
CS885 Reinforcement Learning
Lecture 13c: June 13, 2018

Adversarial Search
[RusNor] Sec. 5.1-5.4

CS885 Spring 2018 Pascal Poupart 1University of Waterloo

CS885 Spring 2018 Pascal Poupart 2

Outline

• Minimax search
• Evaluation functions
• Alpha-beta pruning

University of Waterloo

CS885 Spring 2018 Pascal Poupart 3

Game search challenge

• What makes game search challenging?
– There is an opponent!
– The opponent is malicious – it wants to win (i.e. it is trying

to make you lose)
– We need to take this into account when choosing moves

• Simulate the opponent’s behaviour in our search

• Notation: One player is called MAX (who wants to
maximize its utility) and one player is called MIN
(who wants to minimize its utility)

University of Waterloo

CS885 Spring 2018 Pascal Poupart 4

Example: Tic-Tac-Toe

MAX’s job is to use the
search tree to determine
the best move

University of Waterloo

CS885 Spring 2018 Pascal Poupart 5

Optimal strategies
• Want to find the optimal strategy
– One that leads to outcomes at least as good as

any other strategy, given that MIN is playing
optimally

– Equilibrium (game theory)
– Zero-sum game of perfect information

University of Waterloo

CS885 Spring 2018 Pascal Poupart 6

Minimax Value
MINIMAX-VALUE(n) =

Utility(n) if n is a terminal state

Maxs Î Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins Î Succ(n) MINIMAX-VALUE(s) if n is a MIN node

ply

University of Waterloo

CS885 Spring 2018 Pascal Poupart 7

Minimax algorithm

Returns action
corresponding
to best
possible move

University of Waterloo

CS885 Spring 2018 Pascal Poupart 8

Properties of Minimax

• Time complexity:
– O(bd)

• Space complexity:
– O(bd) just need to keep in memory the current

branch with its children

Where b is branching factor and
d is depth of the tree

University of Waterloo

CS885 Spring 2018 Pascal Poupart 9

Minimax and multi-player games

University of Waterloo

CS885 Spring 2018 Pascal Poupart 10

• Can we write a a minimax program that will
play chess reasonably well?
– For chess ! ≈ 35 and % ≈ 100
– Do we really need to look at all those nodes?

Chess

University of Waterloo

CS885 Spring 2018 Pascal Poupart 11

Alpha-Beta Pruning

• No!
– If we are smart (and careful) we can do pruning

• Eliminate large parts of the tree from consideration

• Alpha-Beta pruning applied to a minimax tree
– Returns the same decision as minimax
– Prunes branches that cannot influence final

decision

University of Waterloo

CS885 Spring 2018 Pascal Poupart 12

Alpha-Beta Pruning

• Alpha:
– Value of best (highest value) choice we have found so far

on the path for MAX
• Beta:

– Value of best (lowest value) choice we have found so far
on path for MIN

• Update alpha and beta as search continues
• Prune as soon as the value of the current node is

known to be worse than current alpha or beta values
for MAX or MIN

University of Waterloo

CS885 Spring 2018 Pascal Poupart 13

Alpha-Beta example

MAX

MIN

[-inf, inf]

3

[-inf, 3]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 14

Alpha-Beta example

MAX

MIN

3 12

[-inf,3]

[-inf,inf]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 15

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 16

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 17

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]

Prune
remaining
children

University of Waterloo

CS885 Spring 2018 Pascal Poupart 18

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,14]

[3,14]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 19

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,5]

[3,5]

5

University of Waterloo

CS885 Spring 2018 Pascal Poupart 20

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[2,2]

[3,3]

5 2

University of Waterloo

CS885 Spring 2018 Pascal Poupart 21

Properties of Alpha-Beta

• Pruning does not affect the final result
– Prune parts of the tree that would never be

reached in actual play
• The order in which moves are evaluated are

important
– A bad move ordering will prune nothing
– A perfect node ordering can reduce time

complexity to O(bd/2)

University of Waterloo

CS885 Spring 2018 Pascal Poupart 22

Real-time decisions

• Alpha-beta can be a huge improvement over
minimax
– Still not good enough as we need to search all the

way to terminal states for at least part of the
search space

– Need to make a decision about a move quickly

• Heuristic evaluation function + cutoff test

University of Waterloo

CS885 Spring 2018 Pascal Poupart 23

Evaluation functions

• Apply an evaluation function to a state
– If terminal state, function returns actual utility
– If non-terminal, function returns estimate of the

expected utility (i.e. the chance of winning from
that state)

– Function must be fast to compute

University of Waterloo

CS885 Spring 2018 Pascal Poupart 24

Evaluation functions

• Evaluation functions can be given by the designer
of the program (using expert knowledge) or
learned from experience

• If features can be judged independently, a
weighted linear function is good
– w1f1(s)+w2f2(s)+…+wnfn(s) with s as board state

• Neural networks are commonly used today

University of Waterloo

CS885 Spring 2018 Pascal Poupart 25

Cutting off search
• Instead of searching until we find a terminal

state, we can cut search sooner and apply the
evaluation function

• When?
– Arbitrarily (but deeper is better)
– Quiescent states

• States that are “stable” – not going to change value (by
a lot) in the near future

– Singular extensions
• Searching deeper when you have a move that is “clearly

better” (i.e. moving the king out of check)
• Can be used to avoid the horizon effect

University of Waterloo

CS885 Spring 2018 Pascal Poupart 26

Cutting off search
• How deep do we need to search?
– Novice chess human player

• 5-ply (minimax)

– Master chess human player
• 10-ply (alpha-beta)

– Grandmaster chess human player
• 14-ply + a fantastic evaluation function, opening and

endgame databases

University of Waterloo

