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Introduction

Lifelong learning, Problem, Minecraft



Lifelong Learning

Lifelong Learning is the continued learning of tasks, from one or more domains,
over the course of a lifetime, by a lifelong learning system.

A lifelong learning system efficiently and
effectively:

* Retains the knowledge it has learned

. Selﬁctively transfers knowledge to learn new
tasks

» Select, reuse, and transfer past knowledge to
solve new tasks

e System approach

* ensures the effective and efficient interaction
between (1) and (2)

 Efficiently retain knowledge of multiple tasks and
transfer to new tasks
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1. Efficiently learn multiple tasks
2. Transfer knowledge to new tasks



Lifelong Learning Problem

* Dimension
* Difficult to model and solve tasks when state and action spaces increase

* Planning
* Potential infinite time horizon
e Efficiency
e Retaining and reusing knowledge learned

* Minecraft
* Unsolved high dimensional lifelong learning problem



Minecraft

* Pixelized sandbox crafting-survival game
 Every pixel can be transformed into materials or gadgets/parts
 2nd pest selling video game of all-time ...

* Bought by Microsoft for $2.5 billion




Tasks in Minecraft

* Solve sub-problems

e Skill Hierarchies
* Building a wooden house
e Cutting tree — get wood — make boards, etc.

e Skills can be reused
e Build a city
e Start from building a house

* In order to solve Minecraft, we need to:
e Learn Skill
e Learn a controller
* When to use and reuse skill
* Efficiently accumulate reused skills




Backgrounad

DDQN, Skill, Skill Policy



Deep Q Networks

 Deep Q Networks (DQN)
* Optimize Q function
* Minimize error

* Experience Replay (ER)

Replay buffer

Stores agent’s experience at each timestep t
Minimize loss function

Two separate Q networks

Sync the target networks after n steps

* Double DQN (DDQN)
* Prevents overly optimistic estimates of value functions
* Select action from current Q network
* Evaluate with target network



Skill and Skill Policy

 Askilo =<I,m, [ >
| € S —Subset of states where skills can be initiated
e 1t— Intra-skill policy
* B —afunction of s and t, termination probability
* Semi-MDP
* Produces a skill policy from < S,),P,R,y >
* Skill policy
* Mapping between state and distribution over set of skills
e Q function with skills
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* Policy Distillation Qx(s,0) = E[R] + 7 H}%QE(S ,0')]
* Distillation ’
e Transfer knowledge from a teacher model to a student model
* Distill ensemble models into a single model

* Learn from multiple teachers, i.e., multiple policies



Hierarchical Deep RL Network
(H-DRLN)



Hierarchical Deep RL Network (H-DRLN)

e Extends DQN

e Qutputs either

* Primitive action

* Move forward, rotate, pick up, place
break a block

* Executes action fort

e Learned skills

* Navigation, pick up, placement, break
* Executes policy iy, until it terminates

* Using Deep Skill Module
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Deep Skill Module

Deep Skill Network (DSN)

* Previously learned skills
* DSN executes its policy Ty, if a skill is executed

Deep Skill Module
* Aset of N DSNs
* Input:s, skill index i, policy Ty,
* Qutput: a

DSN Array
e Separate DQN for each DSN

The Distilled Multi-Skill Network
* Single network for multiple DSNs
* Hidden layers are shared

* OQutput layer trained separately for each DSN
* Trained with policy distillation
» # of skills -> scalable to lifelong learning
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Experiment

Sub-Domain, Two-Room Domain, Complex Domain, Results



Experiment

* States: raw image pixels from picture frames

* Primitive Actions
* Move forward
rotate left/right by 30 degrees
break a block
* pick up an object
* place an object

* Rewards
* Small negative reward after each timestep
* Non-negative reward after reaching the final goal



Experiment

* Domain
e Sub-domain (DSNs)
* Two-room domain
* Complex domain with three different tasks

* Training
* Episodes with 30, 60, 100 steps for single DSN, two-room and Complex
domain
* |nitialization
« Random in each DSN, 15t room in other domains



Sub-Domains in Minecraft

Navigation 1 Domain

Navigation 2 Domain

Goal
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Placement Domain
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Pickup
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Figure 4: The domains: (a)-(d) are screenshots for each of
the domains we used to train the DSNs.



Training a DSN (sub-domain)

* Challenge
* |dentical walls — visual ambiguity
* Obstacles
* navigating to a specific location and ending with the execution of a primitive
action (Pickup, Break or Place respectively).
e Optimal Hyper-parameters for DQN on Minecraft emulator
* Higher learning ratio, learning rate
* Less exploration
 Smaller ER
e Rest unchanged

* Almost 100% success rate on task completion



Composite Domains

Two Room Domain
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Figure 5: Composite domains: (a) The two-room domain
and (b) the complex domain with three different tasks, (2)
navigation, (¢¢) pickup and (¢¢2) placement



Training an H-DRLN with DSN

Two Room Domain

Reuse DSN pretrained in sub-domain
 |dentify the exit in first room
 different from sub-domain

* Navigate to the exit in next room
* same as havigation 1

H-DRLN solves the task after a single epoch

* Higher reward than DQN
* 50% vs 76% after 39 epochs
e Wall ambiguity

Knowledge Transfer without Learning

e Evaluate DSN without any training on the Two-Room
domain

 Still better than DQN — specifically trained on the
domain

Success Rate (%)

= DQN MAX = DSN

H-DRLN START = H-DRLN END



Training an H-DRLN with Deep Skill Module

DDQN was utilized to train the H-DRLN Tancher Netwonka

Picku Navigate 2 Break Place
Complex Minecraft Domain
* Room 1: navigate around obstacles

* Room 2: pick up a block and break the door
* Room 3: place the block at goal

e Reward Y Y

« Non-negative reward when all tasks are complete et T B i

* Small negative reward at each timestep

DSN Array
* Formed by 4 previously trained DSNs

Multi-Skill Distillation
* DSNs are teachers
 Distil skills into a single network Student Network

* Also learns a control rule that switch between skills



Result — Success Rate

HDRLN Comparison
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Result - Skill Usage
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Conclusion

Conclusion, Contribution, Future Work



Conclusion

e Extension of DQN in Minecraft domain to train DSNs

* Reuse learned skills by H-DRLN

* Multiple skills incorporated using DSN array or distilled multi-skill
network

* Better performance than DDQN



Contribution and Future Work

e Contribution

* Building blocks for lifelong learning
 Efficient knowledge retention
* Selective transfer of knowledge and skills
* Interaction between the last two

* Potential knowledge transfer without learning

* Future work
* Capture implicit hierarchal structure when learning DSNs
* Learn skills online
* Online refinement of previously learned skills
* Train agent in real world Minecraft scenarios



Questions?



