
An Introductory Tutorial on Implementing DRL
Algorithms with DQN and TensorFlow

Tim Tse

May 18, 2018



Recap: The RL Loop



A Simplified View of the Implementation Steps for RL
Algorithms

1. The environment (taken care of by OpenAI Gym)

2. The agent

3. A while loop that simulates the interaction between the
agent and environment



A Simplified View of the Implementation Steps for RL
Algorithms

1. The environment (taken care of by OpenAI Gym)

2. The agent

3. A while loop that simulates the interaction between the
agent and environment



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .

I Recall the recursive relationship,
Q(st , at) = rt + γmaxa′ Q(st+1, a

′).
I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.
I Parameterize Q(·, ·) using a function approximator with

weights w .
I With “deep” RL our function approximator is an artificial

neural network (so w denotes the weights of our ANN).
I For stability, target weights w̄ are held constant during

training.



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .
I Recall the recursive relationship,

Q(st , at) = rt + γmaxa′ Q(st+1, a
′).

I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.
I Parameterize Q(·, ·) using a function approximator with

weights w .
I With “deep” RL our function approximator is an artificial

neural network (so w denotes the weights of our ANN).
I For stability, target weights w̄ are held constant during

training.



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .
I Recall the recursive relationship,

Q(st , at) = rt + γmaxa′ Q(st+1, a
′).

I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.

I Parameterize Q(·, ·) using a function approximator with
weights w .

I With “deep” RL our function approximator is an artificial
neural network (so w denotes the weights of our ANN).

I For stability, target weights w̄ are held constant during
training.



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .
I Recall the recursive relationship,

Q(st , at) = rt + γmaxa′ Q(st+1, a
′).

I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.
I Parameterize Q(·, ·) using a function approximator with

weights w .

I With “deep” RL our function approximator is an artificial
neural network (so w denotes the weights of our ANN).

I For stability, target weights w̄ are held constant during
training.



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .
I Recall the recursive relationship,

Q(st , at) = rt + γmaxa′ Q(st+1, a
′).

I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.
I Parameterize Q(·, ·) using a function approximator with

weights w .
I With “deep” RL our function approximator is an artificial

neural network (so w denotes the weights of our ANN).

I For stability, target weights w̄ are held constant during
training.



Implementing the DQN Agent
I We wish to learn state-action value function Q(st , at) for all

st , at .
I Recall the recursive relationship,

Q(st , at) = rt + γmaxa′ Q(st+1, a
′).

I Using this relation, define MSE loss function

L(w) =
1

N

N∑
i=1

(r it + γmax
a′

Qw̄ (s it+1, a
′)︸ ︷︷ ︸

target

− Qw (s it , a
i
t)︸ ︷︷ ︸

current estimate

)2

where {(s1
t , a

1
t , r

1
t , s

1
t+1), · · · , (sNt , aNt , rNt , sNt+1)} are the

training tuples and γ ∈ [0, 1] is the discount factor.
I Parameterize Q(·, ·) using a function approximator with

weights w .
I With “deep” RL our function approximator is an artificial

neural network (so w denotes the weights of our ANN).
I For stability, target weights w̄ are held constant during

training.





Translating the DQN Agent to Code...

Let’s look at how we can do the following in TensorFlow:

1. Declare an ANN that parameterizes Q(s, a).
I I.e., our example ANN will have structure

state dim-256-256-action dim.

2. Specify a loss function to be optimized.



Two Phases of Execution in TensorFlow

1. Building the computational graph.
I Specifying the structure of your ANN (i.e., which outputs

connect to which inputs).
I Numerical computations are not being performed during this

phase.

2. Running tf.Session().
I Numerical computations are being performed during this

phase.
I For example,

I Initial weights are being populated.
I Tensors are being passed in and outputs are computed

(forward pass).
I Gradients are being computed and back-propagated (backward

pass).



Implementation Steps for RL Algorithms

1. The environment (taken care of by OpenAI Gym)

2. The agent

3. The logic that ties the agent and environment together



The Interaction Loop Between Agent and Environment

for e number of epochs do
Initialize environment and observe initial state s;
while epoch is not over do

In state s, take action a with an exploration policy (i.e.,
ε-greedy) and receive next state s’ and reward r feedback;

Update exploration policy;
Cache training tuple (s,a,r,s’);
Update agent;
s ← s’;

end

end
Algorithm 1: An example of one possible interaction loop between
agent and environment.


