
CS885 Reinforcement Learning
Lecture 17c: June 27, 2018

Inverse Reinforcement Learning
[Abbeel, Ng, ICML-2004]

CS885 Spring 2018 Pascal Poupart 1University of Waterloo

CS885 Spring 2018 Pascal Poupart 2

Reinforcement Learning

Agent

Environment

State
Reward Action

Goal: Find policy ! that maximize rewards

University of Waterloo

CS885 Spring 2018 Pascal Poupart 3

Inverse Reinforcement Learning

Expert

Environment

State
Reward Action

Goal: Find reward function that expert is implicitly optimizing

University of Waterloo

CS885 Spring 2018 Pascal Poupart 4

Some Applications

• Robotics: train controller to follow demo trajectories
– Quadruped locomotion (Ratliff et al.

NIPS-07; Kolter et al. NIPS-08)
– Helicopter Aerobatics

(Abbeel et al. IJRR-10)

• Autonomous driving: train by driver demonstration
– Highway driving (Abbeel, Ng; ICML-04; Syed, Schapire

NIPS-07)
– Parking lot navigation (Abbeel et al. IROS-08)
– Urban navigation (Ziebart et al. AAAI-08)
– Driving styles (Kuderer et al. ICRA-15)

University of Waterloo

CS885 Spring 2018 Pascal Poupart 5

MDP without R

• MDP\R
– Set of states: S

– Set of actions: A

– Transition model: Pr($%|$%'(, *%'()
– Reward model: ,($% , *%)
– Discount factor: 0 ≤ / ≤ 1
– Horizon (i.e., # of time steps): ℎ
– Optimal policy: 2∗: 5 → 7

• Goal: find reward model ,($, *) optimized by 2∗

University of Waterloo

CS885 Spring 2018 Pascal Poupart 6

Transfer Learning
• Since we have !∗, why find #?

• Consider a route planning problem (several possible
objectives: time, distance, energy consumption)
– Suppose we know the route (policy) followed by taxi drivers

between any pair of locations in city A
– An autonomous car can follow the same policy in city A
– What about city B?

• If we find the objective optimized by taxi drivers in
city A, then we can use that objective in city B to find
routes with similar properties

University of Waterloo

CS885 Spring 2018 Pascal Poupart 7

Finding underlying R
• Let !"# $ = ∑'()* +', $', . $'

• Idea: find , that satisfies
!"#

∗ $ ≥ !"# $ ∀$, .

• Problems:
– Many ,’s satisfy the constraints (e.g., , $, 2 = 0 ∀$, 2)
– Enumerating all policies in impractical
– Optimal policy and transition model may be unknown

University of Waterloo

CS885 Spring 2018 Pascal Poupart 8

Inverse RL

• Problem

– Set of states: S

– Set of actions: A

– Transition model: Pr($%|$%'(, *%'()
– Reward model: ,($% , *%)
– Discount factor: 0 ≤ / ≤ 1
– Horizon (i.e., # of time steps): ℎ
– Expert trajectories:

$((, *((, $2(, *2(, … , $4(, *4(, $(2, *(2, $22, *22, … , $42, *42 , …

• Goal: find reward model ,($, *) that expert

trajectories optimize

University of Waterloo

CS885 Spring 2018 Pascal Poupart 9

Transfer Learning
• Since we have expert trajectories, why not find a

policy by supervised learning instead of find !?

• The resulting policy will only work in the current
environment

• If we find R, then we can optimize policies by RL in
new environments with different transition models.

University of Waterloo

CS885 Spring 2018 Pascal Poupart 10

Finding R
• Suppose ! depends on features "#
• ! $, & = ∑#)#"#($, &) or ,-./&01-2("($, &);))

• Idea: alternate between
– Updating ! (by revising))
– Optimizing 4 based on !

University of Waterloo

CS885 Spring 2018 Pascal Poupart 11

Apprenticeship Learning

University of Waterloo

ApprenticeshipLearning(!"#$%&!'"(%))
(indexes features, $ indexes trajectories, * indexes policies
* ← 0
Initialize -. at random
Repeat

/#"0(1 = max6min9,. ∑<,=><?<()=9, #=9) − ∑<,=><?<)=9, -.)=9

where >∗ is the maximizing >
* ← * + 1
-. ← optimal policy for >∗ found by RL

Until /#"0(1 is small enough
Return -.

