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Introduction

What is a quadrotor?

Figure: Quadrotor [1]
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Introduction

What is a quadrotor?

Figure: Quadrotor [1]

High-level goal:

Train the quadrotor to perform
tasks with varying initializations

A policy optimization problem.

4 / 15



Introduction

Related Approaches

Deep Deterministic Policy
Gradient (DDPG)

Actor-critic architecture

Off-policy, model-free

Deterministic

Insufficient exploration

Very slow (if any)
convergence

Trust Region Policy Optimization
(TRPO)

Actor-critic architecture

Off-policy, model-free

Stochastic

Computationally intensive

Slow, unreliable convergence
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Introduction

A New Approach

Goal:
A deterministic model with

Fast and stable convergence

Model-free training

Extensive exploration

Solution:
A method combining the actor-critic architecture with an on-policy
deterministic policy gradient algorithm and a new exploration strategy.
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The Method

Setup

Continuous State-Action Space

State Space

18-D states, model:

Orientation (or rotation)

Position

Linear velocity of system

Angular velocity of system

Action Space

4-D actions, dictate rotor thrust for each rotor
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The Method

Exploration

Figure: Exploration Strategy [2]
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The Method

Network Training

Figure: Value Network [2]

Value function training:
Approximate with Monte-Carlo
samples obtained from current
trajectory

Figure: Policy Network [2]

Policy optimization:
Same idea as TRPO, replacing
KL-divergence with Mahalanobis
metric
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The Method

Learning Algorithm

Algorithm 1 Policy optimization

1: Input: Initial value function approximation, initial policy
2: for j = 1,2,. . . do
3: Perform exploration, take action
4: Compute MC estimates from current trajectory
5: Do approximate value function update
6: Do policy gradient update
7: end for
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Empirical Results

Empirical Results

Training done in simulation

Testing on two main tasks done on a real quadrotor
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Summary and Future Work

Summary

Primary contributions:

A new deterministic, model-free neural network policy for training a
quadrotor

Stable and reliable performance on hard tasks, even under harsh
initial conditions
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Summary and Future Work

Future Research

Also compare model against PPO

Introducing more accurate model of the system into simulation

Train an RNN to adapt to model errors automatically
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Summary and Future Work
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Summary and Future Work

Questions?
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