
Lessons Learned Managing Distributed
Software Engineering Courses

Reid Holmes
School of Computer Science

University of Waterloo
rtholmes@uwaterloo.ca

Michelle Craig, Karen
Reid

Department of Computer
Science

University of Toronto
mcraig,reid@cs.toronto.edu

Eleni Stroulia
Department of Computing

Science
University of Alberta

stroulia@ualberta.ca

ABSTRACT
We have run the Undergraduate Capstone Open Source Proj-
ects (UCOSP) program for ten terms over the past six years
providing over 400 Canadian students from more than 30
schools the opportunity to be members of distributed software
teams. UCOSP aims to provide students with real devel-
opment experience enabling them to integrate lessons they
have learned in the classroom with practical development
experience while developing their technical communication
skills. The UCOSP program has evolved over time as we
have learned how to effectively manage a diverse set of stu-
dents working on a large number of different projects. The
goal of this paper is to provide an overview of the roles of
the various stakeholders for distributed software engineering
projects and the various lessons we have learned to make
UCOSP an effective and positive learning experience.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Human Factors

Keywords
Software engineering education, OSS, project-based courses

1. INTRODUCTION
Computer Science departments often use upper-year ‘cap-

stone’ courses to expose undergraduates to the experience
of developing large-scale systems, more complex than the
ones typically involved in their regular courses (e.g., [4]).
These capstone courses are often ‘greenfield’, that is, stu-
dents form small groups and propose and build systems from
scratch. Unfortunately, this format does not match software-
development reality: all team members are students, the
work is not constrained by real users, and the systems do not
suffer from an accumulation of technical debt. An alternative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

approach is to integrate students into real development teams.
While cooperative education programs have long taken this
route, they require a great deal of management and funding;
additionally, it is often impractical, even infeasible, to fit
long work terms into all students’ academic schedules.

UCOSP, the Undergraduate Capstone Open Source Project,
aims to blend these two models to provide students with
real-world development experience in a format that fits into
a single term and does not require a large amount of admin-
istrative overhead. We have now been running UCOSP twice
a year for five years. UCOSP is a national program; faculty
at any accredited Canadian university can send students.
UCOSP is administered by a steering committee comprised
of five faculty members. Since its inception, more than 400
students from over 25 universities have participated.

During the ten times we have run the UCOSP program we
have learned a great deal about how to effectively manage a
diverse set of students, projects, mentors, and faculty. We
have previously reported on the general UCOSP structure [7]
In this paper, we capture key UCOSP design decisions that we
have found help maximize student benefit from the UCOSP
program without overly burdening the students, mentors, or
the steering committee. We wish to codify our hard-won
experiences with UCOSP as other schools are starting new
programs elsewhere (e.g., [6, 2]).

These design decisions predominantly involve clearly set-
ting the expectations for each of the stakeholders involved in
the program and organizing the program in a way that does
not require full-time administrative support. This includes
the choice of open-source (OSS) projects, the mentors from
these projects, the students themselves, the home-faculty
liaisons who incorporate UCOSP into their own curriculae,
and the steering committee who organize and oversee the
program. The goal of this paper is to better enable other
universities to start their own capstone projects integrating
students into real-world OSS development teams.

2. LEARNING GOALS
UCOSP has three primary intended learning outcomes:

Realism : All UCOSP students work on real distributed
OSS projects as full members of software development
teams. Students use the same software development
processes as regular team members and are provided
with explicit mentorship from volunteer mentors from
each project. The value of mentorship from professional
software engineers has long been recognized [1].



Integration : Since students are working on real projects,
they have an opportunity to integrate and apply the
skills they have learned in their other university courses
in a real development setting. In this way, UCOSP can
act as the ‘active experimentation’ element of Kolb’s
Experiential Learning Model [5].

Communication : The majority of UCOSP interaction
takes place online; this forces students to develop and
improve their technical communication skills in a real
development setting. Burge et. al. note the difficulty
students have adapting their technical communication
skills to workplace situations [3].

3. PROGRAM ADMINISTRATION
Organizing UCOSP consists of five primary components that
have evolved with our experience.

3.1 Program Configuration
Establishing a new UCOSP-like program requires some ini-

tial setup activities that are significantly easier in subsequent
years. These include sourcing funding, recruiting and select-
ing open-source projects, and gaining the participation of
multiple universities. Recruiting the initial OSS projects was
a challenge because potential mentors were unsure of what
to expect from students and had many questions that the
inexperienced organizers couldn’t necessarily answer. The
program had no track record and mentors where justifiably
nervous about making the required time investment. Simi-
larly, recruiting the initial participation of universities was a
challenge. Administrators were nervous about the academic
integrity of the activities, the supervision of the students, and
the logistical details of determining grades. Once a dozen
universities were able to publicly vouch for the success of
their participation, others were keen to join.

3.2 Term Configuration
Before each term begins, we confirm the participation

of each project and update its online description and set
the sprint date and location. Students provide their project
preferences in an online registration form. Approximately one
month before the term starts, they are assigned to projects
based on their project preferences and skill sets. At this point,
some teams begin to connect and establish meeting times
for the upcoming term. We have found that encouraging
early communication means that students arrive at the sprint
with development environments set up and familiar with the
project; this enables teams to immediately focus on team
building and productive technical work.

3.3 Code Sprint
Each term UCOSP hosts a three-day code sprint for all

students and mentors. By meeting their fellow students and
mentors face-to-face, students seem to better understand
the goals of the project, are able to overcome the many
technical challenges associated with contributing effectively
to real projects, and feel like members of the team. The
sprint also gives mentors the opportunity to assess the skills
of each individual student in order to help pair them with
appropriately challenging tasks. The majority of our past
student problems have been associated with students or
mentors who have been unable to attend the sprint; for this
reason, sprint participation is now mandatory for all team
members.

3.4 Midterm
Project mentors provide feedback to students part way

through the course. More specifically, for each student they
provide a letter grade, his/her rank in the team, a brief de-
scription of tasks undertaken and contributions to date, and a
paragraph describing the student’s strengths and weaknesses.
This feedback often provides impetus to help students more
effectively allocate their time and effort over the rest of the
term. In particular, those students who have not effectively
communicated with their teammates and mentors, or have
refrained from sharing their code because ‘it’s not ready’,
realize that transparency is an essential aspect of successful
team work. The ranking, which is not communicated to the
student, encourages mentors to think more carefully about
the relative grade assignments; it is also used to verify that
the grades reflect the relative student ranking.

3.5 Final Evaluation and Wrap-up
Students are required to finalize their project contributions

by their last day of class. This restriction exists because
many universities prohibit course work during exam periods
so the students can focus on their exams. This also prevents
students from ‘buying time’ from their project mentors be-
cause they are busy with other coursework. The numerical
grades and qualitative feedback provided by the mentors are
scrutinized by the steering committee and then, after some
negotiation with the mentors occasionally resulting in small
adjustments, are passed along to the home-faculty liaisons.
These home-faculty are responsible for submitting the course
grades at their institutions and have the ultimate say in the
grade. Some home-faculty use the grade from the steering
committee directly as the student’s course grade but others
use it only as one component of the final course grade.

4. UCOSP DESIGN DECISIONS
Six primary stakeholder groups are involved in the UCOSP

program. For each we have described their tasks along with
various tips and tricks we have learned over time that im-
prove the overall experience. These descriptions are steering
committee-heavy as our goal is to help others form a steering
committee to organize the own UCOSP-like program.

4.1 Steering Committee
The steering committee (SC) is responsible for all orga-

nizational aspects of the program. Currently, comprised of
five members from four different universities, the SC is able
to coordinate approximately 50 students without requiring
significant additional administrative support.

The code sprint is the only UCOSP activity that requires
any direct funding; historically, industrial partners have paid
for these sprints. This requires that the SC communicate
annually with these partners.

Three months before each term, the SC holds an informal
discussion to determine which projects will be offered in the
next term. In general, UCOSP does not have much project
turnover as mentors are keen to continue to work with the
program; however, when new projects are brought into the
program the SC is careful to ensure that the project mentors
understand their roles and the required time commitment.

Two months before term start, the SC contacts the home
faculty at each institution to start the student recruitment
process. While home faculty can select any students they
wish, participants must be upper-year, full-time students who



are not currently on a co-op work term. Students register
approximately a month before the beginning of the term.

From each accepted student, the SC collects some basic
background data about technical expertise and experience
and also project selection preferences. The SC maintains
online project descriptions so students can make informed
decisions about their project preferences. 1. The SC then
manually assigns students to projects. During this assign-
ment, the SC a) assigns 4-8 students to each project (although
5-6 seems to be optimal); b) ensures a diversity of schools
and geographic regions are represented on each team; and
c) ensures that female participants are paired up on their
projects. While the geographic diversity increases effort re-
quired to effectively communicate, it also forces students to
work on these skills to best accomplish their assigned tasks.

The largest task for the SC involves organizing and manag-
ing the code sprint. Sprint activities start on Friday morning
and end mid-day on Sunday (enabling participants to miss
only only one day of work/school.) Students spend the vast
majority of the sprint time working in their groups, although
the SC organizes some team-building exercises at the start
of the first day to help improve the teams’ social cohesive-
ness. Each team also provides a 5-minute status report to all
sprint participants at the end of the first and last days. A
SC member visits each team to read them the ‘riot act’; that
is, to explain that the primary way students get into trouble
in UCOSP is that they fail to keep in contact with their
mentors and participate fully in the program. The SC also
holds a mentors-only meeting to provide mentors an overview
of the assessment process and to give them an opportunity
to coach each other on successful mentoring strategies.

Timing the sprint can be problematic and we have found
that the weekend following the second week of lectures to
be the best choice. Mentors have expressed the desire to
hold the sprint as early as possible so that it serves as a
kick-off event. Twice we have held it later in the term (once
after 3 weeks and once after 5) and both times we found
that teams were less-productive overall. While some students
could make contributions before the face-to-face meetings,
others floundered. Because of lead-time for travel booking
and resistance to asking students to miss any days during
the first week of lectures, we have felt that we couldn’t hold
the sprint before classes start or during the first week.

Logistically, the sprint generally requires enough physical
space for 50 students and 10 mentors to work together si-
multaneously; students mostly bring their own machines but
projects often appreciate having access to a few large displays
or projectors. UCOSP pays for the student’s travel and hotel,
and for some group meals. Participants are responsible for
their other expenses. Collecting travel receipts and managing
reimbursements is the least pleasant of the SC tasks; this is
complicated by the fact that most students have not had to
deal with these processes before.

Finally, the SC also manages the midterm and final review
process. While the committee does not assign grades, it
reviews each piece of feedback to improve consistency across
teams and project mentors and to ensure that each student
receives a meaningful assessment of their efforts. Midterm
feedback is sent to the students and their home faculty but
final feedback is sent only to the home faculty who will
distribute it to their own students; this is because some

1http://ucosp.ca/projects

participating institutions have additional course requirements
(for example giving a presentation or writing a written report)
that contribute to the final grade.

During the term, the SC also acts as a buffer between the
project mentors and the home faculty liaisons. This is pri-
marily because the SC consists of a largely fixed membership
with established relationships with the mentors while the
schools the students represent vary widely from term-to-term.
In the infrequent case that a student problem arises during
the term, the SC facilitates discussion between the project
mentors and the home faculty liaisons.

One of the most difficult tasks for the SC is saying ‘no’.
The limited number of spaces each term means that some
faculty are unable to send all of their highly-qualified students,
mentors are unable to have more students on their projects,
and there is insufficient space in the program for additional
projects. While the program could be expanded to address
these shortcomings, expanding beyond 50 students would
require full-time admin support which would greatly influence
the lightweight nature of the UCOSP program.

4.2 Projects
Attracting projects is not a problem; projects recognize the

value that committed upper-year students are able to provide.
Although it may be the case that a mentor could write the
same number of lines of code as the mentee in the time taken
to do the mentoring, mentors value the opportunity to recruit
new young talent to their projects.

We require that all UCOSP projects be open source; this
ensures that students will be able to freely talk about the
work they have done in UCOSP and to use their project
contributions as a part of their resumes once they graduate.
It also means that there are no intellectual property con-
cerns. Projects must also maintain active issue trackers, use
version control, and perform code reviews. Over time, most
projects involved in the program have migrated to using pub-
lic (GitHub) repositories making it even easier for students
to share the work they did in UCOSP.

Each project must have an active development community
(to enable students to learn from other more experienced
developers), and an active user community (to motivate
students to produce a usable product). Projects also need to
be able to put forward at least one mentor who will lead the
students throughout the term. The most effective projects
also tag specific beginner-friendly issues in their issue tracker.

For examples of projects past and present see [7]

4.3 Mentors
More than any other group, the mentors differentiate

UCOSP from other university courses. Mentors teach stu-
dents how to integrate into a real development community.
They guide the students in the following development process
and provide technical mentorship. Students receive detailed
feedback on their contributions to the project. This feed-
back can be on students’ status reports, how they interact
in meetings, how they help each other, and in terms of their
formal code reviews and patches.

Every UCOSP student performs a unique set of develop-
ment tasks during the term. The mentor and student work
together before and during the sprint to define a set of tasks
that are engaging to the student, achievable during the term,
and valuable to the project. It is important that these goals
are tailored for the individual skills of the student; being able

http://ucosp.ca/projects


set individual goals for students with different knowledge and
skills, and focusing on the student’s actual progress rather
than simply the final product, is a pedagogic advantage of the
program. When assessing the students, mentors are asked
for detailed rationale for their grades. While at the midterm
this is typically only a sentence or two, by term’s end most
mentors can provide multiple paragraphs along with links
to online discussions and status reports, issues in the bug
tracker, patches, and code reviews.

To participate in UCOSP, mentors must agree to attend
the sprint, hold weekly (or more frequent) online meetings
with the students, and write midterm and final evaluations
for each student. Most teams hold online meetings using
Google Hangouts and/or IRC; mentors are encouraged to
require that each student submit a written status report a
day in advance to facilitate an effective use of meeting time.

The most effective mentors are personally interested in
helping the students to grow as software engineers. By being
invested in the educational aspects of the program, mentors
are able to make decisions that best help the student rather
than solely focusing on the overall project goals. Over the
course of the program, several former UCOSP students have
returned as highly-successful project mentors.

4.4 Students
To be successful in UCOSP, students must be self-motivated.

Since grades are determined predominantly by their perfor-
mance throughout the term (no UCOSP school provides a
final exam), students must be continuously involved with
their team for the duration of the course. Students, home
faculty, and mentors all have a clear understanding that stu-
dents will spend 10–12 hours per week on UCOSP activities.
Although they only receive two explicit grades for their ef-
forts (the midterm and final), it is still critical that students
maintain a steady pace each week. We emphasize this in
a face-to-face meeting during the sprint but we often see a
few students who fail to appreciate this before their midterm
feedback only to greatly improve their performance in the
second half of the term. In these cases, their assessment is
largely based on their improvement, rather than penalizing
them for their initial performance. Since successful UCOSP
students need to be self driven, we do not believe the program
to be a good fit as a mandatory course.

Students organize their own travel to the sprint and are
reimbursed to a maximum amount (based on the student’s
university location and the sprint location).

In addition to working with their mentors, students end
up working heavily with each other. Since the students are
taking part in a shared experience (concurrently ramping up
on a highly technical project), they are often able to answer
each other’s questions in advance of their weekly meetings.

Anecdotally we have found that students join UCOSP ex-
pecting that they will primarily be learning new technologies
and contributing to a real project; however, they are often
surprised by how much they learned about the process of
developing software. Students often reflect that some of the
most important skills they learned involved determining how
to effectively communicate, manage their time, perform code
reviews, and figure out how and when to ask questions.

4.5 Faculty
The primary tasks of the home-faculty liaisons are to

recruit and screen applicants to the program, to ensure that

once accepted their students are putting forth the required
effort, and to handle administrative details at their home
institution including submitting a final grade.

Faculty play an important role in ensuring that only highly-
qualified, self motivated students are enlisted in the program.
The SC committee establishes per-university caps on student
enrolment numbers. In recent terms, the larger universities
were able to enrol up to five students while most smaller
universities were limited to two or three students. The
SC assumes that home faculty will contact and personally
connect with any student who is struggling; if this happens,
it has typically been the mentors who contact the SC with a
developing problem and the SC contacts the home faculty
to address the concern. While some home faculty take a
hands-off approach to UCOSP, the SC has been strongly
encouraging faculty to connect regularly (bi-weekly or weekly)
with their students.

Most universities provide ‘independent study’ credit for
UCOSP; the SC suggests that at least 80% of the final grade
be attributed to the work they performed on their projects.

5. CONCLUSION
Designing effective real-world capstone projects is a difficult

task. We have run the Undergraduate Capstone Open Source
Project (UCOSP) capstone course for 10 terms involving over
400 students from more than 25 Canadian universities. The
program itself runs much like an open source project where
the contributors (mentors, faculty, and steering committee)
share in the primary activities. This allows us to provide a
rich learning experience for students without any full-time
administrative or academic staff. We hope these guidelines
will help other faculty design their own capstone projects
that integrate students into real-world experiential learning
environments.

6. REFERENCES
[1] Curriculum guidelines for undergraduate degree

programs in software engineering.
http://sites.computer.org/ccse/SE2004Volume.pdf,
2004.

[2] Learning software development – by developing software.
http://web.mit.edu/newsoffice/2013/

6s194-developing-Soft.-0424.html, 2013.

[3] J. E. Burge, P. V. Anderson, M. Carter, G. C. Gannod,
and M. A. Vouk. Integrating communication instruction
throughout computer science and software engineering
curricula. 2011.

[4] R. F. Dugan. A survey of computer science capstone
course literature. Comp. Science Ed., 21(3):201–267,
2011.

[5] D. Kolb. Experiential learning: Experience as the source
of learning and development. Prentice Hall, 1984.

[6] M. Nordio, R. Mitin, and B. Meyer. Advanced hands-on
training for distributed and outsourced software
engineering. pages 555–558, 2010.

[7] E. Stroulia, K. Bauer, M. Craig, K. Reid, and G. Wilson.
Teaching distributed software engineering with UCOSP:
The undergraduate capstone open-source project. pages
20–25, 2011.

http://sites.computer.org/ccse/SE2004Volume.pdf
http://web.mit.edu/newsoffice/2013/6s194-developing-Soft.-0424.html
http://web.mit.edu/newsoffice/2013/6s194-developing-Soft.-0424.html

	Introduction
	Learning Goals
	Program Administration
	Program Configuration.
	Term Configuration.
	Code Sprint.
	Midterm.
	Final Evaluation and Wrap-up.

	UCOSP Design Decisions
	Steering Committee.
	Projects.
	Mentors.
	Students.
	Faculty.

	Conclusion
	References

