CS885 Reinforcement Learning Lecture 15c: June 20, 2018

Semi-Markov Decision Processes [Put] Sec. 11.1-11.3

Hierarchical RL

Theory: Semi-Markov Decision Processes

Semi-Markov Process

- Definition
 - Set of States: S
 - Transition dynamics: $Pr(s', \tau | s) = Pr(s' | s) Pr(\tau | s)$ where τ indicates the time to transition
- Semi-Markovian:
 - Next state depends only on current state
 - Time spent in each state varies

Semi-Markov Decision Process

- Definition
 - Set of states: S
 - Set of actions: A
 - Transition model: $Pr(s', \tau | s, a)$
 - Reward model: R(s, a) = E[r|s, a]
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$
- Goal: find optimal policy

Example from Queuing Theory

- Consider a retail store with two queues:
 - Customer service queue
 - Cashier queue
- Semi-Markov decision process
 - State: $s = (q_1, q_2)$ where $q_i = #$ of customers in queue i
 - Action: $a \in \{1,2\}$ (i.e., serve customer in queue 1 or 2)
 - Transition model: distribution over arrival and service times for customers in each queue.
 - Reward model: expected revenue of each serviced customer – expected cost associated with waiting times
 - Discount factor: $0 \le \gamma < 1$
 - Horizon (i.e., # of time steps): $h = \infty$

Value Function and Policy

• Objective: $V^{\pi}(s) = \sum_{i} \gamma^{t_i} E[R(s_{t_i}, \pi(s_{t_i}))]$

- Where
$$t_i = \tau_0 + \tau_1 + \dots + \tau_i$$

- Optimal policy: π^* such that $V^{\pi^*}(s) \ge V^{\pi}(s) \forall s, \pi$
- Bellman's equation:

$$V^*(s) = \max_a R(s, a) + \sum_{s', \tau} \Pr(s', \tau | s, a) \gamma^{\tau} V^*(s')$$

• Q-learning update: $Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma^{\tau} \max_{a'} Q(s',a') - Q(s,a) \right]$

Option Framework

- Semi-Markov decision process where actions are options (temporally extended sub-policies)
- Let *a* be an option with sub-policy π and terminal states S_{end}
 ∀s_{t+τ} ∈ S_{end}: Pr(s_{t+τ}, τ|s_t, a) = ∑_{St+1t+τ} ↓∉S_{end} ∏^{τ-1}_{i=1} Pr(s_{t+i}|s_{t+i-1}, π(s_{t+i-1}))

 $R(s_{t}, a, s_{t+\tau}, \tau) = R(s_{t}, \pi(s_{t})) + \gamma \sum_{s_{t+\tau}} \Pr(s_{t+1} | s_{t}, \pi(s_{t}))$ $\left[R(s_{t+1}, \pi(s_{t+1})) + \cdots \gamma \sum_{s_{t+\tau}} \Pr(s_{t+\tau} | s_{t+\tau-1}, \pi(s_{t+\tau-1})) \left[R(s_{t+\tau}, \pi(s_{t+\tau})) \right] \dots \right]$

Option Framework

• Bellman's equation:

 $V^{*}(s) = \max_{a} \sum_{s',\tau} \Pr(s',\tau|s,a) \left[R(s,a,s',\tau) + \gamma^{\tau} V^{*}(s') \right]$

• Q-learning update: $Q(s,a) \leftarrow Q(s,a) + \alpha \left[G_{\tau} + \gamma^{\tau} \max_{a'} Q(s',a') - Q(s,a)\right]$ where $G_{\tau} = \sum_{i=0}^{\tau} \gamma^{i} r_{i}$