P to be the class of all probability distributions
over the domain set, therefore we do not specify it explicitly in our notation. There
are cases in which one may wish to consider only a restricted set of distributions (e.g.,
distributions that are uniform over some finite subset of X) and such a restriction
may allow for sharper sample size bounds.



could assume that the metric spaces are bounded by some constant and adjust
the bounds accordingly. On the other extreme, if one allows unbounded metrics,
then it is easy to construct examples for which, for any given sample size, the
empirical estimates are arbitrarily off the true cost of a clustering.

Having defined the setting for the problems we wish to investigate, we move
on to introduce the corresponding notion of desirable solution. The definition of
a clustering problem being ’approximable from samples’ resembles the definition
of learnability for classification tasks.

Definition 2 (Approximable from samples). A clustering problem (X, 7T, R)
18 a - approximable from samples, for some a > 1, if there exist an algorithm A
mapping finite subsets of X to clusterings in T, and a function f : (0,1)? — N,
such that for every probability distribution P over X and everye, 6 € (0,1), if a
sample S of size > f(e,8) is generated i.i.d. by P then with probability exceeding
1-4,
R(P, A(S)) < min aR(P,T) + ¢
TeT

Note that formally, the above definition is trivially met for any fixed finite
size domain X. We have in mind the setting where X is some infinite uni-
versal domain, and one can embed in it finite domains of interest by choosing
the underlying distribution P so that it has that set of interest as its support.
Alternatively, one could consider a definition in which the clustering problem is
defined by a scheme {(X,,, 7., R») }nen and require that the sample size function
f(e,6) is independent of n.

2.1 Our basic tool box

Next, we define our notion of an implicit representation of a clustering. We call it
a clustering description scheme. Such a scheme can be thought of as a compact
representation of clusterings in terms of sets of [ elements of X, and maybe some
additional parameters.

Definition 3 (Clustering description scheme).

Let (X,7T,R) be a clustering problem. An (I, I) clustering description scheme
for (X, T,R) is a function, G : X' x I +— T, where | is the number of points a
description depends on, and I is a set of possible values for an extra parameter.

We shall consider three properties of description schemes. The first two can,
in most cases, be readily checked from the definition of a description scheme.
The third property has a statistical nature, which makes it harder to check.
We shall first introduce the first two properties, completeness and localization,
and discuss some of their consequences. The third property, coverage, will be
discussed in Section 3 .

Completeness: A description scheme, G, is Complete for a clustering problem
(X,T,R), if for every T € T there exist z1,...2; € X and ¢ € I such that
G(zy,...21,0) =T.



Localization: A description scheme, G, is Local for a clustering problem (X, 7, R),
if there exist a functions f : X'*' x I — R such that for any probability
distribution P, for all z1,...2; € X and i € I,

R(P,G(x1,...21,1)) = Eyep f(y,21,...21,1)
Examples:

The K-median problem endowed with the natural description scheme: in this
case,l = k (the number of clusters), there is no extra parameter ¢, and
G(z1,...,xy) is the clustering assigning any point y € X its closest neighbor
among {x1,...,xx}. So, given a clustering T', if {z7,... 2]} are the centers
of T’s clusters, then T = G (27, ..., 2T). Clearly, this is a complete and local
description scheme (with f(y,z1...,2;) = min;eqy &y d(y, ;) and F being
the identity function).

Vector Quantization: this problem arises in the context of source coding. The
problem is very similar to the K-median problem. The domain X is the Eu-
clidean space R?, for some d, and one is given a fixed parameter . On an input
set of d-dimensional vectors, one wishes to pick 'code points’ (1, ...z;) € R?
and map each input point to one of these code points. The only difference
between this and the K-median problem is the objective function that one
aims to minimize. Here it is R(P,Ty,,. . »,) = Eyep [minie{l’ml} d(y,xi)Q].
The natural description scheme in this case is the same one as in the K-
median problem - describe a quantizer T' by the set of code point (or centers)
it uses. It is clear that, in this case as well, the description scheme is both
complete and local.

Note, that in both the K-median clustering and the vector quantization
task, once such an implicit representation of the clustering is available, the
cluster to which any given domain point is assigned can be found from the
description in constant time (a point y is assigned to the cluster whose index is
Argminie . 1y d(y, ;).

The next claim addresses the cost function. Let us fix a sample size m. Given
a probability distribution P over our domain space, let P™ be the distribution
over i.i.d. m- samples induced by P. For a random variable f(S5), let Egcpm (f)
denote the expectation of f over this distribution.

Claim 1 Let (X,7,R) be a clustering problem. For T € T, if there exists a
function hy : X — RT such that for any probability distribution P, R(P,T) =
E.cp(hr(z)), then for every such P and every integer m,

Esepm (R(S,T)) = R(P,T)

Corollary 2 If a clustering problem (X, T, R) has a local and complete descrip-
tion scheme then, for every probability distribution P over X, every m > 1 and
every T € T,

Esepm (R(Sv T)) = R(P7 T)



Lemma 1. If a clustering problem (X, T, R) has a local and complete descrip-
tion scheme then, for every probability distribution P over X, every m > 1 and
every T € T,

P™{|R(P,T) — R(S,T)| > €} < 2e72<'m

The proof of this Lemma is a straightforward application of Hoeffding inequality
to the above corollary (recall that we consider the case where the risk R is in
the range [0, 1]).

Corollary 3 If a clustering problem (X, T, R) has a local and complete descrip-
tion scheme then, for every probability distribution P over X, and every clus-
tering T € T, if a sample S C X of size m > 1‘;345 is picked v.i.d. via P then,
with probability > 1 — § (over the choice of S),

|R(S,T) — R(P,T)| < ¢

In fact, the proofs of the sample-based approximation results in this paper require
only the one-sided inequality, R(S,T) < R(P,T) +e.

So far, we have not really needed description schemes. In the next theorem,
claiming that the convergence of sample clustering costs to the true probabil-
ity costs, we heavily rely on the finite nature of description schemes. Indeed,
clustering description schemes play a role similar to that played by compression
schemes in classification learning.

Theorem 4. Let G be a local description scheme for a clustering problem (X, 7T, R).
Then for every probability distribution P over X, if a sample S C X of size
m >> [ is picked i.i.d. by P then, with probability > 1 — 0 (over the choice of
S), for every x1,...x; € S and every i € I,

In(|I|) +1Inm + In(1/4)
2(m —1)

|R(S,G(x1,...x1,1)) — R(P,G(z1,...2,1))| < \/

Proof. Corollary 3 implies that for every clustering of the form G(z1,...2,1),
if a large enough sample S is picked i.i.d. by P, then with high probability, the
empirical risk of this clustering over S is close to its true risk. It remains to
show that, with high probability, for S sampled as above, this conclusion holds
simultaneously for all choices of x1,...2; € S and all i € I.

To prove this claim we employ the following uniform convergence result:

Lemma 2. Given a family of clusterings {G(x1,...2,%)}2,,..ex ici, let €(m,9)
be a function such that, for every choice of x1,...x;,1 and every choice of m and
6 > 0, if a sample S is picked by choosing i.i.d uniformly over X, m times, then
with probability > 1 — §

|R(S,G(z1,...x1,1)) — R(P,G(x1,...21,1))] < e(m, )



then, with probability > 1 — § over the choice of S,
Voi,...x; € SViel,

O )

m
171 % (77)
One should note that the point of this lemma is the change of order of quan-
tification. While in the assumption one first fixes z1,...z;,¢ and then randomly
picks the samples S, in the conclusion we wish to have a claim that allows to
pick S first and then guarantee that, no matter which z1,...xz;, is chosen, the
S-cost of the clustering is close to its true P-cost. Since such a strong statement
is too much to hope for, we invoke the sample compression idea, and restrict the
choice of the z;’s by requiring that they are members of the sample S.

|R(S,G(x1,...21,1)) — R(P,G(21,...21,1))| < e(m —1,

Proof (Sketch). The proof follows the lines of the uniform convergence results
for sample compression bounds for classification learning. Given a sample S of
size m, for every choice of [ indices, i1,...,4; € {1,...,m}, and ¢ € I, we use the
bound of Corollary 3 to bound the difference between the empirical and true risk
of the clustering G(z1,...2;,4). We then apply the union bound to ‘uniformize’
over all possible such choices.

In fact, the one-sided inequality,
R(P,G(x1,...21,1)) < R(S,G(21,...21,1)) + €

suffices for proving the sample-based approximation results of this paper.

3 Sample based approximation results for clustering in
the general setting

Next we apply the convergence results of the previous section to obtain guar-
antees on the approximation quality of sample based clustering. Before we can
do that, we have to address yet another component of our paradigm. The con-
vergence results that we have so far suffice to show that the empirical risk of a
description scheme clustering that is based on sample points is close to its true
risk. However, there may be cases in which any such clustering fails to approxi-
mate the optimal clustering of a given input sample. To guard against such cases,
we introduce our third property of clustering description schemes, the coverage
property.

The Coverage property: We consider two versions of this property:

Multiplicative coverage: A description scheme is a-m-covering for a cluster-
ing problem (X, 7, R) if for every S C X s.t. |S| > [, there exist {z1,... 2} C
S and i € I such that for every T € Tx,

R(S,G(x1,...21,1)) < aR(S,T)

Namely, an optimal clustering of S can be a-approximated by applying the
description scheme G to an [-tuple of members of S.



Additive coverage: A description scheme is 1-a-covering for a clustering prob-
lem (X, 7, R) if for every S C X s.t. |S]| > I, there exist {x1,...2;} C S and
i € I such that for every T € Tx,

R(S,G(z1,...71,1)) < R(S,T) +n

Namely, an optimal clustering of S can be approximated to within (additive)
7 by applying the description scheme G to an I-tuple of members of S.

We are now ready to prove our central result. We formulate it for the case
of multiplicative covering schemes. However, it is straightforward to obtain an
analogous result for additive coverage.

Theorem 5. Let (X, 7, R) be a clustering problem that has a local and complete
description scheme which is a-m-covering, for some a > 1 . Then (X, P, R) is
a-approzrimable from samples.

In 1L
Proof. Let m = O <(65;l)) Let T* € 7 be a clustering of X that minimizes

R(P,T), and let S C X be an i.i.d. P-random sample of size m.
Now, with probability > 1 — 4, S satisfies the following chain of inequalities:

By Corollary 3,

R(P,T*)+¢> R(S,T")
— Let Opt(S) be a clustering of S that minimizes R(S,T). Clearly,
R(S,T7)) = R(S, (Opt(5))

— Since G is « covering, for some x1,...x; € S and i € I,
RS, 0pt(S)) > éR(S, Glar,...04))
— By Theorem 4, for the above choice of x7 ... x, 1,
R(S,G(x1,...x1,1)) > R(P,G(x1,...21,1)) — €
It therefore follows that

R(P,G(x1,...21,1)) < a(R(P,T*)+¢€) +¢€
O

Theorem 6. Let (X, 7, R) be a clustering problem and let G(xy ..., x,1) be a
local and complete description scheme which is n-a-covering, for some n € [0, 1]
. Then for every probability distribution P over X and m >> 1, if a sample, S,
of size m is generated i.i.d by P, then with probability exceeding 1 — 0,

min{R(P,G(x1,...,x,1)) : ©1,..., 53 €S, i1 € I} <

In(|I]) + I 1lnm + In(1/5)
2(m —1)

min{R(P,T): T€eT}+n+ \/

The proof is similar to the proof of Theorem 5 above.



4 K-Median Clustering and Vector Quantization

In this section we show how to apply our general results to the specific cases
of K-median clustering and vector quantization. We have already discussed the
natural clustering description schemes for these cases, and argued that they are
both complete and local. The only missing component is therefore the analysis
of the coverage properties of these description schemes.

We consider two cases,

Metric K-median problem where X can be any metric space.
Euclidean K-median where X is assumed to be a Euclidean space R. This
is also the context for the vector quantization problem.

In the first case there is no extra structure on the underlying domain metric
space, whereas in the second we assume that it is a Euclidean space (it turns out
that the assumption that the domain a Hilbert space suffices for our results).

For the case of general metric spaces, we let G(x1,...,z) be the basic de-
scription scheme that assigns each point y to the x; closest to it. (So, in this case
we do not use the extra parameter ).

It is well known, (see e.g., [5]) that for any sample S, the best clustering with
center points from S is at most a factor of 2 away from the optimal clustering for
S (when centers can be any points in the underlying metric space). We therefore
get that is that case G is a 2-m-covering.

For the case of Euclidean, or Hilbert space domain, we can also employ a
richer description scheme. For a parameter ¢, we wish to consider clustering
centers that are the centers of mass of ¢-tuples of sample points (rather than
just the sample points themselves). Fixing parameters ¢ and r, let our index set
I be r**_ that is, the set of all vectors of length k whose entries are t-tuples
of indices in {1,...,r}. Let G¢(z1,..., 2, 1%) 2 G(xin,- - Tigk), where i € rtk
indexes a sequence (21, . .. x; k) of points in {z1,..., 2, }, and G(x; 1,. ..z 4) is
the clustering defined by the set of centers {l/tE;(:htzzlxi’j ched0,...,k—1}}.
That is, we take the ‘centers of mass’ of ¢ tuples of points of S, where i is the
index of the sequence of kt points that defines or centers. It is easy to see that
such Gy is complete iff r > k.

The following lemma of Maurey, [1], implies that, for ¢t < r, this description
scheme enjoys an n-a-coverage, for n = 1/+/t.

Theorem 7 (Maurey, [1]). Let F be a vector space with a scalar product (-, -)

and let || ]| = V (£, f) be the induced norm on F. Suppose G C F and that, for
some ¢ >0, ||g|| < ¢ for all g € G. Then for all f from the convex hull of G and

all k > 1 the following holds:
[ —IfI1?
k: .

IN




Corollary 8 Consider the K median problem over a Hilbert space, X. For ev-
ery t and r > max{k,t}, the clustering algorithm that, on a sample S, outputs
Argmin{R(Gy(x1,...,20,4)) : T1,...,2. €S, andi < r**} produces, with prob-
ability exceeding 1 — § a clustering whose cost is no more then

1 \/k(tlnr +1n|S]) + In(1/5)
Vit 2(S[—=r)

above the cost of the optimal k-centers clustering of the sample generating dis-
tribution (for any sample generating distribution and any § > 0).

4.1 Implications to worst case complexity

As we mentioned earlier, worst case complexity models of clustering can be
naturally viewed as a special case of the statistical clustering framework. The
computational model in which there is access to random uniform sampling from
a finite input set, can be viewed as a statistical clustering problem with P being
the uniform distribution over that input set.

Let (X, d) be a metric space, T a set of legal clusterings of X and R an ob-
jective function. A worst case sampling-based clustering algorithm for (X, 7, R)
is an algorithm that gets as input finite subsets Y C X, has access to uniform
random sampling over Y, and outputs a clustering of Y.

Corollary 9 Let (X,7,R) be a clustering problem. If, for some o > 1, there
exist a clustering description scheme for (X, 7T, R) which is both complete and
a-m-covering, then there exists a worst case sampling-based clustering algorithm
for (X, T, R) that runs in constant time depending only of the approzimation and
confidence parameters, € and ¢ (and independent of the input size |Y|) and out-
puts an aOpt+ € approzimations of the optimal clustering for' Y, with probability
exceeding 1 — 6.

Note that the output of such an algorithm is an ¢mplicit description of a
clustering of Y. It outputs the parameters from which the description scheme
determines. For natural description schemes (such as describing a Voronoi di-
agram by listing its center points) the computation needed to figure out the
cluster membership of any given y € Y requires constant time.
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