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Some Terminology
▪ On-policy learning: Only one policy used throughout the system to both 

explore and select actions. Not optimal because policy covers exploration as well, 

but less costly.
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Some Terminology
▪ Off-policy learning: Two policies, one for exploring and the other for action 

selection. Expensive computationally, but more optimal solution achieved with 

fewer samples.
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Some Terminology
▪ Meta-Reinforcement Learning: First train a reinforcement learning system 

to do a task, then train it to do a second different task

▪ The hope is that some of its ability to do the first will help it learn how to do the 

second

▪ I.e. we will converge faster on a solution for the second using knowledge from the 

first

▪ If this happens, it is called meta-learning. Learning how to learn.

▪ Depending on the system, pre-training can be meta-learning
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Problem Definition
▪ Most meta-learning RL systems use on-policy learning

▪ The general problem with on-policy learning is sample inefficiency

▪ There is meta-training efficiency for other tasks and adaptation efficiency

for the task at hand

▪ Ideally, both should be good. That is, we want few-shot learning.

▪ Current methods would use off-policy during training and then on-policy during 

inference. But this might lead to overfitting in off-policy methods (different real 

data).

▪ How can current solutions be improved? The authors propose Probabilistic 

Embeddings for Actor-critic RL (PEARL)
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PEARL Method
▪ We have a set of tasks T, each of which consists of an initial state distribution, 

initial transition distribution and initial reward function

▪ Each sample is a tuple referred to as a context c = (s, a, r, s’) and each task has a 

set of size N these samples c1:N
▪ Now for the innovative bit: A latent (hidden) probabilistic context variable Z is 

added to the mix and the policy is conditioned with this variable as πθ(a | s, z) 

while learning a task

▪ A soft actor-critic (SAC) method is used in addition to Z
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The Z Variable
▪ How do we ensure that Z captures meta-learning properties and not other 

dependencies?

▪ An inference network q(z | c) is trained during the meta-training phase to 

estimate        p(z | c). To sidestep the intractability, the lower bound is used for 

optimization

▪ Optimization is now model-free using evidence lower bound (ELBO)

▪ Use Gaussian factors to lessen impact of context size and order (permutation 

invariant)
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The Inherent Stochasticity of Z
▪ The variable Z can be said to learn the uncertainty of the tasks that it is presented 

with, a bit similar to the beta functions in Thompson sampling

▪ Due to the policy relying on z to reach a decision, there is a degree of uncertainty 

that becomes less and less as the model learns more

▪ This initial uncertainty seems to be enough to get the model to explore in the new 

task, but not so much to prevent optimal convergence
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Soft Actor-Critic Part
▪ The optimal off-policy model for this method was found to be SAC with the 

following loss functions: 
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Pseudocode
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Fill our buffers with 
relevant data for the task

Update weights

Sample using actor-critic 
and utilize z 



Tasks
▪ The classic MuJoCo environment and tasks used
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Meta-Training Results
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Meta-Training Results, Further Time Steps
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Adaptation Efficiency Example
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Anything Missing?
▪ Drastically improves meta-learning capabilities

▪ Shows that off-policy methods are usable in these circumstances

▪ Ablation shows that the benefits are thanks to the changes suggested

▪ All of these tasks are fairly similar. What about meta-training on a disparate set 

of tasks? Is there still an advantage?

▪ Most of the results are about the meta-learning step. What about adaptation 

efficiency in general?
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