A Deep Hierarchical Approach to Lifelong Learning in Minecraft

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, Shie Mannor

Presented by **Yetian Wang** June 13, 2018

Outline

- Introduction
 - Lifelong learning
 - Problem
 - Minecraft
- Background
 - RL, DQN, Double DQN
 - Skills, SMDP, Skill Policy, Policy Distillation
- Hierarchical Deep RL Network
 - Deep Skill Network
 - Deep Skill Module
 - DSN Array, The Distilled Multi Skill Network
 - H-DRLN
- Experiment
 - Training DSN
 - Training H-DRLN with DSN
 - Training H-DRLN with Deep Skill Module
- Results
- Conclusion
- Contribution and Future Work

Introduction

Lifelong learning, Problem, Minecraft

Lifelong Learning

Lifelong Learning is the continued learning of tasks, from one or more domains, over the course of a lifetime, by a lifelong learning system.

A lifelong learning system efficiently and effectively:

- Retains the knowledge it has learned
- Selectively transfers knowledge to learn new tasks
 - Select, reuse, and transfer past knowledge to solve new tasks
- System approach
 - ensures the effective and efficient interaction between (1) and (2)
 - Efficiently retain knowledge of multiple tasks and transfer to new tasks

Lifelong Learning Problem

- Dimension
 - Difficult to model and solve tasks when state and action spaces increase
- Planning
 - Potential infinite time horizon
- Efficiency
 - Retaining and reusing knowledge learned
- Minecraft
 - Unsolved high dimensional lifelong learning problem

Minecraft

- Pixelized sandbox crafting-survival game
- Every pixel can be transformed into materials or gadgets/parts
- 2nd best selling video game of all-time
- Bought by Microsoft for \$2.5 billion

Tasks in Minecraft

- Solve sub-problems
- Skill Hierarchies
 - Building a wooden house
 - Cutting tree get wood make boards, etc.
- Skills can be reused
 - Build a city
 - Start from building a house
- In order to solve Minecraft, we need to:
 - Learn Skill
 - Learn a controller
 - When to use and reuse skill
 - Efficiently accumulate reused skills

Background

DDQN, Skill, Skill Policy

Deep Q Networks

- Deep Q Networks (DQN)
 - Optimize Q function
 - Minimize error
- Experience Replay (ER)
 - Replay buffer
 - Stores agent's experience at each timestep t
 - Minimize loss function
 - Two separate Q networks
 - Sync the target networks after n steps
- Double DQN (DDQN)
 - Prevents overly optimistic estimates of value functions
 - Select action from current Q network
 - Evaluate with target network

Skill and Skill Policy

- A skill $\sigma = < I, \pi, \beta >$
 - $I \subseteq S$ Subset of states where skills can be initiated
 - π Intra-skill policy
 - β a function of s and t, termination probability
- Semi-MDP
 - Produces a skill policy from $< S, \Sigma, P, R, \gamma >$
- Skill policy
 - Mapping between state and distribution over set of skills
 - Q function with skills
- Policy Distillation
 - Distillation
 - Transfer knowledge from a teacher model to a student model
 - Distill ensemble models into a single model
 - Learn from multiple teachers, i.e., multiple policies

$$Q^*_{\Sigma}(s,\sigma) = \mathbb{E}[R^{\sigma}_s + \gamma^k \underset{\sigma' \in \Sigma}{\max} Q^*_{\Sigma}(s',\sigma')]$$
.

Hierarchical Deep RL Network (H-DRLN)

H-DRLN, DSN, Deep Skill Module, Experiment, Result

Hierarchical Deep RL Network (H-DRLN)

- Extends DQN
- Outputs either
 - Primitive action
 - Move forward, rotate, pick up, place break a block
 - Executes action for t
 - Learned skills
 - Navigation, pick up, placement, break
 - Executes policy π_{DSNi} until it terminates
- Using Deep Skill Module

Deep Skill Module

- Deep Skill Network (DSN)
 - Previously learned skills
 - DSN executes its policy π_{DSNi} if a skill is executed
- Deep Skill Module
 - A set of N DSNs
 - Input: s, skill index i, policy π_{DSNi}
 - Output: a
- DSN Array
 - Separate DQN for each DSN
- The Distilled Multi-Skill Network
 - Single network for multiple DSNs
 - Hidden layers are shared
 - Output layer trained separately for each DSN
 - Trained with policy distillation
 - # of skills -> scalable to lifelong learning

$$(s_t, a_t, s' = s_{t+1}, r) \rightarrow (s_t, \sigma_t, s' = s_{t+k}, \tilde{r}_t)$$

Experiment

Sub-Domain, Two-Room Domain, Complex Domain, Results

Experiment

- States: raw image pixels from picture frames
- Primitive Actions
 - Move forward
 - rotate left/right by 30 degrees
 - break a block
 - pick up an object
 - place an object
- Rewards
 - Small negative reward after each timestep
 - Non-negative reward after reaching the final goal

Experiment

- Domain
 - Sub-domain (DSNs)
 - Two-room domain
 - Complex domain with three different tasks
- Training
 - Episodes with 30, 60, 100 steps for single DSN, two-room and Complex domain
 - Initialization
 - Random in each DSN, 1st room in other domains

Sub-Domains in Minecraft

Figure 4: *The domains:* (a)-(d) are screenshots for each of the domains we used to train the DSNs.

Training a DSN (sub-domain)

- Challenge
 - Identical walls visual ambiguity
 - Obstacles
 - navigating to a specific location and ending with the execution of a primitive action (Pickup, Break or Place respectively).
- Optimal Hyper-parameters for DQN on Minecraft emulator
 - Higher learning ratio, learning rate
 - Less exploration
 - Smaller ER
 - Rest unchanged
- Almost 100% success rate on task completion

Composite Domains

Figure 5: Composite domains: (a) The two-room domain and (b) the complex domain with three different tasks, (i) navigation, (ii) pickup and (iii) placement

Training an H-DRLN with DSN

- Two Room Domain
- Reuse DSN pretrained in sub-domain
 - Identify the exit in first room
 - different from sub-domain
 - Navigate to the exit in next room
 - same as navigation 1
- H-DRLN solves the task after a single epoch
 - Higher reward than DQN
 - 50% vs 76% after 39 epochs
 - Wall ambiguity
- Knowledge Transfer without Learning
 - Evaluate DSN without any training on the Two-Room domain
 - Still better than DQN specifically trained on the domain

Training an H-DRLN with Deep Skill Module

- DDQN was utilized to train the H-DRLN
- Complex Minecraft Domain
 - Room 1: navigate around obstacles
 - Room 2: pick up a block and break the door
 - Room 3: place the block at goal
 - Reward
 - Non-negative reward when all tasks are complete
 - Small negative reward at each timestep
- DSN Array
 - Formed by 4 previously trained DSNs
- Multi-Skill Distillation
 - DSNs are teachers
 - Distil skills into a single network
 - Also learns a control rule that switch between skills

Result – Success Rate

Result - Skill Usage

Conclusion

Conclusion, Contribution, Future Work

Conclusion

- Extension of DQN in Minecraft domain to train DSNs
- Reuse learned skills by H-DRLN
- Multiple skills incorporated using DSN array or distilled multi-skill network
- Better performance than DDQN

Contribution and Future Work

- Contribution
 - Building blocks for lifelong learning
 - Efficient knowledge retention
 - Selective transfer of knowledge and skills
 - Interaction between the last two
 - Potential knowledge transfer without learning
- Future work
 - Capture implicit hierarchal structure when learning DSNs
 - Learn skills online
 - Online refinement of previously learned skills
 - Train agent in real world Minecraft scenarios

Questions?

Thank you