Proximal Policy Optimization

umvgﬁswv mé

Ruifan Yu

(ruifan.yu@uwaterloo.ca)
CS 885
June 20

Proximal Policy Optimization
(OpenAl)

“PPO has become the default reinforcement learning algorithm at
OpenAl because of its ease of use and good performance”

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &
Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

https://arxiv.org/pdf/1707.06347
https://blog.openai.com/openai-baselines-ppo/

https://arxiv.org/pdf/1707.06347
https://blog.openai.com/openai-baselines-ppo/

Policy Gradient (REINFORCE)

REINFORCE(s,, g)
Initialize g to anything
Loop forever (for each episode)
Generate episode s, ay, g, S1,a1, 74, ..., ST, A, I'r With g
Loop for each step of the episode n =0,1, ...,T In practice,
G, « Z'{;&I yt Tt , update on each
Update policy: 8 « 6 + a y" G,V logmg(a,ls,) bateh(trajectory)
Return my

* Use the same notation in the paper

max J(me) = Tﬁ]j]ﬁg [Z fytrt] g = VeJ(ﬂ'g) - TEWQ |:Z ’}’tVQ log W@(at|5t)AW9 (St, ar):|
t=0 t=0

Problem?

* Unstable update
* Step size is very important:

« If step size is too large:
« Largestep = bad policy
* Next batch is generated from current bad policy = collect bad samples
« Badsamples = worse policy
(compare to supervised learning: the correct label and data in the following batches
may correct it)

« If step size is too small: the learning process is slow

 Datalnefficiency
« On-policy method: for each new policy, we need to generate a completely new trajectory
« The data is thrown out after just one gradient update
« As complex neural networks need many updates, this makes the training process very slow

Importance Sampling

Estimate one distribution by sampling from another distribution

TN .
Eeplf O]~ 5)~ (&)

Eeeplf ()] = rf(x)p(x)dx
- [B2 gax

) q(x)()
_ p\x
EX~C[[f()q(x)]

L1 p(x*)
- Nzi=1,xi6q (x) Q(xi)

Data Inefficiency

Evaluate the gradient

EE L e previons
samples?

Like replay buffer
in DQN

of current policy

‘rfg’)lrg [Z ’tho |Og7'('9 atlst)A (st,af)]

t=0

Data Make it

efficient

Inefficiency

Avoid sampling
from current policy

Can we estimate an expectation of one distribution without taking samples from it?

Importance Sampling in Policy Gradient

By [OO = By [f () P2

——
V](8) = Es,, a,) ~ s [V 10g g (arlsy) A(se, ar)] q(x)

To (St At)
old ﬂeold (St' at)

74 log Ty (Clt |St) A(St» at)]

=E (S¢, ag)~Tg

To (St At)
ﬂeold (Stl at)

](9) = E(st, ap)~mg [A(St, at)] Surrogate objective function
(0

Importance Sampling

Problem? No free lunch!

Two expectations are same, but we are using sampling method to estimate them
—> variance is also important

By [f] = Eveglf (0 PE VARIX] = E[X?] — (E[X])?
q(x)

q(x)
p(x)
p(x)
_(xX~q [f()q(x)>
p(x)

Var, ., [f (x)] Varc-qlf () q (X)]
— Ex~p _f(x)z m‘ - (Ex~p [f(x)])

=Ex~q <f()p()>

= Exp[f(0)?] — (Exep [@1)°

/ X
Price (Tradeoff): we may need to sample more data, if P2 (s far away from 1

q(x)

Unstable Update

Unstable Stable

Adaptive
learning rate \
Make confident
, updates

limit the policy
update range

Can we measure the distance between two distributions?

KL Divergence

Measure the distance of two distributions

P(x)

D1 (P||Q) = ZxP(x)log@

V4

KL Area to be Integrated

KL divergence of two policies 7 Dy, (PO)
/ \.\ e | o
Dy (1 ||m2)[s] = Xaeami(als)log ——— ..-\' L e
5 (als) AN

* image: Kullback-Leibler divergence (Wikipedia)
https://en.wikipedia.org/wiki/Kullback-Leibler divergence

https://en.wikipedia.org/wiki/Kullback–Leibler_divergence

Trust Region Policy Optimization (TRPO)

maximize Et[W@(at ‘ St) At]
0 Toga (Gt | St)

subject to F4[KL[mg . (-] s¢), ma(- | 5¢)]] < 6

Common trick in optimization: Lagrangian Dual

. [mo(az | st)

maximize [£;
0 0014 (at | st)

At — JBKL[W(B’DM(' | St)a 71—9(' | St)]]

TRPO uses a hard constraint rather than a penalty because it is
hard to choose a single value of B that performs well across
different problems—or even within a single problem, where the
characteristics change over the course of learning

Proximal Policy Optimization (PPO)

TRPO use conjugate gradient decent to handle the constraint

Hessian Matrix = expensive both in computation and space

ldea:
The constraint helps in the training process. However, maybe

the constraint is not a strict constraint:
Does it matter if we only break the constraint just a few times?

What if we treat it as a “soft” constraint? Add proximal value to
objective function?

PPO with Adaptive KL Penalty

A olas | S A
LKLPEN(Q) — Et 9(¢ | t) At — 6KL[7T901d(. | St)aﬂ-g(. | St)]
W@old(at ’ St)

Hard to pick § value = use adaptive 8

Compute d = Et[KL[Waold(' | St)ﬂT@(' | St)]]

— If d < diarg/1.5, B < B/2
— If d > diarg X 1.5, B+ 3 x 2

Still need to set up a KL divergence target value ...

PPO with Adaptive KL Penalty

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters 6y, initial KL penalty 5y, target KL-divergence ¢
for k=0,1,2,... do

Collect set of partial trajectories Di on policy mx = 7(0k)

Estimate advantages f\?“ using any advantage estimation algorithm

Compute policy update

Ox1 = arg max Lo, (0) — BrDra (0]|0x)

by taking K steps of minibatch SGD (via Adam)
if DKL(Ok—i—ngk) 2 1.56 then

Br+1 = 20k
else if DKL(9k+1||9k) < 5/1.5 then
Br+1 = Pi/2
end if
end for

* CS294 Fall 2017, Lecture 13
http://rail.eecs.berkeley.edu/deeprlcourse-fal7/f17docs/lecture 13 advanced pg.pdf

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

1+€

PPO with Clipped Objective

. S| Te\at | St) 4
maximize [, (@ | 51) Ay Tt(é’) — WB(CZt | ~|5t) ;
0 o 1d (at | St) 7I-Qold at | 5t
Fluctuation happens when r changes too quickly = limit r within a range?
-- , , 1+€
1
__ 1-€ | e
1-¢ 1 1+t T 1-€ 1 1+¢ T

LCLIP(H) = Iﬁlt [min(rt(e)flt, clip(ri(0),1 — e, 1 + G)At)}

PPO with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6, clipping threshold ¢
for k =0,1,2,... do
Collect set of partial traJectorles Dy on policy mx = 7(6k)
Estimate advantages A using any advantage estimation algorithm

Compute policy update

Ok+1 = arg max ECUP(H)

by taking K steps of minibatch SGD (via Adam), where

£5HP (0) = E [ZT: [mm(rt AT clip (re(0),1 — €,1+ €) AT)}]

t=0

end for

* CS294 Fall 2017, Lecture 13
http://rail.eecs.berkeley.edu/deeprlcourse-fal7/f17docs/lecture 13 advanced pg.pdf

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

PPO in practice

LELIP+VF+S(9) = I@t [LfLIP(é’) — clL,YF(G) + CQS[WQ](St)]

Surrogate objective function a squared-error loss entropy bonus to ensure
for “critic” sufficient exploration

(Vo(se) — Vi ™'®)° b it
encourage “diversity

*c1, c2: empirical values, in the paper, c1=1, c2=0.01

Performance

No clipping or penalty: Li(0) = r(0) A,
Clipping: Li(0) = min(ry(6) Ay, clip(r4(0)),1 — €,1 + €) A,
KL penalty (fixed or adaptive) Li(0) = r(6)A; — BKLI[my,,,, 7]

Results from continuous control benchmark. Average
normalized scores (over 21 runs of the algorithm, on 7
environments)

algorithm

avg. normalized score

No clipping or penalty
Clipping, € = 0.1
Clipping, ¢ = 0.2
Clipping, € = 0.3
Adaptive KL diare = 0.003
Adaptive KL dtarg = 0.01
Adaptive KL darg = 0.03
Fixed KL, 8 = 0.3

Fixed KL, g = 1.

Fixed KL, g = 3.

Fixed KL, 8 = 10.

-0.39
0.76
0.82
0.70
0.68
0.74
0.71
0.62
0.71
0.72
0.69

Performance

Results in MuJoCo environments, training for one million timesteps

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
» . 1000
2000 2500 ! 8000
; - b , ; ; 455
1500
2000 6000
1000 1500 600
4000
500 1000 400
-500
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 i
-20 —— A2C + Trust Region
100 3000 —— CEM
40 80 —— PPO (Clip)
i 5 2000 — Vanilla PG, Adaptive
—— TRPO
-80 40
55 1000
-100
0
-120 0

0 1000000 0 1000000 0 1000000

Related Works

[1] Emergence of Locomotion Behaviours in Rich Environments
Distributed PPO

Interesting fact: this paper is published before PPO paper
DeepMind got this idea from OpenAl’s talking in NIPS 2016

[2] An Adaptive Clipping Approach for Proximal Policy Optimization
PPO-A
Change the clipping range adaptively

[1] https://arxiv.org/abs/1707.02286
[2] https://arxiv.org/abs/1804.06461

https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1804.06461

END

