
Neural Combinatorial Optimization
With Reinforcement Learning

Paper by Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016)

Presented by Yan Shi

CS885 Reinforcement Learning

Outline

1. Introduction

2. Background

3. Algorithms and optimization

4. Experiments

5. Conclusions

PRESENTATION TITLE PAGE 2

Introduction

PRESENTATION TITLE PAGE 3

Travelling Salesman Problem

▪ Combinatorial Optimization is a fundamental problem in computer science

▪ Travelling Salesman Problem is such a typical problem and is NP hard, where
given a graph, one needs to search the space of permutations to find an optimal
sequence of nodes with minimal total edge weights (tour length).

▪ In 2D Euclidean space, nodes are 2D points and edge weights are Euclidean
distances between pairs of points.

Introduction

PRESENTATION TITLE PAGE 4

Target & Solution

▪ This paper will use reinforcement learning and neural networks to tackle the
combinatorial optimization problem, especially TSP.

▪ We want to train a recurrent neural network such that, given a set of city
coordinates, it will predict a distribution over different cities permutations.

▪ The recurrent neural network encodes a policy and is optimized by policy
gradient, where the reward signal is the negative tour length.

▪ We propose two main approaches, RL Pretraining and Active Search

Background

PRESENTATION TITLE PAGE 5

▪ The Traveling Salesman Problem is a well studied combinatorial optimization
problem and many exact or approximate algorithms have been proposed.

▪ Like Christofides, Concorde, Google’s vehicle routing problem solver

▪ The real challenge is applying existing search heuristics to newly encountered
problems, researcher used “hyper-heuristics” to generalize their optimization
system, but more or less, human created heuristic is needed.

Background

PRESENTATION TITLE PAGE 6

▪ The earliest solution for TSP using machine learning is Hopfield networks
(Hopfield & Tank, 1985), but it is sensitive to hyperparameters and parameter
initialization.

▪ Later research include applying Elastic Net (Durbin, 1987), Self Organizing
Map (Fort, 1988) to TSP

▪ Most of the other works were analyzing and modifying the above methods, and
they showed that neural network were beat by algorithmic solutions

Background

PRESENTATION TITLE PAGE 7

▪ Due to sequence to sequence learning, neural network is again the subject of
study for optimization in various domain.

▪ In particular, the TSP is revisited in the introduction of Pointer network
(Vinyals et al, 2015b), where recurrent neural network is trained in a
supervised way to predict the sequence of visited cities.

Algorithm and Optimization

PRESENTATION TITLE PAGE 8

Construction

▪ We focus on a 2D Euclidean TSP. And let the input be the
sequence of cities (points) 𝑠 = {𝑥𝑖}𝑖=1

𝑛 , where each 𝑥𝑖 ∈ ℝ2.

▪ The target is to find a permutation 𝜋 of these points, terms
as a tour, that visits each city and has minimum length.

▪ Define the length of a tour 𝜋 as:

𝐿 𝜋 𝑠 = 𝑥𝜋(𝑛) − 𝑥𝜋(1) 2
+ σ𝑖=1

𝑛−1 𝑥𝜋(𝑖+1) − 𝑥𝜋(𝑖) 2

Algorithm and Optimization

PRESENTATION TITLE PAGE 9

Construction

▪ Construct a model-free and policy based algorithm

▪ The goal is to learn the parameters of the stochastic policy
𝑝 𝜋 𝑠 = ς𝑖=1

𝑛 𝑝(𝜋 𝑖 𝜋 < 𝑖 , 𝑠)

▪ This stochastic policy needs to:

i. Be sequence to sequence

ii. Be generalized to different graph size

Algorithm and Optimization

PRESENTATION TITLE PAGE 10

Pointer network

Encoder: reads the input sequence s, one

city at a time, and transforms it into a

sequence of latent memory states

{𝑒𝑛𝑐𝑖}𝑖=1
𝑛 , and each 𝑒𝑛𝑐𝑖 ∈ ℝ𝑑

Decoder: uses a pointing mechanism to

produce a distribution over the next city to

visit in the tour.

𝑢𝑖 = ቊ
𝑣𝑇 tanh 𝑊𝑒𝑛𝑐𝑒𝑛𝑐𝑖 +𝑊𝑑𝑒𝑐𝑑𝑒𝑐𝑗 𝑖𝑓 𝑖 ≠ 𝜋 𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 < 𝑖

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐴 𝑒𝑛𝑐, 𝑑𝑒𝑐𝑗;𝑊𝑒𝑛𝑐,𝑊𝑑𝑒𝑐 , 𝑣 ≝ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢)

Algorithm and Optimization

PRESENTATION TITLE PAGE 11

Optimization

▪ Target (loss) function

𝐽 𝜃 𝑠 = 𝔼𝜋~𝑝𝜃 · 𝑠 𝐿 𝜋 𝑠

▪ Policy gradient with a baseline

∇𝜃𝐽 𝜃 𝑠 = 𝔼𝜋~𝑝𝜃 · 𝑠 [𝐿 𝜋 𝑠 − 𝑏 𝑠 ∇𝜃 log 𝑝𝜃 · 𝑠]

▪ Using samples of size 𝐵 to approximate expectation

∇𝜃𝐽 𝜃 𝑠 =
1

𝐵

𝑖=1

𝐵

[𝐿 𝜋𝑖 𝑠𝑖 − 𝑏 𝑠𝑖 ∇𝜃 log 𝑝𝜃 𝜋𝑖 𝑠𝑖]

Algorithm and Optimization

PRESENTATION TITLE PAGE 12

Actor Critic

▪ Here, Let 𝑏 𝑠 (the baseline) be the expected tour length 𝔼𝜋~𝑝𝜃 · 𝑠 [𝐿 𝜋 𝑠]

▪ Introduce another network, called critic and parameterized by 𝜃𝑣 to
encode 𝑏𝜃𝑣 𝑠 .

▪ This critic network is trained along with the policy network, and the
objective is

ℒ 𝜃𝑣 =
1

𝐵

𝑖=𝑖

𝐵

𝑏𝜃𝑣 𝑠 − 𝐿 𝜋𝑖 𝑠𝑖 2

2

Algorithm and Optimization

PRESENTATION TITLE PAGE 13

Critic’s Architecture

I. One LSTM encoder, similar to the pointer network, encodes the sequence
of cities 𝑠 to a series of latent memory states and a hidden state ℎ

II. One LSTM processor, which takes the hidden state ℎ as an input, process
it 𝑃 times, then pass to decoder

III. A two-layer ReLU neural network decoder, transforms the above output
hidden state into a baseline prediction.

Algorithm and Optimization

PRESENTATION TITLE PAGE 14

Algorithm and Optimization

PRESENTATION TITLE PAGE 15

Search Strategy

▪ In Algorithm 1, we were using greedy decoding at each step to select cities,
but we can also sample different tours then select the shortest one.

𝐴 𝑟𝑒𝑓, 𝑞, 𝑇;𝑊𝑟𝑒𝑓,𝑊𝑞 , 𝑣 ≝ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢/𝑇)

▪ What about developing a search strategy that is not pre-trained, and will
optimize parameter for every single test input?

Algorithm and Optimization

PRESENTATION TITLE PAGE 16

Sample n solutions and
select the shortest one

Same policy gradient as before

No critic network, using a exp
moving average baseline
instead

Experiment

PRESENTATION TITLE PAGE 17

▪ We consider three benchmark tasks, Euclidean TSP20, 50 and 100, for which we
generate a test set of 1000 graphs. Points are drawn uniformly at random in the
unit square [0, 1]

▪ Four target algorithms:

i. RL pretraining (Actor Critic) with greedy decoding

ii. RL pretraining (Actor Critic) with sampling

iii. RL pretraining-Active Search (run Active Search with a pretrained RL model)

iv. Active Search

Experiment

PRESENTATION TITLE PAGE 18

Experiment

PRESENTATION TITLE PAGE 19

▪ Using 3 algorithmic solutions as baselines:

i. Christofides

ii. the vehicle routing solver from OR-Tools

iii. Optimality

▪ For the purpose of comparison, we also trained pointer networks with
the same architecture by supervised learning method (providing with
the true label).

Experiment

PRESENTATION TITLE PAGE 20

Averaged tour length

Experiment

PRESENTATION TITLE PAGE 21

Running time

Experiment

PRESENTATION TITLE PAGE 22

Reinforcement Learning methods

Experiment

PRESENTATION TITLE PAGE 23

Generalization: KnapSack example

Given a set of n items 𝑖 = 1,…𝑛, each with weight 𝑤𝑖and value 𝑣𝑖 and a
maximum weight capacity of 𝑊, the 0-1 KnapSack problem consists in
maximizing the sum of the values of items present in the knapsack so
that the sum of the weights is less than or equal to the knapsack
capacity:

max
𝑆⊆{1,2,…,𝑛}

𝑖∈𝑆

𝑣𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

Experiment

PRESENTATION TITLE PAGE 24

Generalization: KnapSack example

Conclusion

PRESENTATION TITLE PAGE 25

▪ This paper constructs Neural Combinatorial Optimization, a framework to tackle
combinatorial optimization with reinforcement learning and neural networks.

▪ We focus on the traveling salesman problem (TSP) and present a set of results for
each variation of the framework

▪ The experiment shows that Neural Combinatorial Optimization achieves close to
optimal results on 2D Euclidean graphs with up to 100 nodes.

▪ Reinforcement learning and neural networks are successful tools to solve
combinatorial optimization problems if properly constructed.

Future works

PRESENTATION TITLE PAGE 26

▪ The above framework works very well when the problems are of
sequence to sequence type

▪ Try to solve other kinds of combinatorial optimization problems using
reinforcement learning

THANK YOU!

PRESENTATION TITLE PAGE 27

