
A Deep Hierarchical Approach to
Lifelong Learning in Minecraft

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, Shie Mannor

Presented by Yetian Wang

June 13, 2018

Outline

• Introduction
• Lifelong learning

• Problem

• Minecraft

• Background
• RL, DQN, Double DQN

• Skills, SMDP, Skill Policy, Policy Distillation

• Hierarchical Deep RL Network
• Deep Skill Network

• Deep Skill Module
• DSN Array, The Distilled Multi Skill Network

• H-DRLN

• Experiment
• Training DSN

• Training H-DRLN with DSN

• Training H-DRLN with Deep Skill Module

• Results

• Conclusion

• Contribution and Future Work

Introduction
Lifelong learning, Problem, Minecraft

Lifelong Learning

A lifelong learning system efficiently and
effectively:

• Retains the knowledge it has learned

• Selectively transfers knowledge to learn new
tasks
• Select, reuse, and transfer past knowledge to

solve new tasks

• System approach
• ensures the effective and efficient interaction

between (1) and (2)
• Efficiently retain knowledge of multiple tasks and

transfer to new tasks

Lifelong Learning is the continued learning of tasks, from one or more domains,
over the course of a lifetime, by a lifelong learning system.

Lifelong Learning Problem

• Dimension
• Difficult to model and solve tasks when state and action spaces increase

• Planning
• Potential infinite time horizon

• Efficiency
• Retaining and reusing knowledge learned

• Minecraft
• Unsolved high dimensional lifelong learning problem

Minecraft

• Pixelized sandbox crafting-survival game

• Every pixel can be transformed into materials or gadgets/parts

• 2nd best selling video game of all-time

• Bought by Microsoft for $2.5 billion

Tasks in Minecraft

• Solve sub-problems
• Skill Hierarchies

• Building a wooden house
• Cutting tree – get wood – make boards, etc.

• Skills can be reused
• Build a city
• Start from building a house

• In order to solve Minecraft, we need to:
• Learn Skill
• Learn a controller

• When to use and reuse skill
• Efficiently accumulate reused skills

Background
DDQN, Skill, Skill Policy

Deep Q Networks

• Deep Q Networks (DQN)
• Optimize Q function
• Minimize error

• Experience Replay (ER)
• Replay buffer
• Stores agent’s experience at each timestep t
• Minimize loss function
• Two separate Q networks
• Sync the target networks after n steps

• Double DQN (DDQN)
• Prevents overly optimistic estimates of value functions
• Select action from current Q network
• Evaluate with target network

Skill and Skill Policy

• A skill 𝜎 =< 𝐼, 𝜋, 𝛽 >
• 𝐼 ⊆ 𝑆 – Subset of states where skills can be initiated
• π – Intra-skill policy
• β – a function of s and t, termination probability

• Semi-MDP
• Produces a skill policy from < 𝑆,∑, 𝑃, 𝑅, 𝛾 >

• Skill policy
• Mapping between state and distribution over set of skills
• Q function with skills

• Policy Distillation
• Distillation

• Transfer knowledge from a teacher model to a student model
• Distill ensemble models into a single model

• Learn from multiple teachers, i.e., multiple policies

Hierarchical Deep RL Network
(H-DRLN)
H-DRLN, DSN, Deep Skill Module, Experiment, Result

Hierarchical Deep RL Network (H-DRLN)

• Extends DQN

• Outputs either
• Primitive action

• Move forward, rotate, pick up, place
break a block

• Executes action for t

• Learned skills
• Navigation, pick up, placement, break

• Executes policy πDSNi until it terminates

• Using Deep Skill Module

Deep Skill Module

• Deep Skill Network (DSN)
• Previously learned skills
• DSN executes its policy πDSNi if a skill is executed

• Deep Skill Module
• A set of N DSNs
• Input: s, skill index i, policy πDSNi

• Output: a

• DSN Array
• Separate DQN for each DSN

• The Distilled Multi-Skill Network
• Single network for multiple DSNs
• Hidden layers are shared
• Output layer trained separately for each DSN

• Trained with policy distillation

• # of skills -> scalable to lifelong learning

𝑠𝑡 , 𝑎𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑟 → 𝑠𝑡 , 𝜎𝑡, 𝑠

′ = 𝑠𝑡+𝑘 , ǁ𝑟𝑡

Experiment
Sub-Domain, Two-Room Domain, Complex Domain, Results

Experiment

• States: raw image pixels from picture frames

• Primitive Actions
• Move forward

• rotate left/right by 30 degrees

• break a block

• pick up an object

• place an object

• Rewards
• Small negative reward after each timestep

• Non-negative reward after reaching the final goal

Experiment

• Domain
• Sub-domain (DSNs)

• Two-room domain

• Complex domain with three different tasks

• Training
• Episodes with 30, 60, 100 steps for single DSN, two-room and Complex

domain

• Initialization
• Random in each DSN, 1st room in other domains

Sub-Domains in Minecraft

Training a DSN (sub-domain)

• Challenge
• Identical walls – visual ambiguity
• Obstacles
• navigating to a specific location and ending with the execution of a primitive

action (Pickup, Break or Place respectively).

• Optimal Hyper-parameters for DQN on Minecraft emulator
• Higher learning ratio, learning rate
• Less exploration
• Smaller ER
• Rest unchanged

• Almost 100% success rate on task completion

Composite Domains

Training an H-DRLN with DSN

• Two Room Domain

• Reuse DSN pretrained in sub-domain
• Identify the exit in first room

• different from sub-domain
• Navigate to the exit in next room

• same as navigation 1

• H-DRLN solves the task after a single epoch
• Higher reward than DQN

• 50% vs 76% after 39 epochs
• Wall ambiguity

• Knowledge Transfer without Learning
• Evaluate DSN without any training on the Two-Room

domain
• Still better than DQN – specifically trained on the

domain

Training an H-DRLN with Deep Skill Module

• DDQN was utilized to train the H-DRLN

• Complex Minecraft Domain
• Room 1: navigate around obstacles
• Room 2: pick up a block and break the door
• Room 3: place the block at goal
• Reward

• Non-negative reward when all tasks are complete
• Small negative reward at each timestep

• DSN Array
• Formed by 4 previously trained DSNs

• Multi-Skill Distillation
• DSNs are teachers
• Distil skills into a single network
• Also learns a control rule that switch between skills

Result – Success Rate

Result - Skill Usage

Conclusion
Conclusion, Contribution, Future Work

Conclusion

• Extension of DQN in Minecraft domain to train DSNs

• Reuse learned skills by H-DRLN

• Multiple skills incorporated using DSN array or distilled multi-skill
network

• Better performance than DDQN

Contribution and Future Work

• Contribution
• Building blocks for lifelong learning

• Efficient knowledge retention
• Selective transfer of knowledge and skills
• Interaction between the last two

• Potential knowledge transfer without learning

• Future work
• Capture implicit hierarchal structure when learning DSNs
• Learn skills online
• Online refinement of previously learned skills
• Train agent in real world Minecraft scenarios

Questions?
Thank you

