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sSome Terminology

On-policy learning: Only one policy used throughout the system to both

explore and select actions. Not optimal because policy covers exploration as well,

but less costly.
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sSome Terminology

Off-policy learning: Two policies, one for exploring and the other for action

selection. Expensive computationally, but more optimal solution achieved with
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How to boil rice

Fill pan with water

Heat pan on stove
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Drain pan into sieve

Reduce heat to low,
cook for 15 minutes
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Target Policy
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sSome Terminology

Meta-Reinforcement Learning: First train a reinforcement learning system
to do a task, then train it to do a second different task

The hope is that some of its ability to do the first will help it learn how to do the
second

I.e. we will converge faster on a solution for the second using knowledge from the
first

If this happens, it is called meta-learning. Learning how to learn.

Depending on the system, pre-training can be meta-learning
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Most meta-learning RL systems use on-policy learning

The general problem with on-policy learning is sample inefficiency

There is meta-training efficiency for other tasks and adaptation efficiency
for the task at hand

Ideally, both should be good. That is, we want few-shot learning.

Current methods would use off-policy during training and then on-policy during
inference. But this might lead to overfitting in off-policy methods (different real
data).

. How can current solutions be improved? The authors propose Probabilistigrsirv or
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context PAGE 5 W WATERLOO

“fmbeddings for Actor-critic RL (PEARL) @



PEARL Method

We have a set of tasks T, each of which consists of an initial state distribution,
initial transition distribution and initial reward function

Each sample is a tuple referred to as a context ¢ = (s, a, r, s’) and each task has a
set of size N these samples c,.y

Now for the innovative bit: A latent (hidden) probabilistic context variable Z is
added to the mix and the policy is conditioned with this variable as mg(a | s, z)
while learning a task

A soft actor-critic (SAC) method is used in addition to Z

Variables
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The ZVariable

How do we ensure that Z captures meta-learning properties and not other
dependencies?

An inference network g(z | ¢) is trained during the meta-training phase to
estimate p(z | ¢). To sidestep the intractabilitv. the lower bound is used for
optimization E7[E,,, (z/cm)[R(T.2)|+ 8Dk (qs(z|c”)||p(2))]]

Optimization is nowsmedelrfree using evidence,lewer.bound (ELBO)

objective

gy (z|c1.n) o< 1L, Wy (z]cy,)

Use Gaussian factors to lessen impact of context size and order (pe my tatien v or
A
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The Inherent Stochasticity of 7

The variable Z can be said to learn the uncertainty of the tasks that it is presented
with, a bit similar to the beta functions in Thompson sampling

Due to the policy relying on z to reach a decision, there is a degree of uncertainty

that becomes less and less as the model learns more

This initial uncertainty seems to be enough to get the model to explore in the new

task, but not so much to prevent optimal convergence
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-
Soft Actor-Gritic Part

The optimal off-policy model for this method was found to be SAC with the

following loss functions:

Eactor :ESNB,aNT('Q [DKL (7'('9(&|S, 2)

exp(Qo(s, a, Z))X

2~qy (z]c) Zy(s)
Leritic = ]E(s,a,r,s')NB [Q9<S7 a, Z) _ (T + V(Slv Z))]2
z~qy(z|c)
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Ps e “ d 0 c 0 d e Algorithm 1 PEARL Meta-training

Require: Batch of training tasks {7;}i=1. .7 from p(7),
learning rates v, ava, (v3
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. Initialize replay buffers B’ for each training task
: while not done do
for each 7; do
: Initialize context ¢* = {}
: fork=1,..., K do . .
: Sample z ~ g, (z]c?) Fill our buffers with
: Gather data from 7y (as, z) and add to B? relevant data for the task
: Update ¢ = {(sj,a;,8%,7m5)}jr..v ~ Bi
: end for
. end for

for step in training steps do

18:

19:
20:
21:
22:

for each /; do
Sample context ¢’ ~ S.(B?) and RL batch b* ~
Bi
f;l_mple “ (Io(?l;?l)z) Sample using actor-critic
actor — actor ‘ oo
! itie = Leritic(b', 2) and utilize z
Ly, = BDxu(q(zlc")||r(2))
end for
P d—aVy), (‘C:,-;-iri(- + [:;\'L)
Or O = 22V0 )i Lactor Update weights

{)Q — ()Q - (1;;V0 Zi L

critic

€nd ior

23: end while
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Tasks

The classic MudJoCo environment and tasks used

Half Cheetah Humanoid Walker
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\IE/;f::t!)T;SOff-Pollcy Meta-Reinforcement Learning via Probabilistic Context PAGE 11 AN WATERLOO



Meta-Training Results
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Meta-Training Resulits, Further Time Steps

Half-Cheetah-Fwd-Back
2000

1500

1000

verage return

a

500

10° 10" 107 108
Ant-Fwd-Back

1500
=200

1250
€ 1000 =400 m = —
@ -
5 750 .o
o -600
®
g 500
® L0 -800
0 — —-1000
10 10° 10 107 108
time steps
-~ PEARL (ours) = ProMP

Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context
Variables

Half-Cheetah-Vel

10"

107
Ant-Goal-2D

107
time steps

MAML

PAGE 13

109

108

RL2

Humanoid-Direc-2D

10° 107 108

Walker-2D-Params
800

600

105 106 107 108
time steps

- = final performance

% WATERLOO




Adaptation Efficiency Example

z ~ 7(2) z ~ qg(z|c1:10) 2z~ 94 (2|c1:30)

z ~ qg(2z|c1:10) 2z ~ q4(2|c1.30)
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Test-time adaptation trajectories
I PEARL (ours) B MAESN — 0.2 - = r0.8
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Anything Missing?

Drastically improves meta-learning capabilities

Shows that off-policy methods are usable in these circumstances

Ablation shows that the benefits are thanks to the changes suggested

All of these tasks are fairly similar. What about meta-training on a disparate set
of tasks? Is there still an advantage?

Most of the results are about the meta-learning step. What about adaptation

efficiency in general?
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