Trust Region Policy Optimization

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel @ICML 2015

> Presenter: Shivam Kalra Shivam.kalra@uwaterloo.ca

CS 885 (Reinforcement Learning) Prof. Pascal Poupart

June 20th 2018

Policy Gradient

For *i=1,2,...*

Collect N trajectories for policy π_{θ} Estimate advantage function A Compute policy gradient gUpdate policy parameter $\theta = \theta_{old} + \alpha g$

Problems of Policy Gradient

For *i*=1,2,...

Estimate advantage function A

Compute policy gradient \boldsymbol{g}

Update policy parameter $\theta = \theta_{old} + \alpha g$

Non stationary input data due to changing policy and reward distributions change

Problems of Policy Gradient

For *i*=1,2,...

Collect N trajectories for policy $\pi_{m{ heta}}$

Estimate advantage function A

Compute policy gradient \boldsymbol{g}

Update policy parameter $\theta = \theta_{old} + \alpha g$

Advantage is very random initially

Problems of Policy Gradient

For *i*=1,2,...

Collect N trajectories for policy $\pi_{ heta}$

Estimate advantage function A

Compute policy gradient ${\it g}$

Update policy parameter $\theta = heta_{old} + lpha g$

We need more carefully crafted policy update

We want improvement and not degradation

Idea: We can update old policy π_{old} to a new policy $\tilde{\pi}$ such that they are "trusted" distance apart. Such conservative policy update allows improvement instead of degradation.

RL to Optimization

- Most of ML is optimization
 - Supervised learning is reducing training loss
- RL: what is policy gradient optimizing?
 - Favoring (*s*, *a*) that gave more advantage *A*.
 - Can we write down optimization problem that allows to do small update on a policy π based on data sampled from π (on-policy data)

• Optimize $\eta(\pi)$ i.e., expected return of a policy π

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi(.|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• We collect data with π_{old} and optimize the objective to get a new policy $\tilde{\pi}$.

• We can express $\eta(\tilde{\pi})$ in terms of the advantage over the original policy¹.

[1] Kakade, Sham, and John Langford. "Approximately optimal approximate reinforcement learning." ICML. Vol. 2. 2002.

• Previous equation can be rewritten as¹:

$$\eta(\tilde{\pi}) = \eta(\pi_{old}) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a) \ge \mathbf{0}$$
New Expected Return > Old Expected Return

Guaranteed Improvement from $\pi_{old} \rightarrow \tilde{\pi}$

New State Visitation is Difficult

"Complex dependency of $\rho_{\tilde{\pi}}(s)$ on $\tilde{\pi}$ makes the equation difficult to optimize directly." [1]

New State Visitation is Difficult

Local approximation of $\eta(\tilde{\pi})$

$$L(\tilde{\pi}) = \eta(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi_{old}}(s,a)$$

The approximation is accurate within step size δ (trust region)

Monotonic improvement guaranteed

Local approximation of $\eta(\tilde{\pi})$

• The following bound holds:

$$\eta(\tilde{\pi}) \ge L(\tilde{\pi}) - CD_{KL}^{max}(\pi, \tilde{\pi})$$

Where, $C = \frac{4\epsilon\gamma}{(1-\gamma)^2}$

• Monotonically improving policies can be generated by:

$$\pi = \arg \max_{\pi} [L(\tilde{\pi}) - CD_{KL}^{max}(\pi, \tilde{\pi})]$$

Where, $C = \frac{4\epsilon\gamma}{(1-\gamma)^2}$

Minorization Maximization (MM) algorithm

Optimization of Parameterized Policies

- Now policies are parameterized $\pi_{\theta}(a|s)$ with parameters θ
- Accordingly surrogate function changes to

$$\arg \max_{\theta} [L(\theta) - CD_{KL}^{max}(\theta_{old}, \theta)]$$

Optimization of Parameterized Policies

$$\arg \max_{\theta} [L(\theta) - CD_{KL}^{max}(\theta_{old}, \theta)]$$
In practice C results in very small step sizes

One way to take larger step size is to constraint KL divergence between the new policy and the old policy, i.e., a trust region constraint:

 $\underset{\theta}{\textit{maximize } L_{\theta}(\theta)}$

subject to, $D_{KL}^{max}(\theta_{old}, \theta) \leq \delta$

Solving KL-Penalized Problem

- maximize_{θ} $L(\theta) C.D_{KL}^{max}(\theta_{old}, \theta)$
- Use mean KL divergence instead of max.
 - i.e., $\max_{\theta} L(\theta) C.\overline{D_{KL}}(\theta_{old}, \theta)$
- Make linear approximation to L and quadratic to KL term: $\max_{\theta} \max_{\theta} \left[\theta - \theta_{old} \right] - \frac{c}{2} (\theta - \theta_{old})^T F(\theta - \theta_{old})$ where, $g = \frac{\partial}{\partial \theta} L(\theta)|_{\theta = \theta_{old}}$, $F = \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta_{old}, \theta)|_{\theta = \theta_{old}}$

Solving KL-Penalized Problem

• Make linear approximation to L and quadratic to KL term:

$$\begin{array}{l} \max \underset{\theta}{i} \max i g : (\theta - \theta_{old}) - \frac{c}{2} (\theta - \theta_{old})^T F(\theta - \theta_{old}) \\ \text{where, } g = \frac{\partial}{\partial \theta} L(\theta)|_{\theta = \theta_{old}}, \qquad F = \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta_{old}, \theta)|_{\theta = \theta_{old}} \end{array}$$

- Solution: $\theta \theta_{old} = \frac{1}{c}F^{-1}g$. Don't want to form full Hessian matrix $F = \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta_{old}, \theta)|_{\theta = \theta_{old}}.$
- Can compute $F^{-1}g$ approximately using **conjugate gradient** algorithm without forming F explicitly.

Conjugate Gradient (CG)

- Conjugate gradient algorithm approximately solves for $x = A^{-1}b$ without explicitly forming matrix A
- After k iterations, CG has minimized $\frac{1}{2}x^TAx bx$

TRPO: KL-Constrained

- Unconstrained problem: maximize $L(\theta) C.\overline{D_{KL}}(\theta_{old}, \theta)$
- Constrained problem: $\max initial L(\theta)$ subject to $C.\overline{D_{KL}}(\theta_{old}, \theta) \leq \delta$
- δ is a hyper-parameter, remains fixed over whole learning process
- Solve constrained quadratic problem: compute $F^{-1}g$ and then rescale step to get correct KL
 - maximize g. $(\theta \theta_{old})$ subject to $\frac{1}{2}(\theta \theta_{old})^T F(\theta \theta_{old}) \le \delta$
 - Lagrangian: $\mathcal{L}(\theta, \lambda) = g \cdot (\theta \theta_{old})^2 \frac{\lambda}{2} [(\theta \theta_{old})^T F(\theta \theta_{old}) \delta]$ Differentiate wrt θ and get $\theta \theta_{old} = \frac{1}{2} F^{-1} g$

 - We want $\frac{1}{2}s^T Fs = \delta$

 $\sqrt{\frac{2\delta}{s_{unscaled}}}S_{unscaled}}$ • Given candidate step $s_{unscaled}$ rescale to s =

TRPO Algorithm

For i=1,2,...Collect N trajectories for policy π_{θ} Estimate advantage function A Compute policy gradient gUse CG to compute $H^{-1}g$ Compute rescaled step $s = \alpha H^{-1}g$ with rescaling and line search Apply update: $\theta = \theta_{old} + \alpha H^{-1}g$

→ $\max_{\theta} \max_{\theta} L(\theta)$ subject to $C. \overline{D_{KL}}(\theta_{old}, \theta) \le \delta$

Questions?