

Target-driven Visual Navigation in Indoor Scenes Using Deep Reinforcement Learning [Zhu et al. 2017]

A. James E. Cagalawan

james.cagalawan@gmail.com

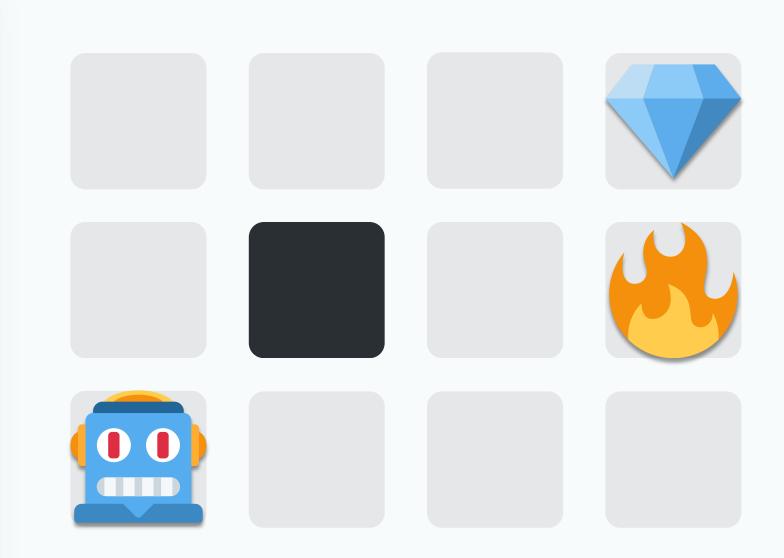
University of Waterloo

June 27, 2018

(Note: Videos in the slide deck used in presentation have been replaced with YouTube links).

Yuke Zhu¹ Roozbeh Mottaghi² Eric Kolve² Joseph J. Lim¹ Abhinav Gupta^{2,3} Li Fei-Fei¹ Ali Farhadi^{2,4}

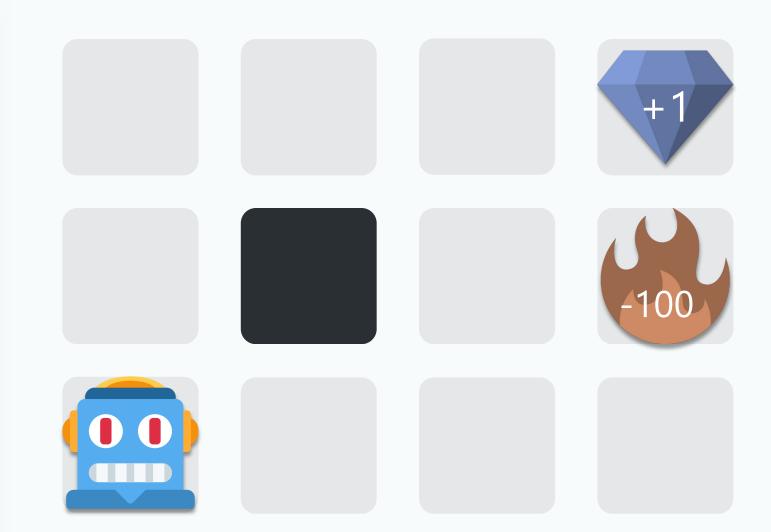
¹Stanford University ²Allen Institute for AI ³Carnegie Mellon University ⁴University of Washington Free Space: Occupied Space: Agent: Goal: Danger:



MOTIVATION - Navigating the Grid World - Assign Numerical Rewards

Free Space: Occupied Space: Agent: Goal: Danger:

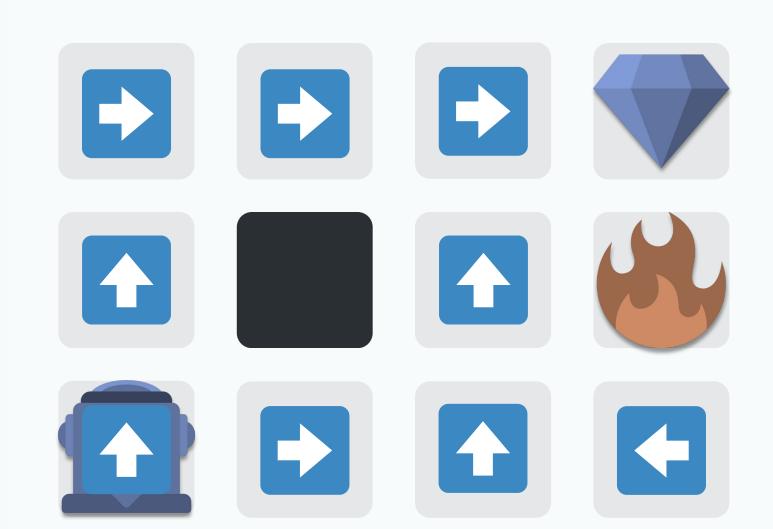
Can assign numerical rewards to the goal and the dangerous grid cells.



Free Space: Occupied Space: Agent: Goal: Danger:

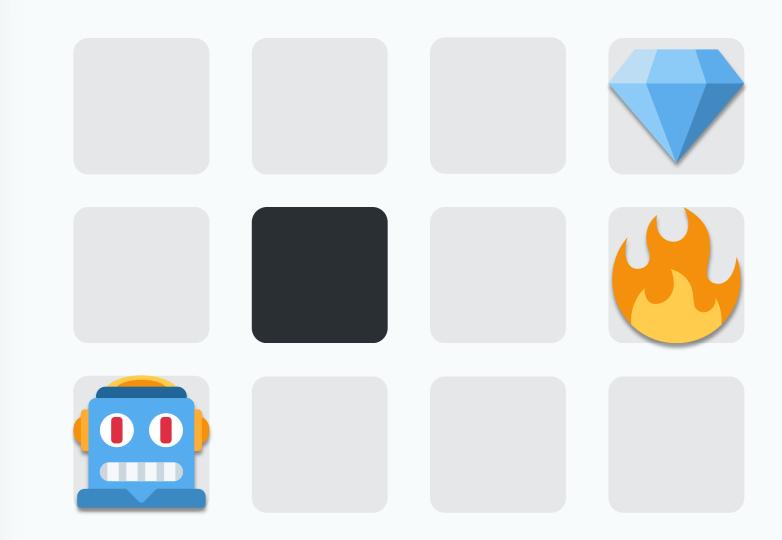
Can assign numerical rewards to the goal and the dangerous grid cells.

Then learn a policy.

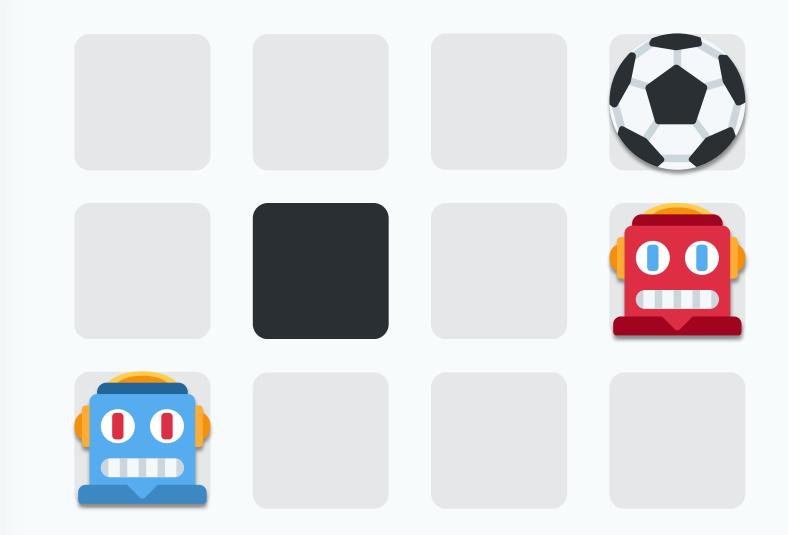


MOTIVATION – Visual Navigation Applications: Treasure Hunting

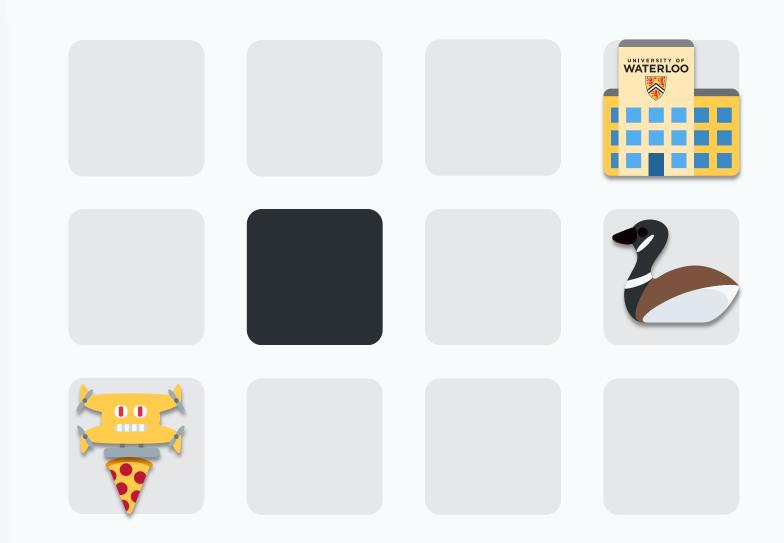
- Robotic visual navigation using robots has many applications.
- Treasure hunting.



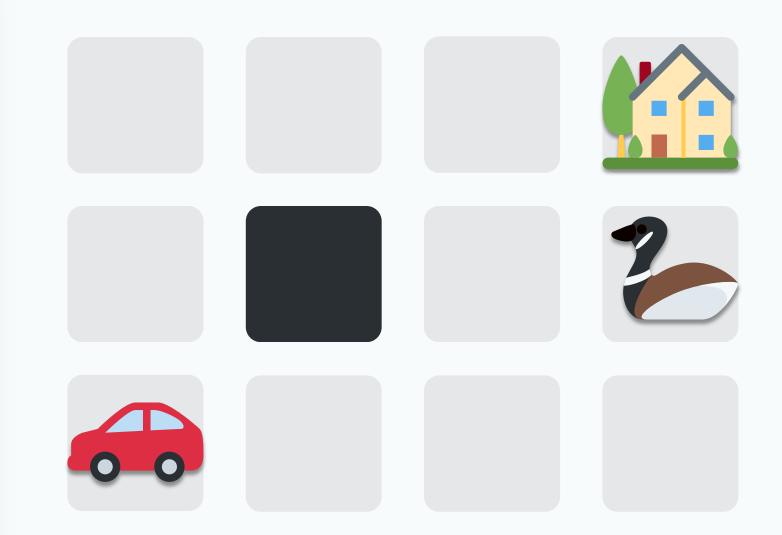
- Robotic visual navigation using robots has many applications.
- Treasure hunting.
- Soccer robots getting to the ball first.



- Robotic visual navigation using robots has many applications.
- Treasure hunting.
- Soccer robots getting to the ball first.
- Drones delivering pizzas to your lecture hall.

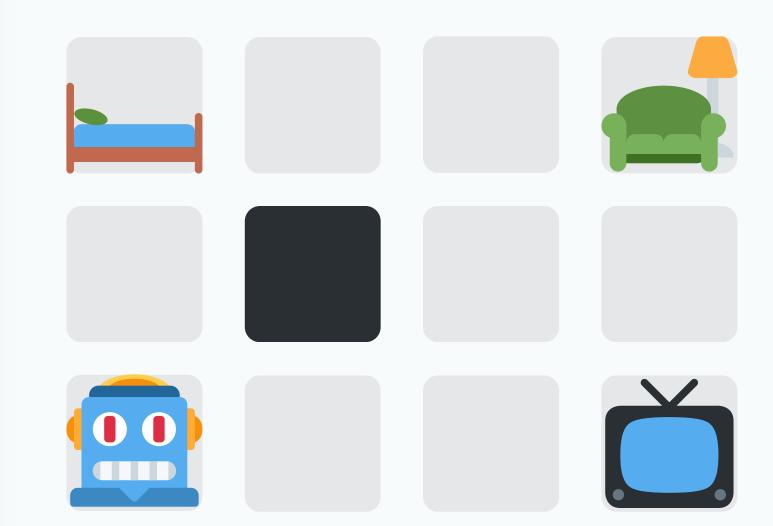


- Robotic visual navigation using robots has many applications.
- Treasure hunting.
- Soccer robots getting to the ball first.
- Drones delivering pizzas to your lecture hall.
- Autonomous cars driving people to their homes.



- Robotic visual navigation using robots has many applications.
- Treasure hunting.
- Soccer robots getting to the ball first.
- Drones delivering pizzas to your lecture hall.
- Autonomous cars driving people to their homes.
- Search and rescue robots finding missing people.

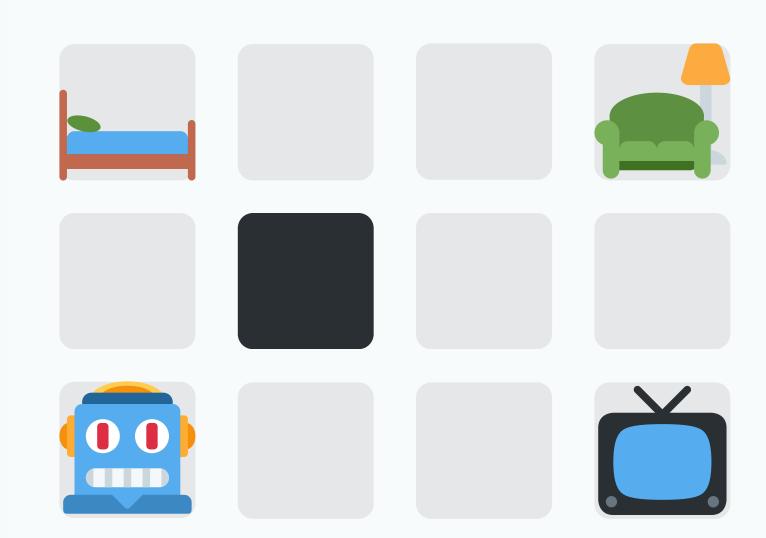
- Robotic visual navigation using robots has many applications.
- Treasure hunting.
- Soccer robots getting to the ball first.
- Drones delivering pizzas to your lecture hall.
- Autonomous cars driving people to their homes.
- Search and rescue robots finding missing people.
- Domestic robots navigating their way around houses to help with chores.



• Multiple locations in an indoor scene that our robot must navigate to.

• Actions consist of moving forwards and backwards and turning left and right.

↓↓<

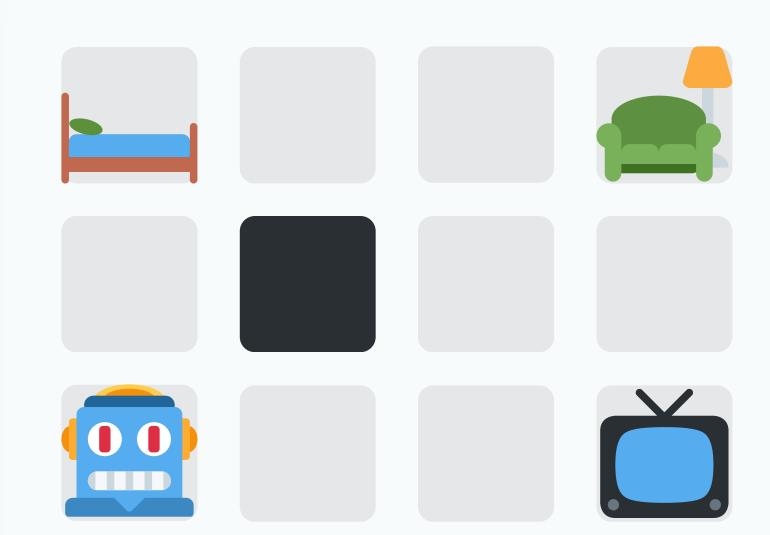


• Multiple locations in an indoor scene that our robot must navigate to.

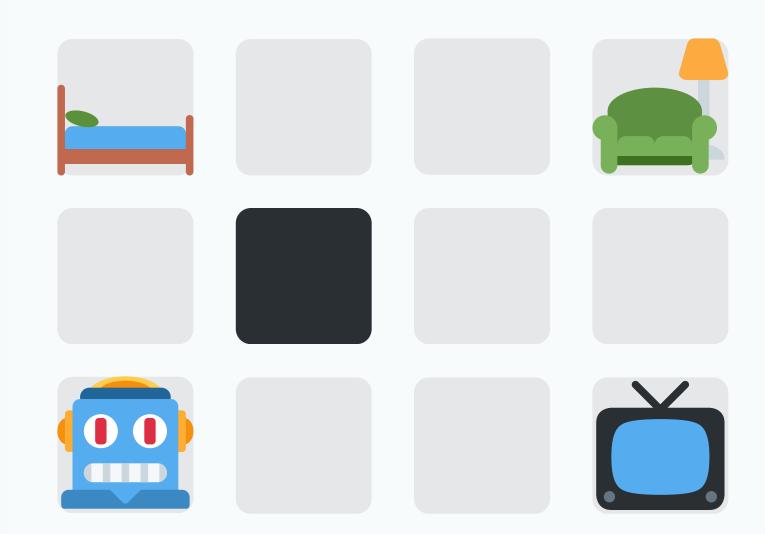
 Actions consist of moving forwards and backwards and turning left and right.

↓↓<

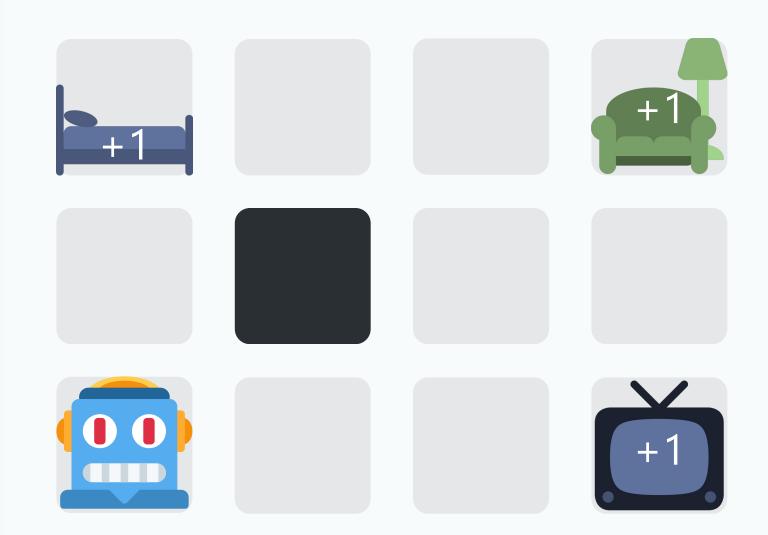
- **Problem 1:** Navigating to multiple targets.
- **Problem 2:** Using highdimensional visual inputs is challenging and time consuming to train.
- **Problem 3**: Training on a real robot is expensive.



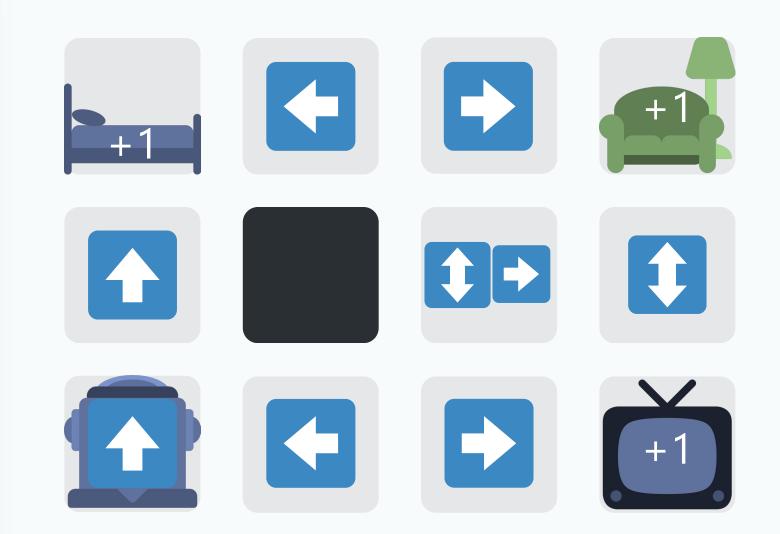
- We can already navigate grid mazes using Qlearning by assigning rewards for finding a target.
- Assigning rewards to multiple locations on the grid does not allow specification of different targets.



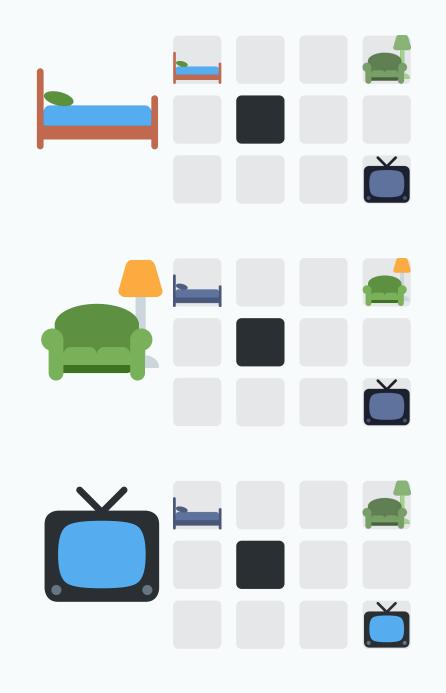
- We can already navigate grid mazes using Qlearning by assigning rewards for finding a target.
- Assigning rewards to multiple locations on the grid does not allow specification of different targets.



- We can already navigate grid mazes using Qlearning by assigning rewards for finding a target.
- Assigning rewards to multiple locations on the grid does not allow specification of different targets.
- Would end up at a target, but not any specific target.



- We can already navigate grid mazes using Qlearning by assigning rewards for finding a target.
- Assigning rewards to multiple locations on the grid does not allow specification of different targets.
- Would end up at a target, but not any specific target.
- Could train multiple policies, but that wouldn't scale with the number of targets.

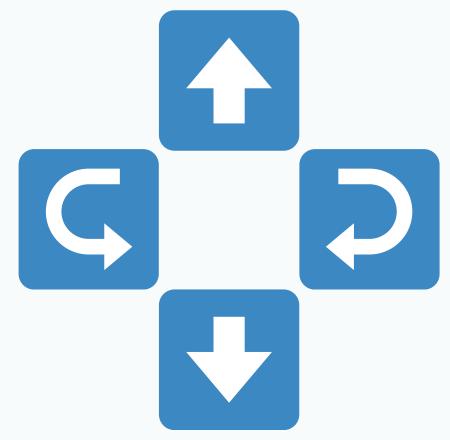


PROBLEM – From Navigation to Visual Navigation

Sensor Image

Target Image

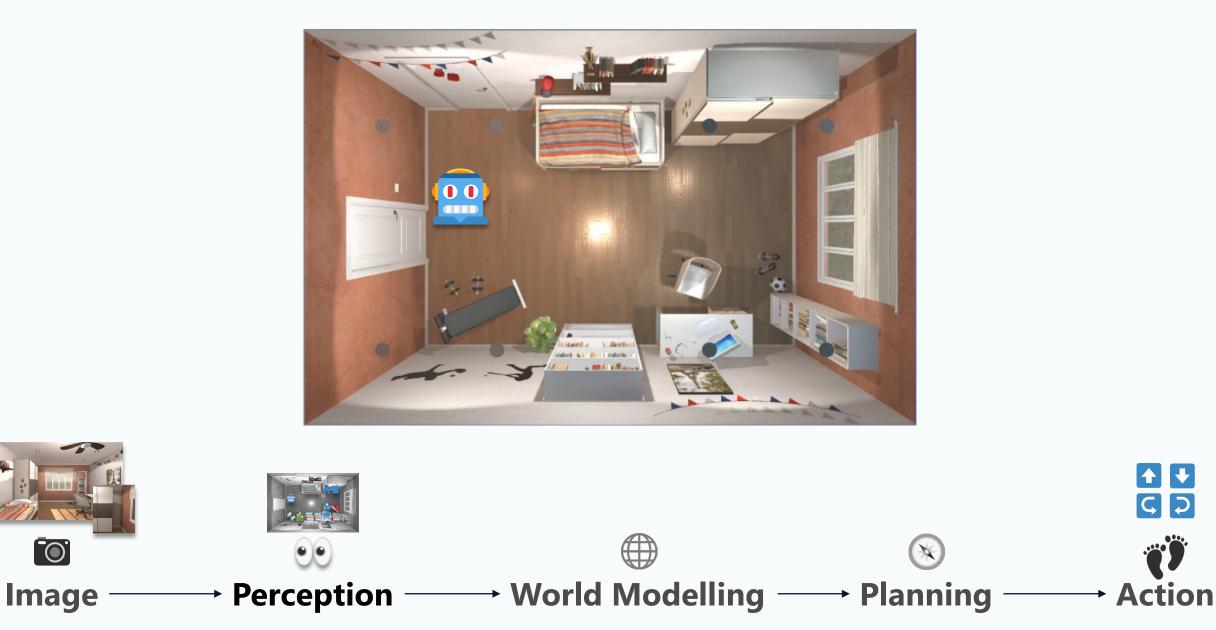
Image

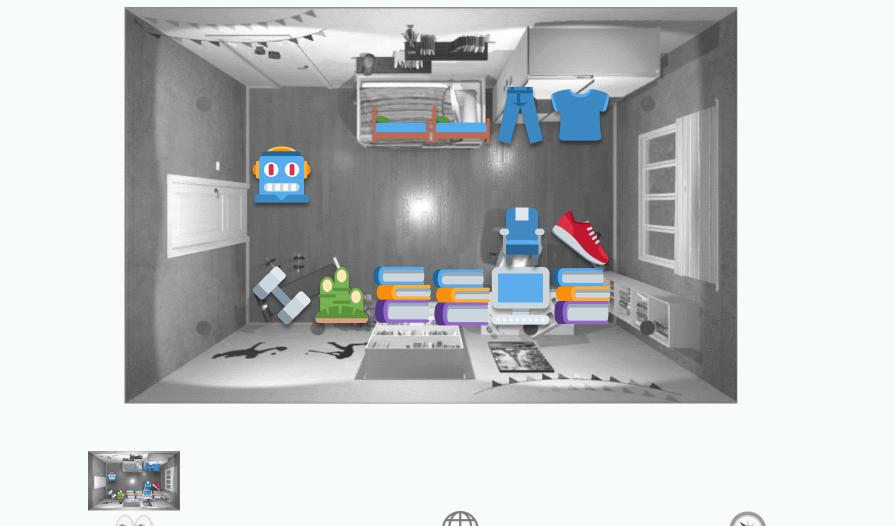


The visual navigation problem can be broken up into pieces with specialized algorithms solving each piece.

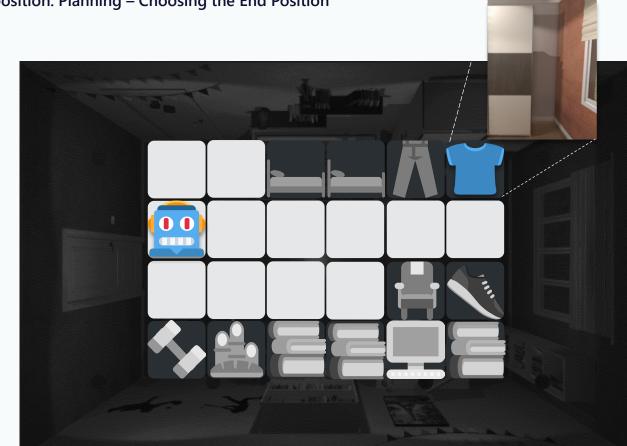
"Autonomous Mobile Robots" by Roland Siegwart and Illah R. Nourbakhsh (2011)

PROBLEM – Visual Navigation Decomposition: Perception – Localization and Mapping



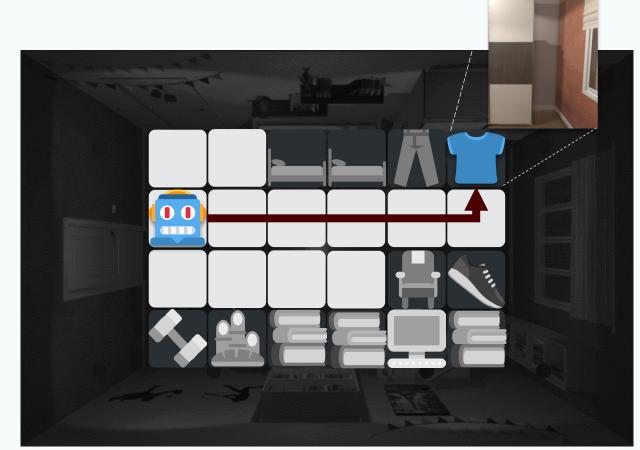


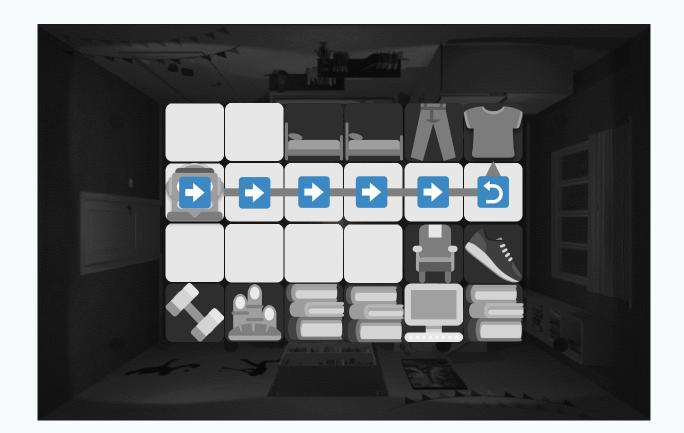
PROBLEM – Visual Navigation Decomposition: World Modelling



PROBLEM – Visual Navigation Decomposition: Planning – Choosing the End Position

PROBLEM – Visual Navigation Decomposition: Planning – Searching for a Path





This decomposition is effective but each step requires a different algorithm.

Design a deep reinforcement learning architecture to handle visual navigation from raw pixels.

Image

SCITOS

Test environment

.

PROBLEM – Robot Learning: Data Efficiency and Transfer Learning

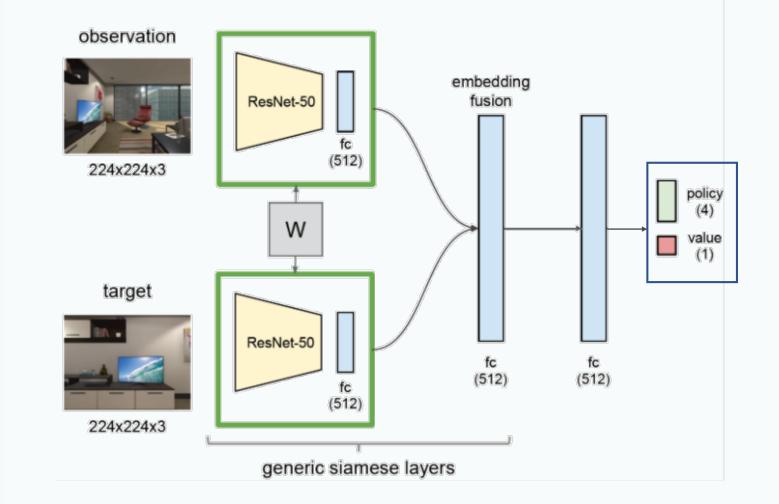
Idea: Train in simulation first, then fine tune learned policy on real robot.

-O·

-O·

Design a deep reinforcement learning architecture to handle visual navigation from raw pixels with high data-efficiency.

- Similar to actor-critic A3C method which outputs a policy and value running multiple threads.
- Train a different target on each thread rather than copies of same target.
- Use fixed ResNet-50 pretrained on ImageNet to generate embedding for observation and target.
- Fuse the embeddings into a feature vector to get an action and a value.



- The House Of inte**R**actions (THOR)
- 32 scenes of household • environments.
- Can freely move around a ٠ 3D environment.
- High fidelity compared to ٠ other simulators.

ALE

Synthia

Video: https://youtu.be/SmBxMDiOrvs?t=18

AI2-THOR

- Single layer for all scenes might not generalize as well.
- Train a different set of weights for every different scene in a vine-like model.
- Discretized the scenes with constant step length of 0.5 m and turning angle of 90°, effectively a grid when training and running for simplicity.

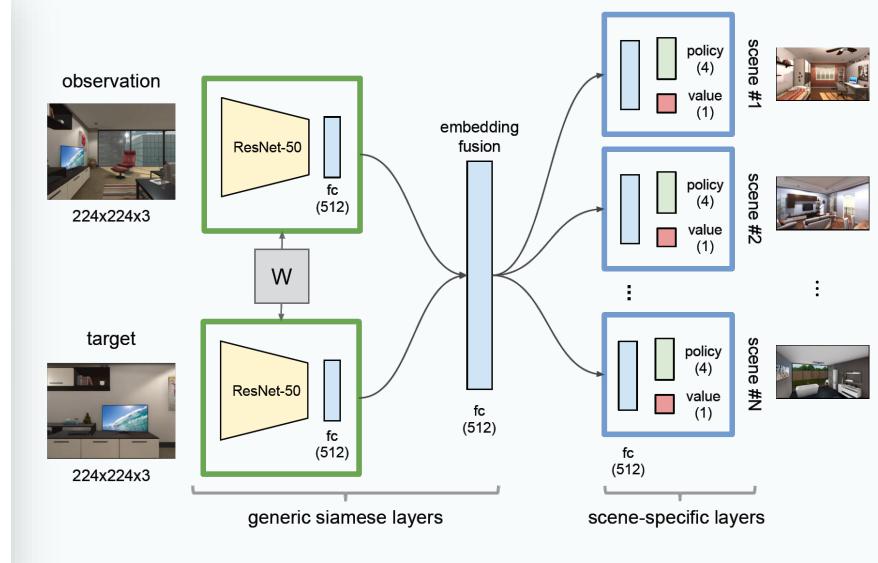
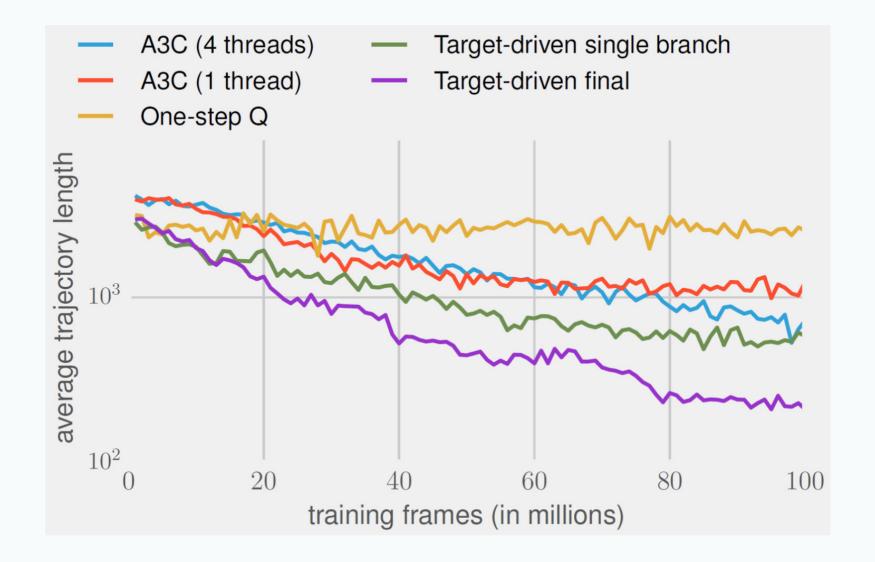
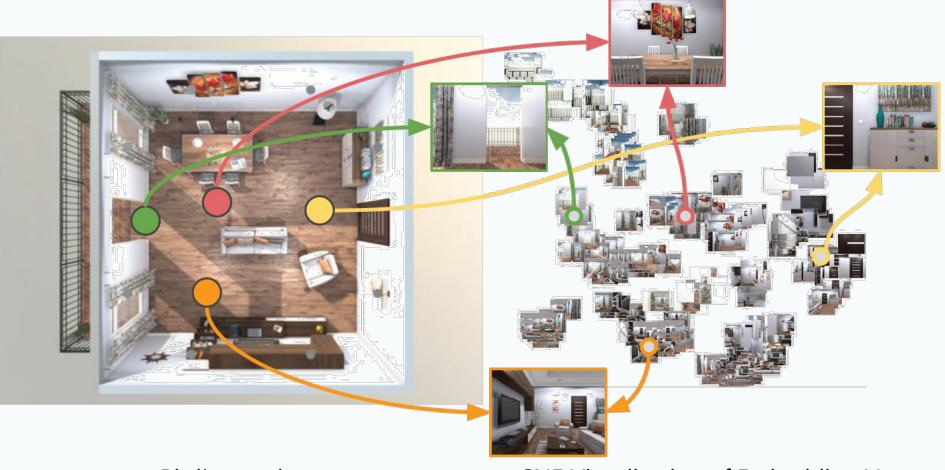


TABLE I

PERFORMANCE OF TARGET-DRIVEN METHODS AND BASELINES

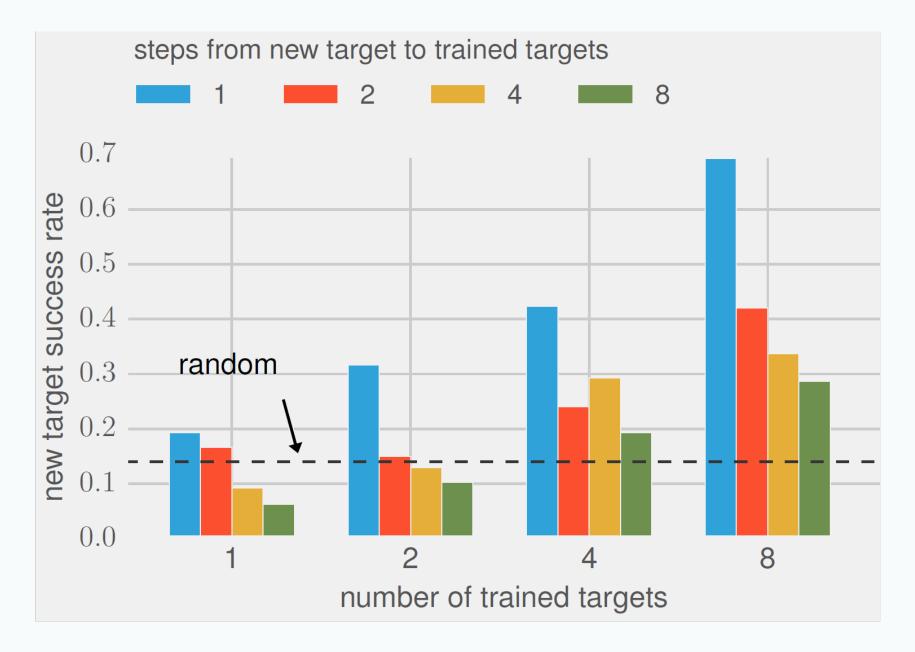
Туре	Method	Avg. Trajectory Length
Heuristic	Random walk	2744.3
	Shortest path	17.6
Purpose-built RL	One-step Q	2539.2
	A3C (1 thread)	1241.3
	A3C (4 threads)	723.5
Target-driven RL	Single branch	581.6
(Ours)	Final	210.7

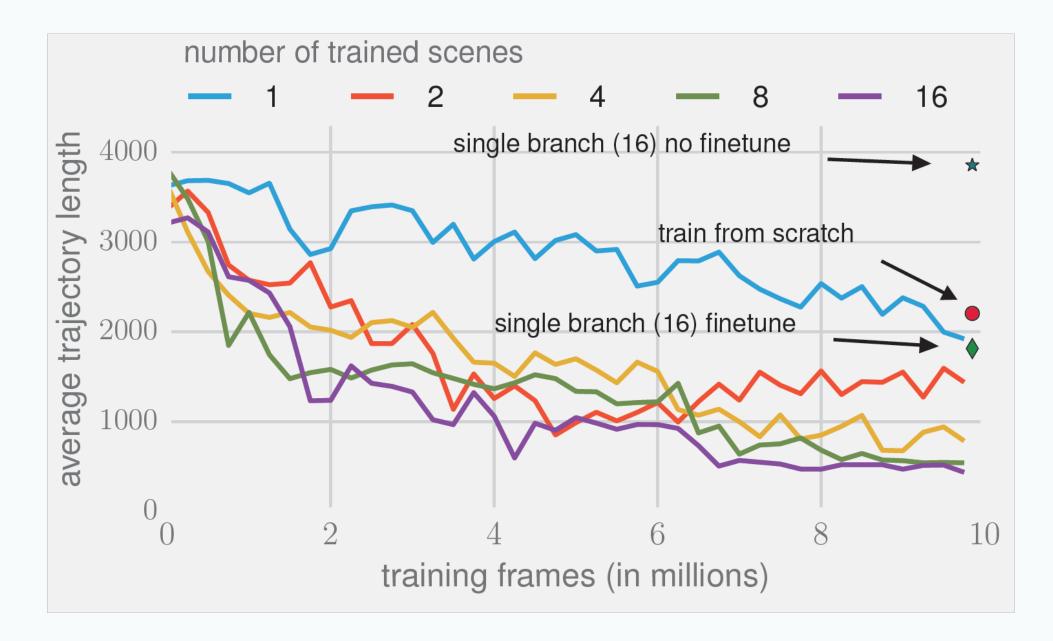




Bird's eye view

t-SNE Visualization of Embedding Vector





- The method was evaluated with continuous action spaces.
- Robot could now collide with things and its movement had noise no longer always aligning with a grid.
- **Result:** Required 50M more training frames to train on a single target.
 - Could reach door in average of 15 steps.
 - Random agent took 719 steps.

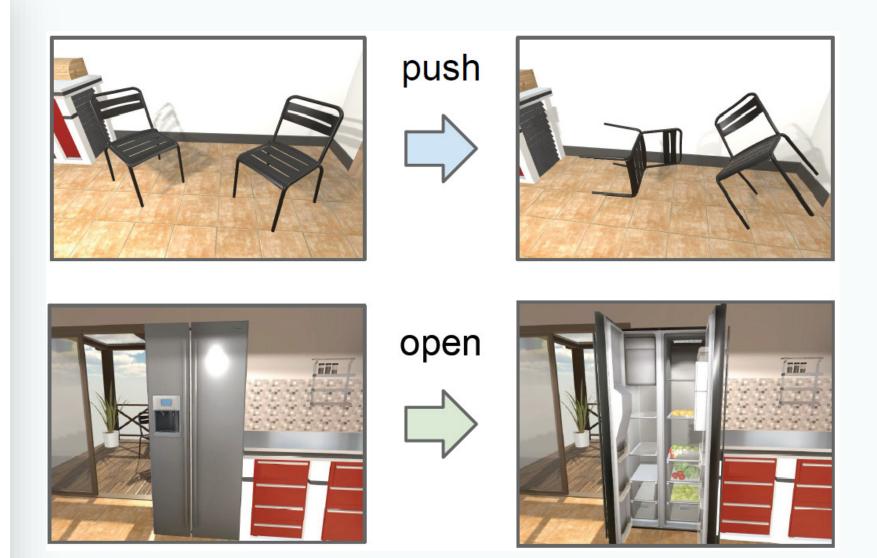
Video: <u>https://youtu.be/SmBxMDiOrvs?t=169</u>

Video: https://youtu.be/SmBxMDiOrvs?t=180

- Designed new deep reinforcement learning architecture using siamese network with scenespecific layers.
- Generalizes to multiple scenes and targets.
- Works with continuous actions.
- The trained policy in simulation can be run in the real world.

Video: <u>https://youtu.be/SmBxMDiOrvs?t=98</u>

- Physical interaction and object manipulation.
- **Situation:** Moving obstacles out of path.
- **Situation:** Opening containers for objects.
- Situation: Turning on the lights when the robot enters a dark room and can't see.



Thank You

Thanks to "<u>Twemoji</u>" from <u>Twitter</u> used under license <u>CC-BY 4.0</u>.

- "School" image changed to carry University of Waterloo logo.
- "Quadcopter" created from "Helicopter" and "Robot Face" images.
- "Goose" created from "Duck" image.
- "Red Robot" created from "Robot" image.
- "Dumbbell" created from "Nuts and Bolt" image.

Motivation

- Navigating the Grid World, Assign Numerical Rewards, Extract a Policy
- Applications: Treasure Hunting, Robot Soccer, Pizza Delivery, Self-Driving Cars, Search and Rescue, Domestic Robots
- Problem
 - Domestic Robot
 - Multi Target: Can't We Just Use Q-Learning?
 - From Navigation to Visual Navigation
 - Visual Navigation Decomposition: Image, Perception, World Modelling, Planning, Action, Results
 - Goal of Visual Navigation
 - Robot Learning Considerations
- Neural Network Architecture
 - Embedding of Scene and Target using ResNet
 - Siamese Network
 - Scene-Specific Layers
- Al2-THOR Simulator
 - 32 household scenes with interactions, Trained on discretized representation with no interaction required
- Experiments
 - Shorter Average Trajectory Length, More Data Efficient, Training on More Targets Improves Success, Training on More Scenes Reduces Trajectory Length, Works in Continuous World, Transfer Learning Works
- Future Work
 - More Sophisticated Interaction