
Machine Learning:
Foundations and Algorithms

Shai Ben-David and Shai Shalev-Shwartz

DRAFT

2

c© Shai Ben-David and Shai Shalev-Shwartz.

i

Preface
The term machine learning refers to the automated detection of meaningful pat-
terns in data. In the past couple of decades it has become a common tool in
almost any task that requires information extraction from large data sets. We are
surrounded by a machine learning based technology: search engines learn how to
bring us the best results (while placing profitable ads), anti-spam software learns
to filter our email messages, and credit card transactions are secured by a soft-
ware that learns how to detect frauds. Digital cameras learn to detect faces and
intelligent personal assistance applications on smart-phones learn to recognize
voice commands. Cars are equipped with accident prevention systems that are
built using machine learning algorithms. Machine learning is also widely used in
scientific applications such as bioinformatics and astronomy.

One common feature of all of these applications is that, in contrast to more
traditional uses of computers, in these cases, due to the complexity of the patterns
that need to be detected, a human programmer cannot provide an explicit, fine-
detailed, specification of how such tasks should be executed. Taking example from
intelligent beings, many of our skills are acquired or refined through learning from
our experience (rather than following explicit instructions given to us). Machine
learning tools are concerned with endowing programs with the ability to “learn”
and adapt.

The first goal of this book is to provide a rigorous, yet easy to follow, in-
troduction to the main concepts underlying machine learning: What is learning?
How can a machine learn? How do we quantify the resources needed to learn a
given concept? Is learning always possible? Can we know if the learning process
succeeded or failed?

The second goal of this book is to present several key machine learning algo-
rithms. We chose to present algorithms that on one hand are successfully used in
practice and on the other hand give a wide spectrum of different learning tech-
niques. Additionally, we pay specific attention to algorithms appropriate for large
scale learning, since in recent years, our world has become increasingly “digi-
tized” and the amount of data available for learning is dramatically increasing. As
a result, in many applications data is plentiful and computation time is the main
bottleneck.

The book is divided into four parts. The first part aims at giving an initial
rigorous answer to the fundamental questions of learning. We describe a gen-
eralization of Valiant’s Probably Approximately Correct (PAC) learning model,
which is a first solid answer to the question “what is learning?”. We describe the

c© Shai Ben-David and Shai Shalev-Shwartz.

ii

Empirical Risk Minimization (ERM) learning rule, which shows “how can a ma-
chine learn”. We also quantify the amount of data needed for learning using the
ERM rule and show how learning might fail by deriving a “no-free-lunch” theo-
rem. In the second part of the book we describe various learning algorithms. For
many of the algorithms, we first present a more general learning principle, and
then show how the algorithm follows the principle. While the first two parts of
the book focus on the PAC model, the third part extends the scope by presenting
a wider variety of learning models. Finally, the last part of the book is devoted to
advanced theory.

We made an attempt to keep the book as self-contained as possible. However,
the reader is assumed to be comfortable with basic notions of probability, linear
algebra, and algorithms. The first three parts of the book are intended for first year
graduate students in computer science, engineering, mathematics, or statistics. It
can also be accessible to undergraduate students with the adequate background.
The more advanced chapters can be used by researchers intending to gather a
deeper theoretical understanding.

c© Shai Ben-David and Shai Shalev-Shwartz.

Contents

c© Shai Ben-David and Shai Shalev-Shwartz.

iv CONTENTS

c© Shai Ben-David and Shai Shalev-Shwartz.

Chapter 1

Introduction

The subject of this book is automated learning, or, as we will more often call it,
Machine Learning (ML). That is, we wish to program computers so that they can
“learn” from input available to them. Roughly speaking, learning is the process of
converting experience into expertise or knowledge. The input to a learning algo-
rithm is training data, representing experience, and the output is some expertise,
which usually takes the form of another computer program that can perform some
task. Seeking a formal-mathematical understanding of this concept, we’ll have to
be more explicit about what we mean by each of the involved terms; What is the
training data our programs will access? How can the process of learning be auto-
mated? How can we evaluate the success of such a process (namely the quality of
the output of a learning program)?

1.1 What is learning?

Let us begin by considering a couple of examples from naturally occurring animal
learning. Some of the most fundamental issues in ML arise already in that context,
that we are all familiar with.

Bait Shyness—rats learning to avoid poisonous baits: When rats encounter
food items with novel look or smell, they will first eat very small amounts, and
subsequent feeding will depend on the flavor of the food and its physiological
effect. If the food produces an ill effect, the novel food will often be associated
with the illness, and subsequently, the rats will not eat it. Clearly, there is a learn-
ing mechanism in play here – the animal used past experience with some food to
acquire expertise in detecting the safety of this food. If past experience with the

c© Shai Ben-David and Shai Shalev-Shwartz.

2 Introduction

food was negatively labeled, the animal predicts that it will also have a negative
effect when encountered in the future.

Inspired by the above example of successful learning, let us demonstrate a
typical machine learning task. Suppose we would like to program a machine that
learns how to filter spam emails. A naive solution would be seemingly similar
to the way rats learn how to avoid poisonous baits. The machine would simply
memorize all previous emails, that had been labeled as spam emails by the human
user. When a new email arrives, the machine would search for it in the set of
previous spam emails. If it matches one of them it will be trashed. Otherwise, it
will be moved to the user’s inbox folder.

While the above “learning by memorization” approach is sometimes useful,
as we will not get the very same spam email twice, it lacks an important aspect
of learning systems—the ability to label unseen email messages. A successful
learner should be able to progress from individual examples to broader general-
ization. This is also referred to as inductive reasoning or inductive inference. In
the bait shyness example presented above, after the rats encounter an example of a
certain type of food, they apply their attitude towards it on new, unseen examples
of food of similar smell and taste. To achieve generalization in the spam filtering
task, the learner can scan the previously seen emails, and extract a set of words
whose appearance in an email message is indicative of spam. Then, when a new
email arrives, the machine can check if one of the suspicious words appear in
it, and predict its label accordingly. Such a system would potentially be able to
correctly predict the label of unseen emails.

Inductive reasoning might lead us to false conclusions. To illustrate this, let us
consider again an example from animal learning.

Pigeon superstition: In an experiment performed by the psychologist B.F.
Skinner, he placed a bunch of hungry pigeons in a cage. An automatic mech-
anism has been attached to the cage, delivering food to the pigeons at regular
intervals with no reference whatsoever to the birds’ behavior. The hungry pigeons
go around the cage, and when food is first delivered, it finds each pigeon engaged
in some activity (pecking, turning the head, etc.). The arrival of food reinforces
each bird’s specific action, and consequently, each bird tends to spend some more
time doing that very same action. That, in turn, increases the chance that the next
random food delivery will find each bird engaged in that activity again. What re-
sults is a chain of events that reinforces the pigeons’ association of the delivery of
the food with whatever chance actions they had been performing when it was first

c© Shai Ben-David and Shai Shalev-Shwartz.

3 Introduction

delivered. They subsequently continue to perform these same actions diligently.1

What distinguishes learning mechanisms that result in superstition from use-
ful learning? This question is crucial to the development of automated learners.
While human learners can rely on common sense to filter out random meaningless
learning conclusions, once we export the task of learning to a machine, we must
provide well defined crisp principles that will protect the program from reaching
senseless/useless conclusions. The development of such principles is a central
goal of the theory of machine learning.

What, then, made the rats’ learning more successful than that of the pigeons?
As a first step towards answering this question, let us have a closer look at the bait
shyness phenomenon in rats.

Bait Shyness revisited—rats fail to acquire conditioning between food and
electric shock or between sound and nausea: The bait shyness mechanism in rats
turns out to be more complex than what one may expect. In experiments carried
out by Garcia ([?]), it was demonstrated that if the unpleasant stimulus that fol-
lows food consumption is replaced by, say, electrical shock (rather than nausea),
then no conditioning occurs. Even after repeated trials in which the consumption
of some food is followed by the administration of unpleasant electrical shock, the
rats do not tend to avoid that food. Similar failure of conditioning occurs when the
characteristic of the food that implies nausea (such as taste or smell) is replaced
by a vocal signal. The rats seem to have some “built in” prior knowledge telling
them that, while temporal correlation between food and nausea can be causal, it
is unlikely that there will be a causal relationship between food consumption and
electrical shocks or between sounds and nausea.

We conclude that one distinguishing feature between the bait shyness learning
and the pigeon superstition is the incorporation of prior knowledge that biases the
learning mechanism. This is also referred to as inductive bias. The pigeons in
the experiment are willing to adopt any explanation to the occurrence of food.
However, the rats “know” that food cannot cause an electric shock and that the
co-occurrence of noise with some food is not likely to effect the nutritional value
of that food. The rats’ learning process is biased towards detecting some kind of
patterns while ignoring other temporal correlations between events.

It turns out that the incorporation of prior knowledge, biasing the learning
process, is inevitable for the success of learning algorithms (this is formally stated
and proved as the “No Free Lunch theorem” in Chapter ??). The development of
tools for expressing domain expertise, translating it into a learning bias, and quan-

1See: http://psychclassics.yorku.ca/Skinner/Pigeon

c© Shai Ben-David and Shai Shalev-Shwartz.

4 Introduction

tifying the effect of such a bias on the success of learning, is a central theme of the
theory of machine learning. Roughly speaking, the stronger the prior knowledge
(or prior assumptions) that one starts the learning process with, the easier it is to
learn from further examples. However, the stronger these prior assumptions are,
the less flexible the learning is - it is bound, a priory, by the commitment to these
assumptions. We shall discuss these issues explicitly in Chapter ??.

1.2 When do we need machine learning?
When do we need machine learning rather than directly program our computers
to carry out the task at hand? Two aspects of a given problem may call for the use
of programs that learn and improve based on their “experience”: the problem’s
complexity and the need for adaptivity.

Tasks that are too complex to program.

• Tasks performed by animals/humans: there are numerous tasks that
we, human beings, perform routinely, yet our introspection concerning
how we do them is not sufficiently elaborate to extract a well defined
program. Examples of such tasks include driving, speech recogni-
tion, and image understanding. In all of these tasks, state of the art
machine learning programs, programs that “learns from their experi-
ence”, achieve quite satisfactory results, once exposed to sufficiently
many training examples.

• Tasks beyond human capabilities: another wide family of tasks that
benefit from machine learning techniques are related to the analysis of
very large and complex data sets: Astronomical data, turning medical
archives into medical knowledge, weather prediction, analysis of ge-
nomic data, web search engines, and electronic commerce. With more
and more available digitally recorded data, it becomes obvious that
there are treasures of meaningful information buried in data archives
that are way too large and too complex for humans to make sense
of. Learning to detect meaningful patterns in large and complex data
sets is a promising domain in which the combination of programs that
learn with the almost unlimited memory capacity and ever increasing
processing speed of computers open up new horizons.

c© Shai Ben-David and Shai Shalev-Shwartz.

5 Introduction

Adaptivity. One limiting feature of programmed tools is their rigidity - once the
program has been written down and installed, it stays unchanged. How-
ever, many tasks change over time or from one user to another. Machine
learning tools - programs whose behavior adapts to their input data - offer
a solution to such issues; they are, by nature, adaptive to changes in the
environment they interact with. Typical successful applications of machine
learning to such problems include programs that decode hand written text,
where a fixed program can adapt to variations between the handwriting of
different users, spam detection programs, adapting automatically to changes
in the nature of spam emails, and speech recognition programs.

1.3 Types of learning
Learning is, of course, a very wide domain. Consequently, the field of machine
learning has branched into several subfields dealing with different types of learn-
ing tasks. We give a rough taxonomy of learning paradigms, aiming to provide
some perspective of where the content of this book sits within the wide field of
machine learning.

We describe four parameters along which learning paradigms can be classified.

Supervised vs. Unsupervised Since learning involves an interaction between the
learner and the environment, one can divide learning tasks according to
the nature of that interaction. The first distinction to note is the difference
between supervised and unsupervised learning. As an illustrative example,
consider the task of learning to detect spam email versus the task of anomaly
detection. For the spam detection task, we consider a setting in which the
learner receives training emails for which the label spam/not-spam is
provided. Based on such training the learner should figure out a rule for
labeling a newly arriving email message. In contrast, for the task of anomaly
detection, all the learner gets as training is a large body of email messages
(with no labels) and the learner’s task is to detect “unusual” messages.

More abstractly, viewing learning as a process of ”using experience to
gain expertise”, supervised learning describes a scenario in which the ”ex-
perience”, a training example contains significant information (say, the
spam/not-spam labels) that is missing in the unseen “test examples” to
which the learned expertise is to be applied. In this setting, the acquired ex-
pertise is aimed to predict that missing information for the test data. In such

c© Shai Ben-David and Shai Shalev-Shwartz.

6 Introduction

cases, we can think of the environment as a teacher that “supervises” the
learner by providing the extra information (labels). In unsupervised learn-
ing, however, there is no distinction between training and test data. The
learner processes input data with the goal of coming up with some sum-
mary, or compressed version of that data. Clustering a data set into subsets
of similar objets is a typical example of such a task.

There is also an intermediate learning setting in which, while the training
examples contain more information than the test examples, the learner is re-
quired to predict even more information for the test examples. For example,
one may try to learn a value function, that describes for each setting of a
chess board the degree by which White’s position is better than the Black’s.
Yet, the only information available to the learner at training time is posi-
tions that occurred throughout actual chess games, labeled by who eventu-
ally won that game. Such learning framework are mainly investigated under
the title of reinforcement learning.

Active vs. Passive learners Learning paradigms can vary by the role played by
the learner. We distinguish between ‘active’ and ‘passive’ learners. An ac-
tive learner interacts with the environment at training time, say by posing
queries or performing experiments, while a passive learner only observes
the information provided by the environment (or the teacher) without in-
fluencing or directing it. Note that, the learner of a spam filter is usually
passive - waiting for users to mark the emails arriving to them. In an active
setting, one could imagine asking users to label specific emails chosen by
the learner, or even composed by the learner to enhance its understanding
of what spam is.

Helpfulness of the teacher When one thinks about human learning, of a baby at
home, or a student at school, the process often involves a helpful teacher.
A teacher trying to feed the learner with the information most useful for
achieving the learning goal. In contrast, when a scientist learns about na-
ture, the environment, playing the role of the teacher, can be best thought of
as passive - apples drop, stars shine and the rain falls without regards to the
needs of the learner. We model such learning scenarios by postulating that
the training data (or the learner’s experience) is generated by some random
process. This is the basic building block in the branch of ‘statistical learn-
ing’. Finally, learning also occurs when the learner’s input is generated by
an adversarial “teacher”. This may be the case in the spam filtering exam-

c© Shai Ben-David and Shai Shalev-Shwartz.

7 Introduction

ple (if the spammer makes an effort to mislead the spam filtering designer)
or in learning to detect fraud. One also uses an adversarial teacher model
as a worst-case-scenario, when no milder setup can be safely assumed. If
you can learn against an adversarial teacher, you are guaranteed to succeed
interacting any odd teacher.

Online vs. Batch learning protocol The last parameter we mention is the dis-
tinction between situations in which the learner has to respond online,
throughout the learning process, to settings in which the learner has to
engage the acquired expertise only after having a chance to process large
amounts of data. For example, a stock broker has to make daily decisions,
based on the experience collected so far. He may become an expert over
time, but might have made costly mistakes in the process. In contrast, in
many data mining settings, the learner - the data miner - has large amounts
of training data to play with before having to output conclusions.

In this book we shall discuss only a subset of the possible learning paradigms.
Our main focus is on supervised statistical batch learning with a passive learner
(like for example, trying to learn how to generate patients’ prognosis, based on
large archives of records of patients that were independently collected and are
already labeled by the fate of the recorded patients). We shall also briefly discuss
online learning and batch unsupervised learning (in particular, clustering).

1.4 Relations to other fields
As an interdisciplinary field, machine learning share common threads with the
mathematical fields of statistics, information theory, game theory, and optimiza-
tion. It is naturally a sub-field of computer science, as our goal is to program
machines so that they will learn. In a sense, machine learning can be viewed as a
branch of AI (Artificial Intelligence), since after all, the ability to turn experience
into expertise or to detect meaningful patterns in complex sensory data is a cor-
ner stone of human (and animal) intelligence. However, one should note that, in
contrast with traditional AI, machine learning is not trying to build automated im-
itation of intelligent behavior, but rather to use the strengths and special abilities
of computers to complement human intelligence, often performing tasks that fall
way beyond human capabilities. For example, the ability to scan and process huge
databases allows machine learning programs to detect patterns that are outside the
scope of human perception.

c© Shai Ben-David and Shai Shalev-Shwartz.

8 Introduction

The component of experience, or training, in machine learning often refers
to data that is randomly generated. The task of the learner is to process such
randomly generated examples towards drawing conclusions that hold for the en-
vironment from which these examples are picked. This description of machine
learning highlights its close relationship with statistics. Indeed there is a lot in
common between the two disciplines, in terms of both the goals and techniques
used. There are, however, a few significant differences in emphasis; If a doctor
comes up with the hypothesis that there is a correlation between smoking and
heart disease, its the statistician’s role to view samples of patients and check the
validity of that hypothesis (this is the common statistical task of hypothesis test-
ing). In contrast, machine learning aims to use the data gathered from samples of
patients to come up with a description of the causes of heart disease. The hope
is that automated techniques may be able to figure out meaningful patterns (or
hypotheses) that may have been missed by the human observer.

In contrast with traditional statistics, in machine learning in general, and in this
book in particular, algorithmic considerations play a major role. Machine learning
is about the execution of learning by computers, hence algorithmic issues are piv-
otal. We develop algorithms to perform the learning tasks and are concerned with
their computational efficiency. Another difference is that while statistics is often
interested in asymptotic behavior (like the convergence of sample-based statisti-
cal estimates as the sample sizes grow to infinity), the theory of machine learning
focuses on finite sample bounds. Namely, given the size of available samples, the
machine learning theory will aim to figure out the degree of accuracy that a learner
can expect based on such samples.

There are further differences between these two disciplines, of which we shall
mention only one more here. While in statistics it is common to work under the
assumption of certain pre-subscribed data models (such as assuming the normal-
ity of data-generating distributions, or the linearity of functional dependencies),
in machine learning the emphasis is on working under “distribution-free” setting,
where the learner assumes as little as possible about the nature of the data dis-
tribution and allows the learning algorithm to figure out which models best ap-
proximate the data generating process. A precise discussion of this issue requires
some technical preliminaries, and we will come back to it along the book, and in
particular in Chapter ??.

c© Shai Ben-David and Shai Shalev-Shwartz.

9 Introduction

1.5 How to read this book
The first part of the book provides the basic theoretical principles that underlie
machine learning. In a sense, this is the foundation upon which the rest of the
book builds, and, with the possible exception of Chapter ??, is less technical than
the later sections of the book. This part could serve as a basis for a mini-course
on the theoretical foundations of ML for general science students.

The first 5 chapters of the second part of the book introduce the most ba-
sic and ”traditional” algorithmic approaches to machine learning. These chapters
may also be used for introducing machine learning in a general AI course to CS
or Math students. The later chapters of the second part of the book cover the most
commonly used algorithmic paradigms of machine learning in the past 5-10 years.
This part is suitable for students that have a particular interest in machine learning
(either applied or theoretical). The third part of the book extends the scope of dis-
cussion from statistical classification prediction to other learning models. Finally,
the last, part of the book, Advanced Theory, is geared towards readers who have
interest in research and provides the more technical mathematical techniques that
serve to analyze and drive forward the field of theoretical machine learning.

c© Shai Ben-David and Shai Shalev-Shwartz.

10 Introduction

c© Shai Ben-David and Shai Shalev-Shwartz.

Part I

Foundations

c© Shai Ben-David and Shai Shalev-Shwartz.

Chapter 2

A gentle start

Let us begin our mathematical analysis by showing how successful learning can be
achieved in a relatively simplistic setting. Imagine you have just arrived in some
small Pacific island. You soon find out that papayas are a significant ingredient
in the local diet. However, you have never before tasted papayas. You have to
learn how to predict whether a papaya you see in the market is tasty or not. First,
you need to decide which features of a papaya should your prediction be based
on. Based on your previous experience with other fruits, you decide to use two
features; the papaya’s color, ranging from dark green, through orange and red to
dark brown, and the papaya’s softness, ranging from rock hard to mushy. Your
input for figuring out your prediction rule is a sample of papayas that you have
examined for color and softness and then tasted and found out if they were tasty
or not. Let us analyze this task as a demonstration of the considerations involved
in learning problems.

Our first step is to describe a formal model aimed to capture such learning
tasks.

2.1 A Formal Model - the statistical learning frame-
work

The Learner’s Input: In the basic statistical learning setting, the learner has ac-
cess to the following:

Domain Set: An arbitrary set, X . This is the set of objects that we may
wish to label. For example, these could be papayas that we wish to

c© Shai Ben-David and Shai Shalev-Shwartz.

14 A gentle start

classify as tasty or not-tasty, or email messages that we wish to clas-
sify as spam or not-spam. Usually, these domain points will be rep-
resented by a vector of features (like the papaya’s color and softness).
We also refer to domain points as instances.

Label Set: For our current discussion, we will restrict the label set to be
a two-element set, usually, {0, 1} or {−1,+1}. Let Y denote our set
of possible labels. For our papayas example, let Y be {0, 1}, where 1
represents being tasty and 0 stands for being not-tasty.

Training data: S = ((x1, y1) . . . (xm, ym)) is a finite sequence of pairs in
X ×Y . That is, a sequence of labeled domain points. This is the input
that the learner has access to (like a set of papayas that have been
tasted and their color, softness and tastiness). Such labeled examples
are often called training examples.

The Learner’s Output: The learner is requested to output a prediction rule,
h : X → Y . This function is also called a predictor, a hypothesis, or a clas-
sifier. The predictor can be used to predict the label of new domain points.
In our papayas example, it is a rule that our learner will employ to predict
whether future papayas he examines in the farmers market are going to be
tasty or not.

A simple data-generation model We now explain how the training data is gen-
erated. First, we assume that the instances (the papayas we encounter) are
generated by some probability distribution (in this case, representing the
environment). Let us denote that probability distribution over X by D.
It is important to note that we do not assume that the learner knows any-
thing about this distribution. For the type of learning tasks we discuss, this
could be any arbitrary probability distribution. As to the labels, in the cur-
rent discussion we assume that there is some ”correct” labeling function,
f : X → Y , and that yi = f(xi) for all i. This assumption will be relaxed
in the next chapter. The labeling function is unknown to the learner. In fact,
this is just what the learner is trying to figure out. In summary, each pair in
the training data S is generated by first sampling a point xi according to D
and then labeling it by f .

Measures of success: We define the error of a classifier to be the probability
that it does not predict the correct label on a random data point generated
by the aforementioned underlying distribution. That is, the error of h is the

c© Shai Ben-David and Shai Shalev-Shwartz.

15 A gentle start

probability to draw a random instance x, according to the distribution D,
such that h(x) does not equal to f(x).

Formally, given a domain subset1, A ⊂ X , the probability distribution, D,
assigns a number, D(A), which determines how likely it is to observe a
point x ∈ A. In many cases, we refer to A as an event and express it using
a function π : X → {0, 1}, namely, A = {x ∈ X : π(x) = 1}. In that case,
we also use the notation Px∼D[π(x)] to express D(A).
We define the error of a prediction rule, h : X → Y to be:

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D({x : h(x) 6= f(x)}) . (2.1)

That is, the error of such h is the probability to randomly choose an example
x for which h(x) 6= f(x). The subscript (D, f) indicates that the error
is measured with respect to the probability distribution D and the correct
labeling function f . We omit this subscript when it is clear from the context.
L(D,f)(h) has several synonymous names such as the generalization error,
the risk, or the true error of h. We use the letter L for the error, since we
view this error as the loss of the learner. We will later also discuss other
possible formulations of such loss.

A note about the information available to the learner The learner is blind to
the underlying distribution D over the world and to the labeling function
f . In our papayas example, we have just arrived to a new island and we
have no clue as to how papayas are distributed and how to predict their
tastiness. The only way the learner can interact with the environment is
through observing the training set.

2.2 Empirical Risk Minimization
Next, we describe a simple learning paradigm for the above setup and analyze its
performance.
Recall that a learning algorithm receives as input a training set S, sampled from an
unknown distribution D and labeled by some target function f , and should output

1Strictly speaking, we should be more careful and require thatA is a member of some σ-algebra
of subsets of X , over which D is defined. We will formally define our measurability assumptions
in the next chapter.

c© Shai Ben-David and Shai Shalev-Shwartz.

16 A gentle start

a predictor hS : X → Y (the subscript S emphasizes the fact that the output
predictor depends on S). The goal of the algorithm is to find hS that minimizes
the error with respect to the unknown D and f .

Since the learner does not know what D and f are, the true error is not di-
rectly available to the learner. A useful notion of error that can be calculated by
the learner is the training error - the error the classifier incurs over the training
sample:

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
, (2.2)

where [m] = {1, . . . ,m}.
The terms empirical error, or empirical risk, are often used interchangeably

for this error.
Since the training sample is the snapshot of the world that is available to the

learner, it makes sense to search for a solution that works well on that data. This
learning paradigm (coming up with a predictor h that minimizes LS(h)) is called
Empirical Risk Minimization or ERM for short.

2.2.1 Something may go wrong - overfitting

Although the ERM rule seems very natural, without being careful, this approach
may fail miserably.

To demonstrate such a failure, let us go back to the problem of learning to
predict the taste of a papaya based on its shape and color. Consider a sample as
depicted in Figure ??. Assume that the probability distribution D is such that in-
stances are distributed uniformly within the gray square and the labeling function
determines the label to be 1 if the instance is within the inner blue square, and 0
otherwise. The area of the gray square in the picture is 2 and the area of the blue
square is 1. Consider the following predictor:

hS(x) =

{
yi if ∃i s.t. xi = x

0 otherwise
. (2.3)

Clearly, no matter what the sample is, LS(hS) = 0, and therefore this predictor
may be chosen by an ERM algorithm (it is one of the empirical-minimum-cost
hypotheses, no classifier can have smaller error). On the other hand, the true error
of any classifier that predicts the label 1 only on a finite number of instances is,

c© Shai Ben-David and Shai Shalev-Shwartz.

17 A gentle start

in this case, 1/2. Thus, LD(hS) = 1/2. We have found a predictor whose per-
formance on the training set is excellent, yet its performance on the true ”world”
is very poor. This phenomenon is called overfitting. Intuitively, overfitting occurs
when our hypothesis fits the training data ”too well” (perhaps like the everyday
experience that a person that provides a perfect detailed explanation for every
single action of his may raise suspicion).

Figure 2.1: An illustration of a sample for the Papaya taste learning problem.

2.3 Empirical Risk Minimization with inductive
bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather
than giving up on the ERM paradigm, we will look for ways to rectify it. We will
search for conditions under which there is a guarantee that ERM does not overfit.
Namely, conditions under which when the ERM predictor has good performance
with respect to the training data, it is also highly likely to perform well over the
underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search
space. Formally, the learner should choose in advance (before seeing the data) a
set of predictors. This set is called a hypothesis class and is denoted by H. Each
h ∈ H is a function mapping from X to Y . For a given class H, and a training
sample, S, the ERMH learner uses the ERM rule to choose a predictor h ∈ H,
with as low as possible error over S. Formally,

ERMH(S) ∈ argmin
h∈H

LS(h) ,

where argmin stands for the set of hypotheses in H that achieves the minimum
value of LS(h) overH. By restricting the learner to choosing a predictor fromH,
we bias it toward a particular set of predictors. Such restrictions are often called

c© Shai Ben-David and Shai Shalev-Shwartz.

18 A gentle start

an inductive bias. Since the choice of such a restriction is determined before the
learner sees the training data, it should ideally be based on some prior knowledge
about the problem to be learnt. For example, for the Papaya taste prediction prob-
lem we may choose the class H to be the set of predictors which are determined
by axis aligned rectangles (in the space determined by the color and softness co-
ordinates). We will later show that ERMH over this class is guaranteed not to
overfit. On the other hand, the example of overfitting that we have seen above,
demonstrates that choosing H to be a class of predictors that includes all func-
tions that assign the value 1 to a finite set of domain points, does not suffice to
guarantee that ERMH will not overfit.

A fundamental question in learning theory is, over which hypothesis classes
ERMH learning will not result in overfitting. We will study this question later in
the book.

Intuitively, choosing a more restricted hypothesis class better protects us
against overfitting but at the same time might cause us a larger inductive bias.
We will get back to this fundamental tradeoff later.

2.3.1 Finite hypothesis classes
The simplest type of restriction on a class is imposing an upper bound on its size
(that is, the number of predictors h in H). In this section, we show that if H is a
finite class then ERMH will not overfit, provided it is based on a sufficiently large
training sample (this size requirement will depend on the size ofH).

Limiting the learner to prediction rules within some finite hypothesis class
may be considered as a reasonably mild restriction. For example, H can be the
set of all predictors that can be implemented by a C++ program written in at most
1000000000 bits of code. In our papayas example, we mentioned previously the
class of axis aligned rectangles. While this is an infinite class, if we discretize the
representation of real numbers, say by using a 64 bits floating-point representa-
tion, the hypothesis class becomes a finite class.

Let us now analyze the performance of the ERMH learning rule assuming that
H is a finite class. For a training sample, S, labeled according to some f : X → Y ,
let hS denote a result of applying ERMH to S. Namely,

hS ∈ argmin
h∈H

LS(h) , (2.4)

In this chapter, we make the next simplifying assumption (that will be relaxed
in the next Chapter).

c© Shai Ben-David and Shai Shalev-Shwartz.

19 A gentle start

The Realizability assumption: There exists h? ∈ H s.t. L(D,f)(h
?) = 0. Note

that this assumption implies that with probability 1 over random samples,
S, where the instances of S are sampled according to D and are labeled by
f , we have LS(h?) = 0.

For every sample, S, since the realizability assumption implies that there exists
some h ∈ H for which LS(h) = 0 and hS is a minimizer of the sample error,
LS(hS) = 0. However, we are interested in the true loss of hS , L(D,f)(hS), rather
than its empirical loss.

Clearly, any guarantee on the error with respect to the underlying distribution,
D for an algorithm that has access only to a sample S, should depend on the
relationship between D and S. The common assumption in machine learning is
that the training sample S is generated by sampling points from the distributionD
independently of each other. Formally,

The i.i.d. assumption: The examples in the training set are independently and
identically distributed (i.i.d.) according to the distribution D. That is, every
xi in S is freshly sampled according to D and then labeled according to
the labeling function, f . We denote this assumption by S ∼ Dm where
m is the size of S, and Dm denotes the probability over m-tuples induced
by applying D to pick each element of the tuple independently of the other
members of the tuple.

Intuitively, the training set S is a window through which the learner gets
partial information about the distribution D over the world and the labeling
function, f . The larger the sample gets, the more likely it is to reflect more
accurately the distribution and labeling used to generate it.

Since L(D,f)(hS) depends on the training set, S, and that training set is picked
by a random process, there is randomness in the choice of the predictor hS and,
consequently, in the loss L(D,f)(hS). Formally, we say that it is a random variable.
It is not realistic to expect that with full certainty S will suffice to direct the learner
towards a good classifier (from the point of view of D), there is always some
probability that the sampled training data happens to be very non-representative
of the underlying D. If we go back to the papaya-tasting example, there is always
some (small) chance that all the papayas we have happened to taste were not tasty,
in spite of the fact that, say 70% of the papayas in our island are tasty. In such
a case, ERMH(S) may be the constant function that labels every papaya as ‘not
tasty’ (and has 70% error on the true distribution of papapyas in the island). We

c© Shai Ben-David and Shai Shalev-Shwartz.

20 A gentle start

will therefore address the probability to sample a training set for which L(D,f)(hS)
is not too large. Usually, we denote the probability of getting a non-representative
sample by δ, and call (1− δ) the confidence parameter of our prediction.

On top of that, since we cannot guarantee perfect label prediction, we in-
troduce another parameter for the quality of prediction, the accuracy parameter,
commonly denoted by ε. We interpret the event L(D,f)(hS) > ε as a failure of the
learner, while if L(D,f)(hS) ≤ ε we view the output of the algorithm as an approx-
imately correct predictor. Therefore (fixing some labeling function f : X → Y),
we are interested in upper bounding the probability to samplem-tuple of instances
that will lead to failure of the learner. Formally, let S|x = (x1, . . . ,xm) be the in-
stances of the training set, we would like to upper bound

Dm({S|x : L(D,f)(hS) > ε}) .

LetHB be the set of “bad” hypotheses, that isHB = {h ∈ H : L(D,f)(h) > ε}.
As mentioned previously, the realizability assumption implies that LS(hS) = 0
with probability 1. This also implies that the event L(D,f)(hS) > ε can only hap-
pen if for some h ∈ HB we have LS(h) = 0. Therefore, the set {S : L(D,f)(hS) >
ε} is a subset of {S : ∃h ∈ HB, LS(h) = 0}, which in turns can be rewritten as
∪h∈HB

{S|x : LS(h) = 0}. Therefore,

Dm({S|x : L(D,f)(hS) > ε}) = Dm(∪h∈HB
{S|x : LS(h) = 0}) . (2.5)

Next, we upper bound the right-hand side of the above using the union bound
- a basic property of probabilities.

Lemma 1 (Union bound). For any two sets A,B and a distribution D we have

D(A ∪B) ≤ D(A) +D(B) .

Applying the union bound to the right-hand side of Eq. (??) yields

Dm({S|x : L(D,f)(hS) > ε}) ≤
∑
h∈HB

Dm({S|x : LS(h) = 0}) . (2.6)

Next, let us bound each summand of the right-hand side of the above. Fix some
”bad” hypothesis h ∈ HB. The event LS(h) = 0 is equivalent to the event
∀i, h(xi) = f(xi). Since the examples in the training set are sampled i.i.d. we get
that

Dm({S|x : LS(h) = 0}) = Dm({S|x : ∀i, h(xi) = f(xi)})

=
m∏
i=1

D({xi : h(xi) = f(xi)}) . (2.7)

c© Shai Ben-David and Shai Shalev-Shwartz.

21 A gentle start

For each individual sampling of an element of the training set we have,

D({xi : h(xi) = yi}) = 1− L(D,f)(h) ≤ 1− ε .

Combining the above with Eq. (??) and using the inequality 1−ε ≤ e−ε we obtain
that for h ∈ HB,

Dm({S|x : LS(h) = 0}) ≤ (1− ε)m ≤ e−εm . (2.8)

Combining the above with Eq. (??) we conclude that

Dm({S|x : L(D,f)(hS) > ε}) ≤ |HB| e−εm ≤ |H| e−εm .

Corollary 1. Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ε > 0 and let
m be an integer that satisfies

m ≥ log(|H|/δ)
ε

.

Then, for any labeling function, f , and for any distribution, D, for which the
realizability assumption holds (that is, for some h ∈ H, L(D,f)(h) = 0), with
probability of at least 1−δ over the choice of an i.i.d. sample S of size m we have

L(D,f)(hS) ≤ ε .

A graphical illustration which explains how we used the union bound is given
in Figure ??.

The above corollary tells us that for a sufficiently largem, the ERMH rule over
a finite hypothesis class will be probably (with confidence 1 − δ) approximately
(up to an error of ε) correct. In the next chapter we formally define the model of
Probably Approximately Correct (PAC) learning.

Exercises
1. Overfitting of polynomial matching: Show that the rule given Eq. (??) can

be described as a thresholded polynomial. That is, there exists a polynomial
p such that hS(x) = 1[p(x)≥0].

c© Shai Ben-David and Shai Shalev-Shwartz.

22 A gentle start

Figure 2.2: Each point in the large circle represents a possible m-tuple of in-
stances. Each colored oval represents the set of ‘bad’ m-tuple of instances for
some ‘bad’ predictor h ∈ HB, that is {Sx : LD(h) > ε ∧ LS(h) = 0}. The ERM
can potentially overfit whenever it gets a training set S which is bad for some
h ∈ HB. Eq. (??) guarantees that for each individual h ∈ HB, at most (1 − ε)m-
fraction of the training sets will be bad. In particular, the larger m is, the smaller
each of these colored ovals becomes. The union bound formalizes the fact that the
area representing the training sets which are bad for some h ∈ HB is at most the
sum of the areas of the colored ovals. Therefore, it is bounded by |H| times the
maximum size of a colored oval. Any sample S outside the colored ovals will not
cause the ERM rule to overfit.

c© Shai Ben-David and Shai Shalev-Shwartz.

Chapter 3

A formal learning model

3.1 PAC learning
In the previous chapter we showed that for a finite hypothesis class, if the ERM
rule with respect to that class is applied on a sufficiently large training sample
(whose size is independent of the underlying distribution or labeling function)
then the output hypothesis will be probably approximately correct. More gener-
ally, we now define Probably Approximately Correct (PAC) learning.

Definition 1 (PAC learnability). A hypothesis class H is PAC learnable if there
exists a function mH : (0, 1)2 → N and a learning algorithm with the following
property: for every ε, δ ∈ (0, 1), for every distribution D over X , and for every
labeling function f which satisfies the realizability assumption with respect toH,
when running the learning algorithm on mH(ε, δ) i.i.d. examples generated by D
and labeled by f , the algorithm returns a hypothesis h such that, with probability
of at least 1− δ, L(D,f)(h) ≤ ε.

The definition of Probably Approximately Correct learnability contains two
approximation parameters. The accuracy parameter ε determines how far can the
output classifier be from the optimal one (this corresponds to the “approximately
correct”), and a confidence parameter δ indicating how likely is the classifier to
meet that accuracy requirement (corresponds to the “probably” part of “PAC”).
Under the data access model that we are investigating, these approximations are
inevitable. Since the sample S is randomly generated, there may always be a small
chance that it will happen to be non-informative or highly biased (for example,
there is always some chance that S will contain only one domain point, sampled

c© Shai Ben-David and Shai Shalev-Shwartz.

24 A formal learning model

over and over again). Furthermore, even when we are lucky enough to get a
training sample that does faithfully represent D, due to being just a finite sample,
there may always be some fine details of D that it fails to reflect. Our accuracy
parameter, ε allows “forgiving” the learner’s classifier for making minor errors.

Sample Complexity The function mH : (0, 1)2 → N determines the sample
complexity of learning H. That is, how many examples are required to guarantee
a probably approximately correct solution. The sample complexity is a function
of the accuracy (ε) and confidence (δ) parameters. It also depends on properties of
the hypothesis classH – for example, for a finite class we showed that the sample
complexity depends on log the size ofH.

Let us now recall the conclusion of the analysis of finite hypothesis classes
from the previous chapter. It can be rephrased as stating

Every finite hypothesis class is PAC learnable

There are infinite classes that are learnable as well. Later on we will show that
what determines the PAC learnability of a class is not its finiteness but rather a
combinatorial measure called the VC dimension.

3.2 A more general learning model

The model we have just described can be readily generalized, so that it could be
made relevant to a wider scope of learning tasks. We consider generalizations in
two aspects:

Removing the realizability assumption We have required that the learning al-
gorithm succeeds on a pair of data distributionD and labeling function f provided
that the realizability assumption is met. For practical learning tasks, this assump-
tion may be too strong (can we really guarantee that there is a rectangle in the
color-hardness space that fully determines which papayas are tasty?). In the next
sub-section, we will describe the agnostic PAC model in which this realizability
assumption is waived.

c© Shai Ben-David and Shai Shalev-Shwartz.

25 A formal learning model

Learning problems beyond binary classification The learning task that we
have been discussing so far, has to do with predicting a binary label to a given
example (like being tasty or not). However, many learning tasks take a differ-
ent form. For example, one may wish to predict a real valued number (say, the
temperature at 9pm tomorrow) or a label picked from a finite set of labels (like
the topic of the main story in tomorrow’s paper). It turns out that our analysis of
learning can be readily extended to such and many other scenarios by allowing a
variety of loss functions. We shall discuss that in Section ?? below.

3.2.1 Releasing the realizability assumption – Agnostic PAC
learning

A more realistic model for data-generating distribution. Recall that the re-
alizability assumption requires that there exists h? ∈ H such that Px∈X [h

?(x) =
f(x)] = 1. In many practical problems this assumption does not hold. Further-
more, it is maybe more realistic not to assume that the labels are fully determined
by the features we measure on input elements (in the case of the papayas, it is
plausible that two papayas of the same color and softness will have a different
taste). In the following, we relax the realizability assumption by replacing the
”target labeling function” with a more flexible notion, a data-labels generating
distribution.

Formally, from now on, letD be a probability distribution over X ×Y , where,
as before, X is our domain set and Y is a set of labels (usually we will consider
Y = {0, 1}). That is, D is a joint distribution over domain points and labels. One
can view such a distribution as being composed of two parts; a distribution DX
over unlabeled domain points (sometimes called the marginal distribution) and
a conditional probability over labels for each domain point, D((x, y)|x). In the
papaya example, DX determines the probability of encountering a papaya whose
color and hardness fall in some color-hardness values domain, and the conditional
probability is the probability that a papaya with color-hardness represented by x
is tasty. Indeed, such modeling allows for two papayas that share the same color
and hardness to belong to different taste categories.

The empirical and the true error with respect to such D. For a probability
distribution, D, over X × Y , one can measure how likely is h to make an error
when labeled points are randomly drawn according to D. We redefine the true

c© Shai Ben-David and Shai Shalev-Shwartz.

26 A formal learning model

error of a prediction rule h to be

LD(h)
def
= P

(x,y)∼D
[h(x) 6= y]

def
= D({(x, y) : h(x) 6= y}). (3.1)

We would like to find a predictor, h, for which that error will be minimized.
However, the learner does not know the data generating D. What the learner does
have access to is the training data, S. The definition of the empirical risk remains
the same as before, namely,

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
.

Given S, a learner can compute LS(h) for any function h : X → {0, 1}. Note that
LS(h) = LD(uniform over S)(h).

The goal: We wish to find some hypothesis, h : X → Y , that (probably approx-
imately) minimizes the true risk, LD(h).

The Bayes optimal predictor. Given any probability distribution D over X ×
{0, 1}, the best label predicting function from X to {0, 1} will be

fD(x) =

{
1 if P (y = 1|x) ≥ 1/2

0 otherwise

It is easy to verify (see Exercise ??) that for every probability distribution
D, the Bayes optimal predictor fD is optimal, in the sense that no other classifier,
g : X → {0, 1} has a lower error. That is, for every classifier g, LD(fD) ≤ LD(g).

Unfortunately, since we do not know D, we cannot utilize this optimal predic-
tor fD. What the learner does have access to is the training sample. We can now
present the formal definition of agnostic PAC learnability, which is a natural ex-
tension of the definition of PAC learnability to the more realistic, non-realizable,
learning setup we have just discussed.

Clearly, we cannot hope that the learning algorithm will find a hypothesis
whose error is smaller than the minimal possible error, that of the Bayes predictor.
Furthermore, as we shall prove later, once we make no prior assumptions about
the data-generating distribution, no algorithm can be guaranteed to find a predictor
which is as good as the Bayes optimal one. Instead, we require that the learning
algorithm will find a predictor whose error is not much larger than the best possi-
ble error of a predictor in some given benchmark hypothesis class. Of course, the
strength of such a requirement depends on the choice of that hypothesis class.

c© Shai Ben-David and Shai Shalev-Shwartz.

27 A formal learning model

Definition 2 (agnostic PAC learnability). A hypothesis class H is agnostic PAC
learnable if there exists a function mH : (0, 1)2 → N and a learning algorithm
with the following property: for every ε, δ ∈ (0, 1) and for every distribution D
over X × Y , when running the learning algorithm on mH(ε, δ) i.i.d. examples
generated by D, the algorithm returns a hypothesis h such that, with probability
of at least 1− δ (over the choice of the m training examples),

LD(h) ≤ min
h′∈H

LD(h
′) + ε .

Clearly, if the realizability assumption holds, agnostic PAC learning provides
the same guarantee as PAC learning. In that sense, agnostic PAC learning gener-
alizes the definition of PAC learning. When the realizability assumption does not
hold, no learner can guarantee an arbitrarily small error. Nevertheless, under the
definition of agnostic PAC learning, a learner can still declare success if its error
is not much larger than the best error achievable by a predictor from the class H.
This is in contrast to PAC learning in which the learner is required to achieve a
small error in absolute term and not relative to the best error achievable by the
hypothesis class.

3.2.2 The scope of learning problems modeled
We next extend our model so that it could be applied to a wide variety of learning
tasks. Let us consider some examples of different learning tasks.

• Multiclass Classification Our classification does not have to be binary.
Take for example the task of document classification: We wish to design a
program that will be able to classify given documents according to topics
(e.g., News, Sports, Biology, Medicine, etc.). A learning algorithm for such
a task, will have access to examples of correctly classified documents, and,
based on these examples, should output a program that can take as input
a new document and output a topic classification for that document. Here,
the domain set is the set of all potential documents. Once again, we would
usually represent documents by a set of features which could include counts
of different key words in the document, as well as other possibly relevant
features like the size of the document or its origin. The label set in this task
would be the set of possible document topics (so Y will be some large finite
set). Once we determine our domain and label sets, the other components
of our framework look exactly the same as in the Papaya tasting example;

c© Shai Ben-David and Shai Shalev-Shwartz.

28 A formal learning model

Our training sample will be a finite sequence of (feature vector, label) pairs,
the learner’s output will be a function from the domain set to the label set,
and, finally, for our measure of success, we can use the probability, over
(document, topic) pairs, of the event that our predictor suggests a wrong
label.

• Regression In this task, one wishes to find some simple pattern in the data -
a functional relationship between the X and Y components of the data. For
example, one wishes to find a linear function that best predicts a baby’s birth
weight based on ultrasound measures of his head circumference, abdominal
circumference, and femur length. Here, our domain set X is some subset
of R3 (the three ultrasound measurements) and the set of “labels”, Y , is the
the set of real numbers (the weight in grams). In this context, it is more
adequate to call Y the target set. Our training data as well as the learner’s
output, are as before (a finite sequence of (x, y) pairs, and a function from
X to Y , respectively). However, our measure of success is different. We
may evaluate the quality of a hypothesis function, h : X → Y by the ex-
pected square difference between the true labels and their predicted values.
Namely,

LD(h)
def
= E

(x,y)∼D
(h(x)− y)2 . (3.2)

To accommodate a wide range of learning tasks we generalize our formalism
of the measure of success as follows:

Generalized Loss Functions Given any set H (that plays the role of our hy-
potheses, or models) and some domain Z let ` be any function fromH×Z to the
set of non-negative real numbers, ` : H × Z → R+. We call such functions loss
functions.

Note that for prediction problems, we have that Z = X × Y . However, our
notion of the loss function is generalized beyond prediction tasks, and therefore
it allows Z to be any domain of examples (for instance, in unsupervised learning
tasks such as the one described in Chapter ??, Z is not a product of an instance
domain and a label domain).

We now define the risk function to be the expected loss of a classifier, h ∈ H,
with respect to a probability distribution D over Z, namely,

LD(h)
def
= E

z∼D
[`(h, z)]. (3.3)

c© Shai Ben-David and Shai Shalev-Shwartz.

29 A formal learning model

That is, we consider the expectation of the loss of h over objects z picked ran-
domly according to D. Similarly, we define the empirical risk to be the expected
loss over a given sample S = (z1, . . . , zm) ∈ Zm, namely,

LS(h)
def
=

1

m

m∑
i=1

`(h, zi). (3.4)

The loss functions used in the above examples of classification and regression
tasks are as follows:

• 0−1 loss: Here, our random variable z ranges over the set of pairsX×{0, 1}
and the loss function is

`0−1(h, (x, y))
def
=

{
0 if h(x) = y

1 if h(x) 6= y

This loss function is used in binary or multiclass classification problems.

One should note that, for a random variable, α, taking the values {0, 1},
Eα∼D[α] = Pα∼D[α = 1]. Consequently, for this loss function, the defini-
tions of LD(h) given in Eq. (??) and Eq. (??) coincides.

• Expected square loss: Here, our random variable z ranges over the set of
pairs X × Y and the loss function is

`sq(h, (x, y))
def
= (h(x)− y)2 .

This loss function is used in regression problems.

We will later see more examples of useful instantiations of loss functions.

To summarize, we formally define agnostic PAC learnability for general loss
functions.

Definition 3 (agnostic PAC learnability for general loss functions). A hypothesis
class H is agnostic PAC learnable with respect to a set Z and a loss function
` : H × Z → R+, if there exists a function mH : R+ × (0, 1) → N and a
learning algorithm with the following property: for every ε, δ ∈ (0, 1) and for
every distribution D over Z, when running the learning algorithm on mH(ε, δ)

c© Shai Ben-David and Shai Shalev-Shwartz.

30 A formal learning model

i.i.d. examples generated by D, the algorithm returns h ∈ H such that, with
probability of at least 1− δ (over the choice of the m training examples),

LD(h) ≤ min
h′∈H

LD(h
′) + ε ,

where LD(h) = Ez∼D[`(h, z)].

Remark 1 (A note about measurability*). In the above definition, for every h ∈ H,
we view the function `(h, ·) : Z → R+ as a random variable, and define LD(h)
to be the expected value of this random variable. For that, we need to require
that the function `(h, ·) is measurable. Formally, we assume that there is a σ-
algebra of subsets of Z, over which the probability D is defined, and that the
pre-image of every initial segment in R+ is in this σ-algebra. In the specific case
of binary classification with the 0 − 1 loss, the σ-algebra is over X × {0, 1}
and our assumption on ` is equivalent to the assumption that for every h, the set
{(x, h(x)) : x ∈ X} is in the σ-algebra.

Remark 2 (Proper vs. Improper learning*). In the above definition, we re-
quired that the algorithm will return a hypothesis from H. In some situations,
H is a subset of a set H′, and the loss function can be naturally extended to
be a function from H′ × Z to the reals. In this case, we may allow the al-
gorithm to return a hypothesis h ∈ H′, as long as it satisfies the requirement
LD(h) ≤ minh′∈H LD(h

′) + ε. Allowing the algorithm to output a hypothesis
from H′ is called improper learning, while proper learning is when the algorithm
must output a hypothesis fromH.

Exercises
1. Show that for every probability distribution D, the Bayes optimal predictor
fD is optimal, in the sense that no other classifier, g : X → {0, 1} has a
lower error. That is, for every classifier g, LD(fD) ≤ LD(g).

c© Shai Ben-David and Shai Shalev-Shwartz.

