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Travelling Salesman Problem

▪ Combinatorial Optimization is a fundamental problem in computer science

▪ Travelling Salesman Problem is such a typical problem and is NP hard, where 
given a graph, one needs to search the space of permutations to find an optimal 
sequence of nodes with minimal total edge weights (tour length).

▪ In 2D Euclidean space, nodes are 2D points and edge weights are Euclidean 
distances between pairs of points.
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Target & Solution

▪ This paper will use reinforcement learning and neural networks to tackle the 
combinatorial optimization problem, especially TSP.

▪ We want to train a recurrent neural network such that, given a set of city 
coordinates, it will predict a distribution over different cities permutations.

▪ The recurrent neural network encodes a policy and is optimized by policy 
gradient, where the reward signal is the negative tour length.

▪ We propose two main approaches, RL Pretraining and Active Search
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▪ The Traveling Salesman Problem is a well studied combinatorial optimization 
problem and many exact or approximate algorithms have been proposed.

▪ Like Christofides, Concorde, Google’s vehicle routing problem solver

▪ The real challenge is applying existing search heuristics to newly encountered 
problems, researcher used “hyper-heuristics” to generalize their optimization 
system, but more or less, human created heuristic is needed.
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▪ The earliest solution for TSP using machine learning is Hopfield networks 
(Hopfield & Tank, 1985), but it is sensitive to hyperparameters and parameter 
initialization.

▪ Later research include applying Elastic Net (Durbin, 1987), Self Organizing 
Map (Fort, 1988) to TSP 

▪ Most of the other works were analyzing and modifying the above methods, and 
they showed that neural network were beat by algorithmic solutions
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▪ Due to sequence to sequence learning, neural network is again the subject of 
study for optimization in various domain.

▪ In particular, the TSP is revisited in the introduction of Pointer network 
(Vinyals et al, 2015b), where recurrent neural network is trained in a 
supervised way to predict the sequence of visited cities.
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Construction

▪ We focus on a 2D Euclidean TSP. And let the input be the 
sequence of cities (points) 𝑠 = {𝑥𝑖}𝑖=1

𝑛 , where each 𝑥𝑖 ∈ ℝ2.

▪ The target is to find a permutation 𝜋 of these points, terms 
as a tour, that visits each city and has minimum length.

▪ Define the length of a tour 𝜋 as:

𝐿 𝜋 𝑠 = 𝑥𝜋(𝑛) − 𝑥𝜋(1) 2
+ σ𝑖=1

𝑛−1 𝑥𝜋(𝑖+1) − 𝑥𝜋(𝑖) 2
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Construction

▪ Construct a model-free and policy based algorithm

▪ The goal is to learn the parameters of the stochastic policy 
𝑝 𝜋 𝑠 = ς𝑖=1

𝑛 𝑝( 𝜋 𝑖 𝜋 < 𝑖 , 𝑠 )

▪ This stochastic policy needs to:

i. Be sequence to sequence

ii. Be generalized to different graph size
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Pointer network 

Encoder: reads the input sequence s, one 

city at a time, and transforms it into a

sequence of latent memory states

{𝑒𝑛𝑐𝑖}𝑖=1
𝑛 , and each 𝑒𝑛𝑐𝑖 ∈ ℝ𝑑

Decoder: uses a pointing mechanism to 

produce a distribution over the next city to 

visit in the tour.

𝑢𝑖 = ቊ
𝑣𝑇 tanh 𝑊𝑒𝑛𝑐𝑒𝑛𝑐𝑖 +𝑊𝑑𝑒𝑐𝑑𝑒𝑐𝑗 𝑖𝑓 𝑖 ≠ 𝜋 𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 < 𝑖

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐴 𝑒𝑛𝑐, 𝑑𝑒𝑐𝑗;𝑊𝑒𝑛𝑐,𝑊𝑑𝑒𝑐 , 𝑣 ≝ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢)
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Optimization

▪ Target (loss) function                            

𝐽 𝜃 𝑠 = 𝔼𝜋~𝑝𝜃 · 𝑠 𝐿 𝜋 𝑠

▪ Policy gradient with a baseline

∇𝜃𝐽 𝜃 𝑠 = 𝔼𝜋~𝑝𝜃 · 𝑠 [ 𝐿 𝜋 𝑠 − 𝑏 𝑠 ∇𝜃 log 𝑝𝜃 · 𝑠 ]

▪ Using samples of size 𝐵 to approximate expectation

∇𝜃𝐽 𝜃 𝑠 =
1

𝐵
෍

𝑖=1

𝐵

[ 𝐿 𝜋𝑖 𝑠𝑖 − 𝑏 𝑠𝑖 ∇𝜃 log 𝑝𝜃 𝜋𝑖 𝑠𝑖 ]
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Actor Critic

▪ Here, Let 𝑏 𝑠 (the baseline) be the expected tour length 𝔼𝜋~𝑝𝜃 · 𝑠 [𝐿 𝜋 𝑠 ]

▪ Introduce another network, called critic and parameterized by 𝜃𝑣 to 
encode 𝑏𝜃𝑣 𝑠 . 

▪ This critic network is trained along with the policy network, and the 
objective is

ℒ 𝜃𝑣 =
1

𝐵
෍

𝑖=𝑖

𝐵

𝑏𝜃𝑣 𝑠 − 𝐿 𝜋𝑖 𝑠𝑖 2

2
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Critic’s Architecture

I. One LSTM encoder, similar to the pointer network, encodes the sequence 
of cities 𝑠 to a series of latent memory states and a hidden state ℎ

II. One LSTM processor, which takes the hidden state ℎ as an input, process 
it 𝑃 times, then pass to decoder

III. A two-layer ReLU neural network decoder, transforms the above output 
hidden state into a baseline prediction. 
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Search Strategy

▪ In Algorithm 1, we were using greedy decoding at each step to select cities, 
but we can also sample different tours then select the shortest one.

𝐴 𝑟𝑒𝑓, 𝑞, 𝑇;𝑊𝑟𝑒𝑓,𝑊𝑞 , 𝑣 ≝ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢/𝑇)

▪ What about developing a search strategy that is not pre-trained, and will 
optimize parameter for every single test input?
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Sample n solutions and 
select the shortest one

Same policy gradient as before

No critic network, using a exp 
moving average baseline 
instead
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▪ We consider three benchmark tasks, Euclidean TSP20, 50 and 100, for which we 
generate a test set of 1000 graphs. Points are drawn uniformly at random in the 
unit square [0, 1]

▪ Four target algorithms:

i. RL pretraining (Actor Critic) with greedy decoding

ii. RL pretraining (Actor Critic) with sampling

iii. RL pretraining-Active Search (run Active Search with a pretrained RL model)

iv. Active Search
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▪ Using 3 algorithmic solutions as baselines:

i. Christofides

ii. the vehicle routing solver from OR-Tools

iii. Optimality

▪ For the purpose of comparison, we also trained pointer networks with 
the same architecture by supervised learning method (providing with 
the true label).
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Averaged tour length
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Running time 
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Reinforcement Learning methods
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Generalization: KnapSack example

Given a set of n items 𝑖 = 1,…𝑛, each with weight 𝑤𝑖and value 𝑣𝑖 and a 
maximum weight capacity of 𝑊, the 0-1 KnapSack problem consists in 
maximizing the sum of the values of items present in the knapsack so 
that the sum of the weights is less than or equal to the knapsack 
capacity:

max
𝑆⊆{1,2,…,𝑛}

෍

𝑖∈𝑆

𝑣𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊
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Generalization: KnapSack example
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▪ This paper constructs Neural Combinatorial Optimization, a framework to tackle 
combinatorial optimization with reinforcement learning and neural networks.

▪ We focus on the traveling salesman problem (TSP) and present a set of results for 
each variation of the framework

▪ The experiment shows that Neural Combinatorial Optimization achieves close to 
optimal results on 2D Euclidean graphs with up to 100 nodes.

▪ Reinforcement learning and neural networks are successful tools to solve 
combinatorial optimization problems if properly constructed.
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▪ The above framework works very well when the problems are of 
sequence to sequence type

▪ Try to solve other kinds of combinatorial optimization problems using 
reinforcement learning 
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