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Reinforcement Learning

Action Value Function Policy Gradients
Q-Learning
Actor Critic TRPO PPO
A3C ACKTR

Ref: https://www.youtube.com/watch?v=CKaN5PgkSBc



Policy Gradient

For 1=1,2,..
Collect N trajectories for policy Ty
Estimate advantage function A
Compute policy gradient g
Update policy parameter 6 =0,4 + ag



Problems of Policy Gradient

For 1i=1,2,..

Collect N trajectories for policy Mg +— _ _
Non stationary input data

Estimate advantage function A due to changing policy and
Compute policy gradient g reward distributions
change

Update policy parameter 6 =0,4 + ag




Problems of Policy Gradient

For 1i=1,2,..

Collect N trajectories for policy Ty
Advantage is very random

initially

Estimate advantage function A

Compute policy gradient g
Update policy parameter 6 =0,4 + ag

)
@ You’re bad ]

Advantage




Problems of Policy Gradient

For 1=1,2,..
Collect N trajectories for policy Tg
Estimate advantage function A
Compute policy gradient g

| We need more carefully
Update policy parameter 6 =0,,4 + ag crafted policy update

We want improvement and
not degradation

Idea: We can update old policy m,;; to a new policy 7
such that they are “trusted” distance apart. Such
conservative policy update allows improvement instead
of degradation.




RL to Optimization

* Most of ML is optimization
» Supervised learning is reducing training loss

* RL: what is policy gradient optimizing?
* Favoring (s, a) that gave more advantage A.

* Can we write down optimization problem that allows to do small update on a
policy T based on data sampled from m (on-policy data)



What loss to optimize?

* Optimize n(m) i.e., expected return of a policy

* We collect data with ;4 and optimize the objective to get a new
policy 7.



What loss to optimize?

* We can express n (i) in terms of the advantage over the original
policy?.

0.0

10 =1 (Tota) [+ Ba]| ) ¥ Ay (51 20)
l t=0

Expected return of
old policy

Expected return of Sample from new
new policy policy

[1] Kakade, Sham, and John Langford. "Approximately optimal approximate reinforcement learning." ICML. Vol. 2. 2002.



What loss to optimize?

* Previous equation can be rewritten as’:

n(f)

Expected return of
new policy

=n(To1q)|+ 2

l

Expected return of
old policy

p7(S)

2

it(als)Ar (s, a)

Discounted visitation frequency
p.(s) =P(sg=5)+yP(s; =s) +y?P + -

[1] Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.



What loss to optimize?

Old Expected Return

l

U(ﬁ) — n(nold) +

l

New Expected Return

p7(S)

D (als)Ax(s, )




What loss to optimize?

n@ =n(@ee) + ) px(s)

l

D (als)Ax(s, )

New Expected Return >  Old Expected Return

Guaranteed Improvement from ;4 — 7@



New State Visitation is Difficult

State visitation based on new policy

1) = 1(Toia) + ).

“Complex dependency of pz(s) on
T makes the equation difficult to
optimize directly.” [1]

l

p7(S)

2.

a

7t(als)Ar (s, @)

|

New policy

[1] Schulman, John, et al. "Trust region policy optimization." International Conference on Machine Learning. 2015.



New State Visitation is Difficult

1) = 1(Ta) + )

p7(S)

Z ft(als)Ar(s, a)

s

L() = 1(Toia) + )

I

Local approximation of n(7)

[1] Schulman, John, et al. "Trust region policy optimization." International Confe

P (S)

rence on Machine

Learning. 2015.



Local approximation of ()

L) = 1(ota) + ) pr(S) ) T(@l$)Ary (5, )

The approximation is accurate

within step size 6 (trust region) 5 Trust region
/
7/
Monotonic improvement g,/ 7
guaranteed /’/,’/
,,’:” Ty (s|a) does not change

dramatically.



Local approximation of ()

* The following bound holds:

n(ft) = L(7) — CDg™ (1, 70)

_ 4ey
Where, C = 17

* Monotonically improving policies can be generated by:

m = arg max[L() — CDZ* (1, )]

T

Where, C = ey

(1-y)?




Minorization Maximization (MM) algorithm

Surrogate function L(rr) — CDZ;** (m, )
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Optimization of Parameterized Policies

* Now policies are parameterized g (a|s) with parameters 6
* Accordingly surrogate function changes to

arg max[L(60) — CDg;™ (0514, 0)]
0



Optimization of Parameterized Policies

arg max[L(0) —|CDE** (814, 6)]
o

l

In practice C results in very small step sizes

One way to take larger step size is to constraint KL
divergence between the new policy and the old
policy, i.e., a trust region constraint:

max%mize Lg(0)

subject to, D1 (0,14,0) < 6

| et




Solving KL-Penalized Problem
* maximizeg L(8) — C.DZ:** (8,14, 6)

e Use mean KL divergence instead of max.
* i.e, maximize L(6) — C.Dy1(0,14,6)

* Make linear approximation to L and quadratic to KL term:
C
maximize g . (0 —0010) — 5 (9 — B0010)"F(6 — 0014)

where, g = —L(H)Ig 0,14 F = angKL(Gold;Q)le =0014



Solving KL-Penalized Problem

* Make linear approximation to L and quadratic to KL term:
maximize g . (0 = Oo1a) = 5 (0 = Bo1a)"F (6 = Ooa)

where, g = iL(H)|9—¢901d F= ;Z_QD—KL(Qold Nlo=6,,,
. Solutlon 0 —0,,4 = —F 1g. Don’t want to form full Hessian matrix

F _%DKL(Hold»H)le 0014

e Can compute F~1g approximately using conjugate gradient
algorithm without forming F explicitly.



Conjugate Gradient (CG)

e Conjugate gradient algorithm approximately solves for x = A~1b
without explicitly forming matrix A

o After k iterations, CG has minimized %xTAx — bx

Steepest Descent

= Conjugate Gradient

X/




TRPO: KL-Constrained

* Unconstrained problem: maximize L(8) — C.Dy;(8,14,0)
* Constrained problem: maxigmize L(8) subject to C. Dy (0,14,0) < 6

* J is a hyper-parameter, remains fixed over whole Iearning process

* Solve constrained quadratic problem: compute F~1g and then rescale step
to get correct KL

. max%mlzeg (6 —0,;4) subject to = (0 0,0)TF(0—0,,) <6

* Lagrangian: L(8,41) = g. (0 — Hold) —‘[(9 001a) " F(68 — 0514) — 6]
. leferentlate wrt @ andget 8 — 0,4 = —F lg

e We want = STFS =4

26

* Given candldate step Synscaleq rescale tos = \/ Sunscaled

Sunscaled-(FSunscaled)



TRPO Algorithm

For 1=1,2,..
Collect N trajectories for policy Tg
Estimate advantage function A
Compute policy gradient g
~ |Use CG to compute H™lg
Compute rescaled step S==aH‘1g with rescaling and line search
Apply update: 6 =0,,+aH g

— maximize L(8) subjectto C.Dg;(6,,4,0) < 6



Questions?



