MEMORY AUGMENTED CONTROL NETWORKS

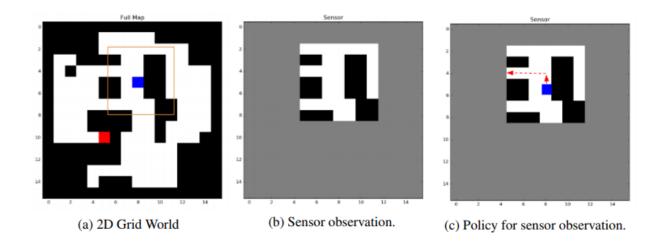
Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, Daniel D. Lee **GRASP Laboratory, University of Pennsylvania**

Presented by Aravind Balakrishnan

Introduction

Partially observable environments with sparse rewards

- Most real-world tasks
- Needs history of observations and actions



The solution - MACN

Differentiable Neural Computer (DNC)

Neural network with differentiable external memory

maintains an estimate of the environment geometry

VI Module From access module (t-1) Access Module with Memory Access Module with Memory Action From access module (t-1) Access Module with Memory Access Module with Memory Action Input from VI module Iterate K times Low level features

Hierarchical planning

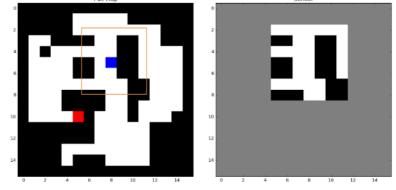
- Lower level: Compute optimal policy on local observation
- Higher level: Local policy + local environment features
 + map estimation to generate global policy

Problem definition

- ullet States: $s_t \in \mathcal{S}$, where $s \in \mathcal{S}^{ ext{goal}}$ is the goal state
- Action: $a_t \in \mathcal{A}$
- $lacksymbol{Map}$: $m\in\{-1,0\}^n$, -1 for tiles that are an obstacle
- Local FOV: $H(s) \in \mathbb{R}^{n \times n}$, o for non-observable tiles
- Local observation: $z_t = H(s_t)m$
- Information available to agent at time, t:

$$h_t := \left(s_{0:t}, z_{0:t}, a_{0:t-1}, \mathcal{S}^{\text{goal}}\right) \in \mathcal{H}$$

• The problem: Find mapping from z_t to action



Value Iteration Networks (VIN)

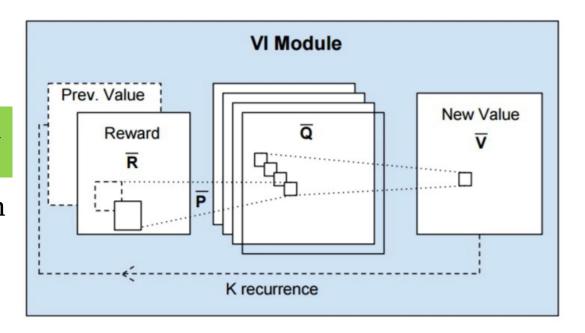
• Transition: $\mathcal{T}(h_t, a_t) = (h_t, s_{t+1} = f(s_t, a_t), z_{t+1} = H(s_{t+1})m, a_t)$

• Reward : $r(h_t, a_t) = z_t[s_t]$

• MDP $: \mathcal{M}(\mathcal{H}, \mathcal{A}, \mathcal{T}, r, \gamma)$

VIN: Value Iteration approximated by a Convolutional Neural Network:

Previous value function stacked with reward, passed through a Conv layer, max-pooled along channel and repeated K times is an approximation of value iteration over K iterations

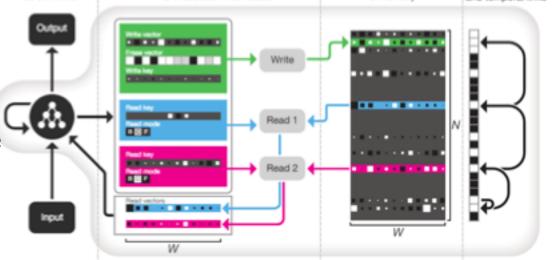


Differentiable Neural Computer (DNC)

 LSTM (controller) with an external memory

Improved on Neural Turing Machine

 Uses differential memory attention mechanisms to selectively read/write to external memory, M



b Read and write heads

- Read: $re_t^i = M_t^\top w_t^{read,i}$
- Write $M_t = M_{t-1}(1 w_t^W e_t^\top) + w_t^W v_t^\top$

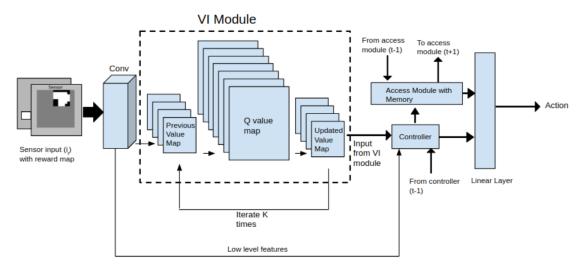
d Memory usage

C Memory

a Controller

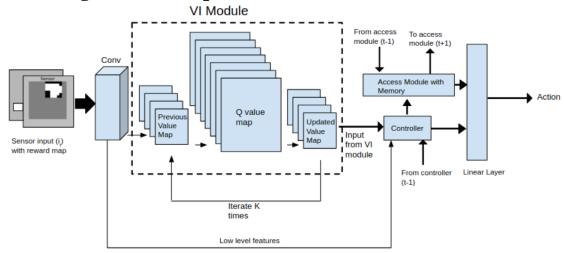
Architecture – Conv block

- Conv block: generate feature representation; R and initial V for VIN
 - Input: 2D map $(m \times n)$ stack with reward map $(m \times n) => (m \times n \times 2)$
 - Convolve twice to get Reward layer (R)
 - Convolve once more to get initial V



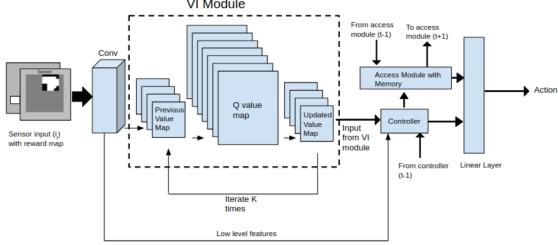
Architecture - VI Module

- First level of planning (Conv output into VIN)
- VI module: Plan in this space and calculate optimal value function in K iterations
 - Input: R and V concatenated
 - Convolved to get Q; Take max channel-wise to get updated V
 - Perform this K times to get Value map



Architecture - Controller

- Second level of planning (CNN output + VIN output into Controller):
- Controller:
 - Input: VIN output + low level feature representation (from Conv) into controller
 - Controller network (LSTM) interfaces with memory
 - Output from controller and memory into linear layer to generate actions



Comparison with other work

- Cognitive Mapping and Planning for Visual Navigation (Gupta et al. 2017)
 - Value iteration Network + memory
 - Maps image scans to 2D map estimation by approximating all robot poses
- Neural Network Memory Architectures for Autonomous Robot Navigation (Chen et al. 2017)
 - CNN to extract features + DNC
- Neural SLAM (Zhang et al. 2017)
 - SLAM model using DNC
 - Efficient exploration

Experiment Setup

Baselines:

- VIN: just the VI module and no memory in place
- **CNN** + **DNC**: CNN (4 Conv layers) extract features from observed map with the reward map and pass to the memory.
- MACN with a LSTM: Planning module + LSTM instead of memory
- DQN
- A3C

Experiments – 2D Maze

Model	Performance	16 × 16	32×32	64 × 64
VIN	Success(%)	0	0	0
	Test Error	0.63	0.78	0.81
CNN + Memory	Success(%)	0.12	0	0
	Test Error	0.43	0.618	0.73
MACN (LSTM)	Success (%)	88.12	73.4	64
	Test Error	0.077	0.12	0.21
MACN	Success(%)	96.3	85.91	78.44
	Test Error	0.02	0.08	0.13

- CNN+Memory performance is very poor
- MACN drop in accuracy on scaling is not as large as others

Experiments – 2D Maze with Local Minima



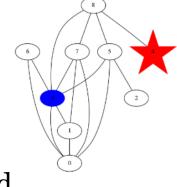
Model	Success (%)	Maximum generalization length
DQN	0	0
A3C	0	0
CNN + Memory	12	20
VIN	0	0
MACN	100	330

- Only MACN generalizes to longer tunnels
- Shift in memory states only when agent sees end of wall and on exit

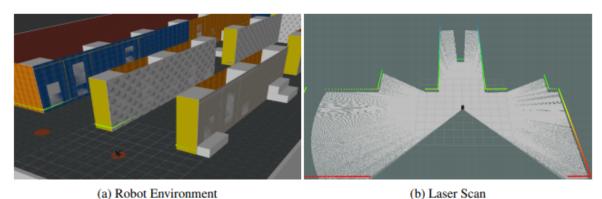
Experiments – Graph Search

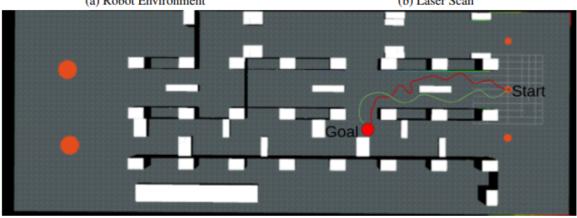
- Blue node is the start state
- Red node is end state
- Agent can only observe edges connected to current node
- Problem where state space and action space are not limited

Model	Test Error, Success(%)			
	9 Nodes	16 Nodes	25 Nodes	36 Nodes
VIN	0.57, 23.39	0.61, 14	0.68, 0	0.71, 0
A3C	NA, 10	NA, 7	NA, 0	NA, 0
DQN	NA, 12	NA, 5.2	NA, 0	NA,0
CNN + Memory	0.25, 81.5	0.32, 63	0.56, 19	0.68, 9.7
MACN (LSTM)	0.14, 98	0.19, 96.27	0.26, 84.33	0.29, 78
MACN	0.1, 100	0.18, 100	0.22, 95.5	0.28, 89.4



Experiments – Continuous Control





(c) Top Down View of Environment

- Converts this to required 2D
- Network output generates waypoints

Model	Success (%)	
DQN,A3C	0	
VIN	57.60	
CNN + Memory	59.74	
MACN	71.3	

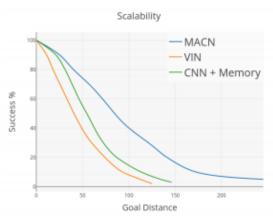
Experiments – Other comparisons

Convergence rate

Distance To Goal as Agent Navigates to Goal MACN VIN CNN + Memory 10 10 20 30 Number of Steps (Time)

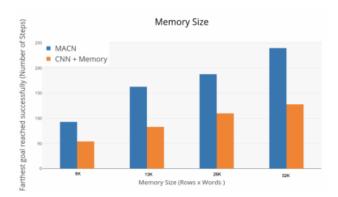
(a) Dist. to goal vs number of steps

Scaling with complexity



(b) Success % vs goal distance

Scaling with memory



Conclusion and Discussion

- Contributions:

 Novel end-to-end architecture that combines hierarchical planning and differentiable memory

Future work

- Efficient exploration
- Take sensor errors into account

