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END2END DIALOG AGENTS

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 
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LARL? How to discretize the action space?

PROPOSED METHOD
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PROPOSED MODEL
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Now the question
is what kind of
latent actions is
more suitable for
this task:

• Gaussian

• Categorical

?
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GAUSSIAN LATENT ACTION
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CATEGORICAL LATENT ACTION
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𝑧𝑧𝑚𝑚 ~ 𝑝𝑝 𝑍𝑍𝑚𝑚|𝑐𝑐 =
𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝜋𝜋𝑚𝑚 ℎ )
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ATTENTION FUSION

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 

Ε1:𝑀𝑀 𝑧𝑧1:𝑚𝑚 ∈ ℝ𝑀𝑀×𝐷𝐷
Summation Fusion: 

x = 𝑝𝑝𝜃𝜃𝑑𝑑(�
1

𝑀𝑀
Ε𝑚𝑚 𝑧𝑧𝑚𝑚 ) ∈ ℝ𝐷𝐷

Contribution
Attention Fusion:

i: step index during decoding

Decoder Initial State ∈ ℝ𝐷𝐷

• lose fine-grained order information

• Issues with long responses

𝛼𝛼𝑚𝑚𝑖𝑖 = 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(ℎ𝑑𝑑𝑖𝑖
𝑇𝑇𝑊𝑊𝑎𝑎𝐸𝐸𝑚𝑚 𝑧𝑧𝑚𝑚 )𝑧𝑧𝑚𝑚 ~ 𝑝𝑝 𝑍𝑍𝑚𝑚|𝑐𝑐 =

𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝜋𝜋𝑚𝑚 ℎ )
�ℎ𝑑𝑑𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑡𝑡ℎ 𝑊𝑊𝑠𝑠

ℎ𝑑𝑑𝑖𝑖
𝑐𝑐𝑖𝑖

𝑝𝑝 𝑤𝑤𝑖𝑖 ℎ𝑑𝑑𝑖𝑖 , 𝑐𝑐𝑖𝑖 = 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑊𝑊𝑜𝑜 �ℎ𝑑𝑑𝑖𝑖)

ℎ𝑑𝑑𝑖𝑖+1 = 𝑅𝑅𝑅𝑅𝑅𝑅(ℎ𝑑𝑑𝑖𝑖 ,𝑤𝑤𝑖𝑖+1, �ℎ𝑑𝑑𝑖𝑖)

𝑐𝑐𝑖𝑖 = �
1

𝑀𝑀
𝛼𝛼𝑚𝑚𝑖𝑖Ε𝑚𝑚 𝑧𝑧𝑚𝑚
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OPTIMIZATION

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 

Full ELBO (Evidence Lower Bound):

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜃𝜃 = 𝑝𝑝𝑞𝑞(𝑧𝑧|𝑥𝑥,𝑐𝑐) 𝑥𝑥|𝑧𝑧 − 𝐷𝐷𝐾𝐾𝑆𝑆 𝑞𝑞 𝑧𝑧|𝑥𝑥, 𝑐𝑐 ||𝑝𝑝 𝑧𝑧|𝑐𝑐

Lite ELBO (Evidence Lower Bound):

𝐿𝐿𝑓𝑓𝑖𝑖𝑡𝑡𝑙𝑙 𝜃𝜃 = 𝑝𝑝𝑝𝑝(𝑧𝑧|𝑐𝑐) 𝑥𝑥|𝑧𝑧
Exposure Bias: The decoder only sees z sampled 
from 𝑞𝑞 𝑧𝑧|𝑥𝑥, 𝑐𝑐 , and never experiences z sampled 
from 𝑝𝑝𝜃𝜃 𝑧𝑧|𝑐𝑐

𝐿𝐿𝑓𝑓𝑖𝑖𝑡𝑡𝑙𝑙 𝜃𝜃 = 𝑝𝑝𝑝𝑝(𝑧𝑧|𝑐𝑐) 𝑥𝑥|𝑧𝑧 − 𝐷𝐷𝐾𝐾𝑆𝑆 𝑝𝑝𝜃𝜃𝑒𝑒 𝑧𝑧|𝑐𝑐 ||𝑝𝑝 𝑧𝑧|𝑐𝑐

−𝛽𝛽𝐷𝐷𝐾𝐾𝑆𝑆 𝑝𝑝 𝑧𝑧|𝑐𝑐 ||𝑝𝑝 𝑧𝑧

𝑝𝑝 𝑧𝑧 = 1/𝐾𝐾 𝑝𝑝 𝑧𝑧 = 𝒩𝒩 0, 𝐼𝐼OR

𝑞𝑞 𝑧𝑧 𝑥𝑥, 𝑐𝑐 = 𝑝𝑝𝜃𝜃𝑒𝑒 𝑧𝑧|𝑐𝑐

Contribution

p 𝑧𝑧 𝑐𝑐 = 𝜋𝜋(ℱ(c))

p 𝑥𝑥 𝑧𝑧 = 𝑝𝑝𝜃𝜃𝑑𝑑(E(z))
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LANGUAGE CONSTRAINED REWARD CURVE (LCR)

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 
2- https://vimeo.com/360620730
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Perplexity Constraints (Language Quality Budget)

Ideal Model

Sacrifice Language Quality

Can’t Achieve High Reward

Past metrics can’t quantify 
the balance between task 

reward and language
generation quality well
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RESULTS: DEAL OR NO DEAL

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 

DealOrNoDeal is a negotiation
dataset that contains 5805 dialogs
based on 2236 unique scenarios

252 scenarios for testing environment and randomly
sample 400 scenarios from the training set for
validation
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RESULTS: MULTI-WOZ

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 

Multi-Woz is a slot-filling dataset that contains 10438
dialogs on 6 different domains. 8438 dialogs are for
training and 1000 each are for validation and
testing.
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RESULTS

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 
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CONCLUSION

Ref: 
1-Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models, T. Zhao et. al. 

• Proposes a latent action space for RL in E2E dialog agents

• A regularized ELBO objective (Exposure Bias)

• Attention Fusion for discrete variables

• A new state-of-the-art success rate on MultiWoz

• Create action abstraction in an unsupervised manner
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HikingArtist.com Youtube Thomas Seager

https://www.youtube.com/watch?v=POPyW3LQYwM&feature=youtu.be
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