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Introduction

Partially observable environments with sparse rewards
§ Most real-world tasks

§ Needs history of observations and actions



The solution - MACN

§ Differentiable Neural Computer (DNC)
§ Neural network with differentiable external memory

§ maintains an estimate of the environment geometry

§ Hierarchical planning
§ Lower level: Compute optimal policy on local 

observation 

§ Higher level: Local policy + local environment features 
+ map estimation to generate global policy



Problem definition

§ States:                , where                     is the goal state

§ Action:

§ Map:                            , -1 for tiles that are an obstacle

§ Local FOV:                              , 0  for non-observable tiles

§ Local observation:                           

§ Information available to agent at time, t: 

§ The problem: Find mapping from      to action



Value Iteration Networks (VIN)
§ Transition :
§ Reward      :
§ MDP           :  

VIN: Value Iteration approximated 
by a Convolutional Neural Network:

Previous value function stacked with 
reward, passed through a Conv
layer, max-pooled along channel 
and repeated K times is an 
approximation of value iteration 
over K iterations https://arxiv.org/abs/1602.02867



Differentiable Neural Computer (DNC)

§ LSTM (controller) with an external 
memory

§ Improved on Neural Turing Machine

§ Uses differential memory attention 
mechanisms to selectively read/write 
to external memory, M

§ Read:

§ Write:

https://www.nature.com/articles/nature20101.epdf



Architecture – Conv block
§ Conv block: generate feature representation; R and initial V for VIN

§ Input: 2D map (m x n) stack with reward map (m x n) => (m x n x 2)

§ Convolve twice to get Reward layer (R)

§ Convolve once more to get initial V



Architecture  - VI Module
§ First level of planning (Conv output into VIN)

§ VI module: Plan in this space and calculate optimal value function in K iterations

§ Input: R and V concatenated

§ Convolved to get Q; Take max channel-wise to get updated V

§ Perform this K times to get Value map



Architecture - Controller

§ Second level of planning (CNN output + VIN output into Controller):
§ Controller:

§ Input: VIN output + low level feature representation (from Conv) into controller

§ Controller network (LSTM) interfaces with memory 

§ Output from controller and memory into linear layer to generate actions



Comparison with other work
§ Cognitive Mapping and Planning for Visual Navigation (Gupta et al. 2017)

§ Value iteration Network + memory

§ Maps image scans to 2D map estimation by approximating all robot poses

§ Neural Network Memory Architectures for Autonomous Robot 
Navigation (Chen et al. 2017)
§ CNN to extract features + DNC

§ Neural SLAM (Zhang et al. 2017)
§ SLAM model using DNC

§ Efficient exploration



Experiment Setup

§ Baselines:
§ VIN: just the VI module and no memory in place

§ CNN + DNC: CNN (4 Conv layers) extract features from observed map with the reward map 
and pass to the memory. 

§ MACN with a LSTM: Planning module + LSTM instead of memory

§ DQN

§ A3C



Experiments – 2D Maze

§ CNN+Memory performance is very poor
§ MACN drop in accuracy on scaling is not as large as others



Experiments – 2D Maze with Local Minima

§ Only MACN generalizes to longer tunnels
§ Shift in memory states only when agent sees end of wall and on exit



Experiments – Graph Search

§ Blue node is the start state
§ Red node is end state

§ Agent can only observe edges connected to current node

§ Problem where state space and action space are not limited



Experiments – Continuous Control

§ Converts this to required 2D 
§ Network output generates 

waypoints



Experiments – Other comparisons

Convergence rate Scaling with memoryScaling with complexity



Conclusion and Discussion

§ Contributions:
§ Novel end-to-end architecture that combines hierarchical planning and 

differentiable memory

§ Future work
§ Efficient exploration

§ Take sensor errors into account


