
CS885 Reinforcement Learning
Lecture 13c: June 13, 2018

Adversarial Search
[RusNor] Sec. 5.1-5.4
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Outline

• Minimax search
• Evaluation functions
• Alpha-beta pruning
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Game search challenge

• What makes game search challenging?
– There is an opponent!
– The opponent is malicious – it wants to win (i.e. it is trying 

to make you lose)
– We need to take this into account when choosing moves

• Simulate the opponent’s behaviour in our search

• Notation: One player is called MAX (who wants to 
maximize its utility) and one player is called MIN
(who wants to minimize its utility)
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Example: Tic-Tac-Toe

MAX’s job is to use the 
search tree to determine 
the best move
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Optimal strategies
• Want to find the optimal strategy 
– One that leads to outcomes at least as good as 

any other strategy, given that MIN is playing 
optimally

– Equilibrium (game theory)
– Zero-sum game of perfect information
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Minimax Value
MINIMAX-VALUE(n) =

Utility(n)  if n is a terminal state

Maxs Î Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins Î Succ(n) MINIMAX-VALUE(s) if n is a MIN node

ply
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Minimax algorithm

Returns action 
corresponding 
to best 
possible move
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Properties of Minimax

• Time complexity: 
– O(bd)

• Space complexity: 
– O(bd)            just need to keep in memory the current           

branch with its children

Where b is branching factor and 
d is depth of the tree
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Minimax and multi-player games
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• Can we write a a minimax program that will 
play chess reasonably well?
– For chess ! ≈ 35 and % ≈ 100
– Do we really need to look at all those nodes?

Chess
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Alpha-Beta Pruning

• No! 
– If we are smart (and careful) we can do pruning

• Eliminate large parts of the tree from consideration

• Alpha-Beta pruning applied to a minimax tree
– Returns the same decision as minimax
– Prunes branches that cannot influence final 

decision
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Alpha-Beta Pruning

• Alpha:
– Value of best (highest value) choice we have found so far 

on the path for MAX
• Beta:

– Value of best (lowest value) choice we have found so far 
on path for MIN

• Update alpha and beta as search continues
• Prune as soon as the value of the current node is 

known to be worse than current alpha or beta values 
for MAX or MIN
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Alpha-Beta example

MAX

MIN

[-inf, inf]

3

[-inf, 3]
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Alpha-Beta example

MAX

MIN

3 12

[-inf,3]

[-inf,inf]
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Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

University of Waterloo



CS885 Spring 2018 Pascal Poupart 16

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]
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Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]

Prune 
remaining 
children
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Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,14]

[3,14]
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Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,5]

[3,5]

5
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Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[2,2]

[3,3]

5 2
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Properties of Alpha-Beta

• Pruning does not affect the final result
– Prune parts of the tree that would never be 

reached in actual play
• The order in which moves are evaluated are 

important
– A bad move ordering will prune nothing
– A perfect node ordering can reduce time 

complexity to O(bd/2)
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Real-time decisions

• Alpha-beta can be a huge improvement over 
minimax
– Still not good enough as we need to search all the 

way to terminal states for at least part of the 
search space

– Need to make a decision about a move quickly

• Heuristic evaluation function + cutoff test
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Evaluation functions

• Apply an evaluation function to a state
– If terminal state, function returns actual utility
– If non-terminal, function returns estimate of the 

expected utility (i.e. the chance of winning from 
that state)

– Function must be fast to compute
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Evaluation functions

• Evaluation functions can be given by the designer 
of the program (using expert knowledge) or 
learned from experience

• If features can be judged independently,  a 
weighted linear function is good
– w1f1(s)+w2f2(s)+…+wnfn(s) with s as board state

• Neural networks are commonly used today

University of Waterloo
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Cutting off search
• Instead of searching until we find a terminal 

state, we can cut search sooner and apply the 
evaluation function

• When?
– Arbitrarily (but deeper is better)
– Quiescent states

• States that are “stable” – not going to change value (by 
a lot) in the near future

– Singular extensions
• Searching deeper when you have a move that is “clearly 

better” (i.e. moving the king out of check)
• Can be used to avoid the horizon effect
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Cutting off search
• How deep do we need to search?
– Novice chess human player

• 5-ply (minimax)

– Master chess human player
• 10-ply (alpha-beta)

– Grandmaster chess human player
• 14-ply + a fantastic evaluation function, opening and 

endgame databases
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