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ABSTRACT separate data collections. In thi report, letS; be the set of
. alarmed sensor drawn independently according to some distribu-
The problem of detecting changes from data collected from a large tion P;. The identities and the number of alarmed sensors in the

scale randomly deployed two dimensional sensor field is consid- ; .
. ; two reports may not match. The change detection problem consid-

ered. Under a nonparametric change detection framework, we pro- I ; . T

. . ; ered in this paper is one of nonparametric hypotheses testing:
pose detection algorithms using two measures of change. Theoret-
ical performance guarantee is derived from the Vapnik-Chervasen
theory. By exploiting the structures of the search domain, we de-
sign a suboptimal recursive algorithm to detect the area of largest
change which, for M sample points, runs in tirﬁ)eiM2 log M)
(compared to a®(M*) required for a straightforward exhaustive

search). The lost of performance diminishes\asncreases.
Keywords:Non-parametric change detection, Sensor Networks,Related Work The problem of change detection in sensor field

H02P1:P2 VS. H1IP17£P2.

where we make no prior assumptions about the data generating
distributionsP;. We may also be interested in locating areas with
significant changes.

Detection and estimation algorithms. has been considered in different (mostly parametric) settings [2, 3].
The underlying statistical problem considered in this paper be-
1. INTRODUCTION longs to the category of two-sample nonparametric change detec-

tion. There is a wealth of nonparametric change detection tech-
We are interested in detecting certain phenomenal change in aniques for one-dimensional data set in which data can be ordered
large-scale randomly deployed sensor field. For example, sensorginiquely, see [4] and references therein. Most of these techniques
may be designed to detect certain chemical components. Wherdo not have natural generalizations to the two dimensional sensor
the sensor measurement exceeds certain threshold, the sensor ietwork applications. The classical Kolmogorov-Smirnov two-
“alarmed”. The state of a sensor depends on where it resides; sensample test [4] does apply to the two-dimension sensor problem,
sors in some area are more likely to be in the alarmed state tharbut it does not provide the location where changes may occur. In
others. We are not interested in the event that certain sensors ar@ way, the methods presented in this paper generalize the idea of
alarmed. We are interested instead in whether there is a change ifcolmogorov-Smirnov test to a different collection of measurable
the geographical distribution of alarmed sensors from data collec- sets using more general forms of distance measures, which allows
tions at two different time. Such a change in distribution could be the formulation of change estimation problem [5].

an indication of abnormality. o .
Y Summary of Resultsand Organizations In this paper we present

a nonparametric change detection and estimation algorithm based
on an application of Vapnik-Chervonenkis Theory [6]. The basis
of this approach is outlined in [5] where we have provided a math-
ematical characterization of changes in distribution. Our focus in
this paper is on the use of a relative measure of change and a low

First data collection Second data collection complexity algorithm applicable to large scale sensor networks.
We begin a formulation of the change detection problem for
Fig. 1. Reported alarmed sensors (red) in two collections. sensor networks in Section 2. We then present in Section 3 results

that establish a theoretical guarantee of performance. We consider

We assume that some (not necessarily all) of the alarmed sentwo distance measures in this paper. The first is the so-called
sors are reported to a fusion center, either through the use a modistance(also used in [5]) that measures the maximum change in
bile access point (SENMA [1]) or using certain in-network rout- probability among a collectionl of measurable sets. The second
ing scheme. As illustrated in Fig. 1, suppose that the fusion centeris a relative distance measure—a variation from that in [5]—for
obtains two reports of the locations of alarmed sensors from two cases when the change in probability is concentrated in areas of
small probability weight.

Next we derive in Section 4 a practical algorithm applicable
to large scale sensor networks. The key to the applicablity of VC
University of Waterloo, Waterloo, Canada. Theory is reducing the' search in a_pqss_ibly uncounta_ble collection

This work is supported by the U. S. Army Research Laboratodeun A of Set§ €.g.,planer disks) _to one Inmltesub-(_:ollectlorﬂ-[(._g)
the Collaborative Technology Alliance Program, Coopeeatigreement (@ function of the observations = 5, |J S2) without affecting
DAAD19-01-2-0011. The U. S. Government is authorized to adpce the performance. IM = [S: U S| is the total number of data
and distribute reprints for Government purposes notwitftitey any copy- points in two collections, in [5] we have shown that the exhaus-
right notation thereon. tive search among the collection of all planer disks has complexity

T. He and L. Tong {th255,1t353 @cornell.edu) are with the School of
Electrical and Computer Engineering, Cornell Universithata, NY. S.
Ben-David (shai@cs.waterloo.ca) is with the School of Cotap8cience,



O(M™). We present a suboptimal search strategy that has com-Relative and Empirical Relative A-distance Given probability spaces
plexity O(M?1og M). There is a loss of performance, however, (X,F, P;) and a collectiond C F, therelative .A-distancebe-
but such a loss diminishes as the number of samples increases. tweenP; andP; is defined as

Simulation results are provided in Section 5 in which we com- Pi(A) — Py(A)]

pare the performance when two different distance metrics are used. da(Pr,P2) = sup [P = Po(A)] 3)
AcA [ PL(A)+Py(A)
2
2. THE PROBLEM STATEMENT Theempirical relativeA-distances defined similarly by replacing

P;(A) with the empirical measure defined in (2).
We consider two probability measuré3 and P, on the same (4) b @

measurable spac€ where(X, F, P;) models theth random col- The above definition is slightly different from that used in [5].
lection of alarmed sensdrsDenoteS; as the set of locations of ~ The proof that the above relativd-distance is indeed a metric
alarmed sensors in thigh collection andS = S; [ J S2. We as- follows [8]. With a properly chosen distance measure, we can now

sume that, in each collection, alarmed sensors are drawn i.i.d. acspecify the class of detectors considered in this paper.

cording toP; and the two drawings are independent. Note that the N .
number and the identities of the collected alarmed sensors may beDetector 0(51, 82;¢): Given two collection of samples, and

different in each collection S, drawn i.i.d from probability distributiong® and P» respec-
We introduce a collectiol C F of measurable sets to model tively, and t.hresholdE < ©, 1).’ for hypothesegio vs. H, the
. ) . : detectof using theA-distance is defined as
the set of geographical areas in which, for practical purposesteve
of interest are observed from the sensor field. The collecdon 50 (S1. Sore) — 1 ifda(S1,852)>¢
does not have to be countable and is part of the algorithm design. a4 (51, S27€) = 0 otherwise

For example, we may be interested in the number of alarmed sen-_l_h d 5. (S S . h lativeA-di is d
sors in a circle centered at some location X with some radius f' ed ﬁtector ol 1’b 2) e)lus_lng tSe r;atlcl)v : r;tagce IS de-
r. If we define A as the collection of all disks i, for some ined the same way by replacialg, (S1, S2) by ¢.4(S1, S2).

applications, it may be reasonable to focus on the probabilities of  \We now provide a theoretical guarantee of the performance by

events inA rather than those iff of the original probability space.  deriving bounds on the miss detection and the false alarm proba-

The choice of4 is subjective, and it depends on the application at bilities, both in near exponential form.

hand. Other geometrical shapes such as rectangles, and stripes are ) B

considered in [7]. Theorem 3.1 Given probability spacesX, 7, P;) and a collec-
Given the probability spacesX, 7, ;) and the collection ~ tion A C 7 letS; € X be a set of» samples drawn according

A C F, we are interested in whether there is a change in prob- {0 £ The false alarm probabilities for the detectors defined in (4)

(4)

ability measure orA. are bounded by
Pr(da,) < 8(2n+1)%e </ )
3. PERFORMANCE GUARANTEE d —ne?/a
Pr(ds,) < 2(2n+1)% (6)
To describe “change”, we need some notion of distance betweenwhered is the VC-dimensichof A.
two probability distributions. In this paper, we will be consider Furthermore, ifda(Py, Ps) > ¢ and ga(Pi, Pa) > ¢ the
two distance measures. miss detection probabilities satisfy, respectively,

A-distance and empirical .A-distance [5] Given probability spaces Pu(da,, P, P2) < 8(2n+ 1)d6*”[d.A(P1»P2)*E]2/32
(X, F,P,) and a collectiond C F, the A-distancebetweenP; A - ;
and P is defined as ™

Pu (s PP < 16(2 1)¢ —nlpa(P,P2)—¢€l?/16
da(PL,P2) = sup [PL(4) = Pa(A)], &) w0 B o) <1600+ 1)%e "
€

The empirical A-distanced 4(S1, S2) is similarly defined by re- Proof: See Appendixll
placing P;(A) by the empirical measure

S.(A) a [SiN A @ Note first the de_cay rates_ of the error probabilities are d_iffer-
¢ R ent when the two different distance measures are used, with the
relative distance measure providing some gain in the decay rate of
where|S; N A is the number of points in bothi; and setA. error probability. Next, the above theorem also provides a way of

deciding the detection thresholdor a particular detection crite-

._rion. For example, the threshold of the Neyman-Pearson detection
Yor a given sizex can be obtained from the bounds on false alarm

probabilities. Finally, notice the role of VC dimensidrin the er-

ror exponent; it appears thdf as a coefficient ofn n, is a minor

factor compared with the distance between two probability mea-

The A-distance does not take into account the relative signifi-

the probability of a set from.99 to 0.999 is less significant than
a change fron9.001 to 0.01; the latter amounts to a ten-fold in-
crease whereas the former represents an increase of B¥o&or

applications in which small probability events are of interests, we

) ; - . . sures.
introduce the following notion aklative . A-distancethat takes the
relative magnitudes of a change into account. 2We use the convention that the detector gives the valiee 7, and
0 for Ho.
1The notation( X, F, P;) is standardX is the spaceF thes-algebra, 3The VC-dimension ofA is defined as the cardinality of the largest set

P; the probability measure. S shattered byA [9].



4. ALOW COMPLEXITY DETECTOR to a certain sample point, which tak@3 M log M) for each cen-
ter, and is repeated fdil centers. Furthermore, this algorithm can

The detectors given in (4) are based on the search for maximumalso be modified for other distance metrics that are based on the
distance between empirical probabilities on the (uncountable) col- counting of samples.
lection of measurable set$. To implement such a detector, it is It should be noted that the reduction of complexity does come
necessary to reduce, based on the observationdjate searchin ~ with a cost. The specific choice &, does not guarantee opti-
A to a search in afinite collectigi (.S). The choice of4 and that mality becausécp is not complete [5] with respect td in the
of H(S) dictate the complexity and the performance. sense that some type of disks are missing. If, however, probability

For the collection of disksconsidered in this paper, it can be measuresP; are such that that any disk with a positive area has
shown that the exhaustive search algorithm has a cost in the ordepositive probability, then the loss of performance vanishes asymp-
of O(M*) whereM = || is the total number of data samples totically. Specifically, consider a disk and an arbitrary neighbor-
collected. This complexity is still prohibitive for large scale net- hood of its center, the strong law of large numbers guarantees that
works. The algorithm presented next reduces the complexity to as sample size goes to infinity, there is a sample within this neigh-
O(M?log M). borhood of the center almost surely. This implies that the proposed

Let A be the collection of two dimensional disks. Given the algorithm is asymptotically optimal for search in planar disks.
samplesS = S |J S2, consider the finite collection of sample-

centered disk8{cp(S) C A defined by 5 SIMULATION

A
Heo(S) = {D'(si, s5) : si,s; € S} 9 We simulate the case when the distribution of alarmed sensors is a
mixture of 2D uniform distributions, one onsax s squareD and

where D'(s;, s;) is the disk withs; at the center and; on the  the other centered ab € R? with radiusr. Specifically, the PDF
boundary. Note that this collection of disks contaldssub-collections, of the 2D random vectat is given by

each has one sample at the center and a nested disks defined by the

rest of samples in the disk. This particular structure allows the de- T, XED X —xo| <r

velopment of the following recursive algorithm that calculates the P (X) = 7r7‘2p+(5(1277r7“2)q x €D, |[x—xol >7
distance between two empirical probability distributions. otherwise
The recursive search for maximum change goes as follows.
Fix ans; and define wherexg, p, g, andr are parameters) < r << sand0 < q <
A p < 1. We are interested in detecting whether there is a change
Fi(j) = Si1(D'(si,s5)) — S2(D'(si, 85)) (10) in the center of the distribution. The algorithm, of course, is not
. ) . » . given the form ofP.
F;(j) is the change in the empirical probability bf (s, s;). First We consider a Neyman-Pearson setup in which the siné

sort the sample points into increasing Oregr, s;,, ... according  the detector is prescribed. From Theorem 3.1, we can choose
to their distance te;°, and then computing’; (j) recursively by (n, €) such that

the update
32 8(2n + 1)4
Fi() = Fi(jk_1)+‘s%| if 55, €51 €2 WIOg% for éa (13)
k) = Fi(jr-1) = 1557 1f 85, € S I 21
e>1/—log 22T forg,,. (14)
n (e}

wherek = 1,2,..., M — 1. Next we compute
.. ) The decision threshold(n) is a measure of detector sensi-
jT(@) = arg max [Ei(5)]- 1) tivity. For a fixed detector size, the smaller th:), the higher
the detection power. To this end, the relative distance metric pro-
The optimal disk ircp, for fixed centes;, is given byD’ (s;, s;+(;)), vides approximately three times improvement in detection sensi-

and the maximum difference for disks at centeis |F;(j*(¢))]. tivity. Fig 2 shows the miss detection probability as a function
The search repeats for all possiBle Finally, we find the maxi- of sample size. Here we observe a sharp drop in miss detection
mum amond F; (5 (7)), Vi, i.e. probability, indicating a threshold value on the number of samples
required for the exponential decay of miss detection error. Such
imax = arg max |E; (57 (2))]. (12) a phenomenon is indeed predicted by Theorem 3.1 in which there

are minimum sample size; for 64, andn; for 64, such that,

Then the optimal disk ifHco iS GiVen by D’ (8;ma, 55+ (imay )» @Nd from the exponents of the miss detection probability (7-8)
the maximum difference i ., (5™ (imax) )| - . .

If $4(S1,S2) is needed, it is easy to see that, following the e(na) < da(Pr, P2), e(ng) < ga(br, Po).
same steps as computifig(jx ), the empirical probabilities
Sk(D'(si,s5)), (k= 1,2) can be computed, so camy (51, 52).

The complexity of the proposed algorithm, compared with ex-
haustive search, is reduced @M?log M). The dominating
term is the sorting of the sample points according to their distances 6. CONCLUSION

It turns out thatn}; andn, calculated above match well with the
threshold in the simulation shown in Fig 2.

4Other choices are considered in [7]. We presented a nonparametric approach to change detection in a
5This sort is at the cost @D (M log M). 2D random field. As a by product, the detection algorithm also
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Fig. 2. Miss detection probability as a function of the sample size

(simulation results). Herg = 0.98, ¢ = 0.02, r = s/12.

gives an estimate of the location of changes. We provided a theo-

Now consider relative distance. The proof for relative distance
metric goes line by line as that for the non-relative metric, replac-
ing inequality (15) with the following results from [10],

P2 (¢4(S1,82) > €) <22n+1)% /Y (18)
P*[|¢4(P1, P2) — $.a(S1,52)| > €]
< 16(2n + 1)%e /10 (19)
We have
Pr(6) 2(2n + 1)de "/t (20)
Pu(6, P, Py) < 16(2n + 1)%e "0a(PLP2)=ad2/16(5q)

IA
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