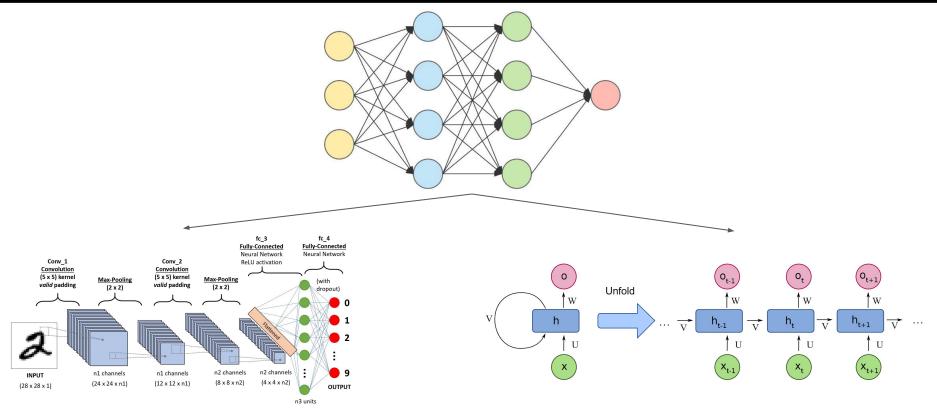


Deep Learning for Video Game Playing


Authors: Niels Justesen, Philip Bontrager, Julian Togelius, Sebastian Risi

Presented by: Runsheng (Benson) Guo

Outline

- Background
- Methods
- History
- Open Challenges
- Recent Advances

Background: Neural Networks

Convolutional Neural Network

Recurrent Neural Network

Background: Neural Network Optimization

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Evolutionary Approaches
- Hybrid Learning Approaches

Methods

Platforms:

- Arcade Learning Environment (ALE)
- Retro Learning Environment (RLE)
- OpenAI Gym
- Many more!

Genres:

- Arcade Games
- Racing Games
- First-Person Shooters
- Open-World Games
- Real-Time Strategy
- Text Adventure Games

Methods: Arcade Games

Characteristics:

- 2-Dimensional Movement
- Continuous-time Actions

- Precise timing
- Environment navigation
- Long term planning

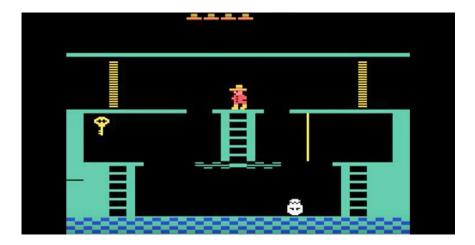
Methods: Arcade Games

Deep Q-Learning:

- Replay buffer, separate target network, recurrent layer
- Distributed DQN
- Double DQN
- Prioritized experience replay
- Dueling DQN
- NoisyNet DQN
- Rainbow

Actor-Critic:

- A3C
- IMPALA
- UNREAL


Methods: Arcade Games

Other Algorithms:

- Deep GA
- Frame prediction
- Hybrid reward architecture

Montezuma's Revenge:

- Very sparse rewards
- Hierarchical DQN
- Density models
- Text instructions

Methods: Racing Games

Characteristics:

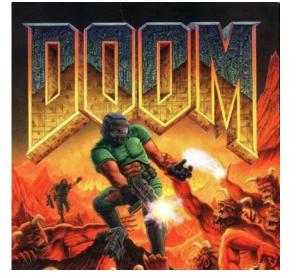
- Minimize navigation time
- Continuous-time Actions

- Precise inputs
- Short & long term planning
- Adversarial planning

Methods: Racing Games

Paradigms:

- Behaviour reflex (sensors \rightarrow action)
- Direct perception (sensors \rightarrow environment information \rightarrow action)


- (Deep) Deterministic policy gradient
- A3C

Methods: First-Person Shooters

Characteristics:

- 3-Dimensional Movement
- Player Interaction

- Fast reactions
- Predicting enemy actions
- Teamwork

Methods: First-Person Shooters

- Deep Q-learning
- A3C
 - UNREAL
 - Reward shaping
 - Curriculum learning
- Direct future prediction
- Distill and transfer learning
- Intrinsic curiosity module

Methods: Open-World Games

Characteristics:

- Large world to explore
- No clear goals

- Setting meaningful goals
- Large action space

Methods: Open-World Games

- Hierarchical deep reinforcement learning network
- Teacher-student curriculum learning
- Neural turing machines
 - Recurrent memory Q-network
 - Feedback recurrent memory Q-network

Methods: Real-Time Strategy

Characteristics:

- Control multiple units simultaneously
- Continuous-time Actions

- Long term planning
- Delayed rewards

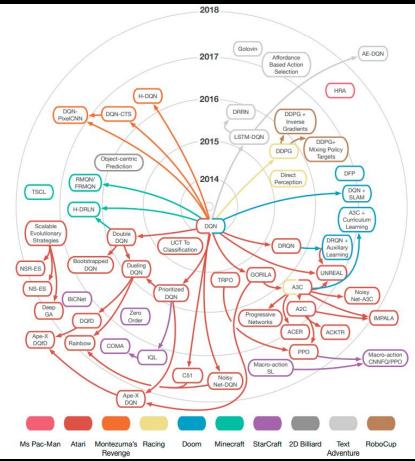
Methods: Real-Time Strategy

- Unit control
 - Zero order optimization
 - Independent Q-learning
 - A3C
 - Multiagent Bidirectionally-Coordinated Network
 - Counterfactual Multi-Agent
- Build order planning
 - Supervised learning
 - Reinforcement learning
 - Double DQN
 - Proximal Policy Optimization

Methods: Text Adventure Games

Characteristics:

- Text-only states & actions
- Choice, hyperlink & parser interfaces


- Natural language processing
- Large action space

	\ <
	\$\$/ \$\ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$\\$ \$\$ \$\$ \$\$ \$\$\\$ \$\$ \$\$ \$\$ \$\$\\$\$\\$\$ \$\$ \$\$\\$\$\$ \$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \\$\$\$\$ \$\$_ \$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$
for the -= Garde	recipe. Once done, enjoy your meal!
You don' by one.	t like doors? Why not try going south, that entranceway is not blocke
There is floor.	a diced red onion, a red apple, a white onion and a banana on the
> take a You pick	uple up the red apple from the ground.

Methods: Text Adventure Games

- LSTM-DQN
- Deep Reinforcement Relevance Net
- State affordances
- Action elimination network

History

Trends:

- Incremental extensions
 - DQN
 - A3C
- Parallelization
 - A3C
 - Evolutionary algorithms

Open Challenges

- Agent modelling
 - General game playing
 - Human-like behaviour
 - Delayed/sparse rewards, multi-agent learning, dealing with large action spaces
- Game industry Adoption
- Developing model-based algorithms
- Improving computational efficiency

Conclusion

Recent Advances:

- Model-Based Reinforcement Learning for Atari (Kaiser et al, 2019)
- AlphaStar (DeepMind, 2019)
- OpenAI Five (OpenAI, 2019)

Future Work:

- Survey focusing on a single class of deep learning algorithms
- Survey focusing on a single genre of video games