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Abstract

We present new, e�cient algorithms for computations on separable matrix algebras

over in�nite �elds. We provide a probabilistic of the Monte Carlo type to �nd a

generator for the centre of a given algebra A � F
m�m over an in�nite �eld F using

a number of operations that is within a logarithmic factor of the cost of solving m�

m systems of linear equations. A Las Vegas algorithm is also provided under the

assumption that a basis and set of generators for the given algebra are available. These

new techniques yield a partial factorization of the minimal polynomial of the generator

that is computed, which may reduce the cost of computing simple components of the

algebra in some cases.

1 Introduction

A �nite-dimensional associative algebra is a �nite-dimensional vector space over a �eld F

equipped with a multiplication operation under which the space forms an associative (though
not necessarily commutative) ring with identity, and a matrix algebra is a subalgebra of the
matrix ring F

m�m. Algebras over �nite �elds have been studied in an earlier paper (Eberly
& Giesbrecht 1999). In this paper we propose e�cient new algorithms for separable algebras
over in�nite �elds.

Recall that the (Jacobson) radical Rad(A) of an algebra A over a �eld F is the intersection
of all maximal left ideals in A, and that A is semi-simple if Rad(A) = (0). Such an algebra is
separable if the algebra AE = A
FE obtained from A by \extension of scalars" is semi-simple
over E, for every �eld extension E of F. Curtis & Reiner (1962) and Pierce (1982) each discuss
the properties of extensions of scalars and separable algebras that will be used in this paper.

�Extended abstract of some of this work appears in \Proceedings, International Symposium on Symbolic
and Algebraic Computation," Zurich, 1996. ISSAC'96, pp. 170{178.

yResearch was supported in part by the Natural Sciences and Engineering Research Council of Canada

Submitted to the Journal of Symbolic Computation.
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As they note, any semi-simple algebra over a �eld of characteristic 0 and, more generally,
over any perfect �eld is separable, so that our algorithms apply to all such algebras.

The �rst provably e�cient algorithms for computing the structure of a matrix algebra are
due to Friedl & R�onyai (1985), who gave polynomial time algorithms to �nd the Jacobson
radical and to decompose a semi-simple algebra over a �nite �eld or number �eld as a
direct sum of simple algebras. Subsequent work by R�onyai (1987, 1990, 1992) and Ivanyos &
R�onyai (1993) examined additional questions over number �elds, and in particular showed
that deciding whether an algebra over a number �eld possesses nontrivial idempotents has
the same complexity as factoring integers. That is, it is (currently) intractable. The problem
of �nding such idempotents may be considerably more di�cult: The algorithms of R�onyai
(1992) and Ivanyos & R�onyai (1993) answer the decision problem without generating such
idempotents and, to our knowledge, no bounds on the size of these idempotents are presently
known.

Other work concerning these computations over large �elds includes the algorithms of Co-
hen et al. (1997) and Ivanyos (1999) for computation of the radical of an associative algebra,
and the randomized algorithm of Eberly (1991) for computation of the simple components
of semi-simple algebras over large perfect �elds.

More practical work has concerned computations over �nite �elds, including the heuris-
tic of Parker (1984) to test irreducibility of an A-module over a small �nite �eld and to
split reducible modules, and the more recent extension of the technique (now e�ective over
arbitrary �nite �elds) of Holt & Rees (1994), as well as the work of Schneider (1990) and
Eberly & Giesbrecht (1999) to compute primitive idempotents in associative algebras. All
these algorithms take advantage of the fact that primitive idempotents are easy to �nd in
associative algebras over �nite �elds. As noted above, R�onyai (1987) has established that
this is not the case at all for associative algebras over number �elds so that other techniques
must be used in this case.

We propose modi�cations of the method originally given by Friedl & R�onyai (1985) and
adapted by Eberly (1991) to �nd the simple components of a semi-simple algebra by decom-
posing its centre. As we note, the technique is applicable to separable algebras over arbitrary
�elds. We provide more e�cient Monte Carlo and Las Vegas algorithms for the �rst step in
this process, namely, computation of a generator 
 for the centre of a given separable matrix
algebra A over an arbitrary large �eld. The method also yields a partial factorization of the
minimal polynomial of 
. A complete factorization of this minimal polynomial is required to
compute the simple components of A, and the cost of this factorization tends to dominate the
cost of the entire process. Thus, our modi�cations will not reduce the asymptotic worst-case
complexity. However, the modi�cations may replace the need for a factorization of a single
polynomial of large degree with factorizations of several polynomials of lower degree, and
may reduce the cost of the computation in practice.

We will generally tie the complexity of our results to that of matrix multiplication. We
de�ne MM(m) such that O(MM(m)) operations in a �eld F are su�cient to multiply
two matrices in F

m�m and to solve nonsingular systems of m linear equations in m un-
knowns over F. Using the standard algorithm requires MM(m) = m3 while the currently
best known algorithm of Coppersmith & Winograd (1982) allows MM(m) = O(m2:376).
As well, we de�ne M(m) such that O(M(m)) operations in F su�ce to multiply two
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polynomials in F[x] of degree m. Using the standard algorithm allows M(m) = O(m2),
while the algorithm of Sch�onhage & Strassen (1971) and Sch�onhage (1977) allows M(m) =
m logm log logm. For notational convenience we make the reasonable assumption that
O(mM(m)) � O(MM(m)).

To prove correctness of our probabilistic algorithms, we require some technical conditions
on the presumed ability to select a random element � from the algebra A. One rigorous way
of doing this will be to select a su�ciently large �nite subset S of the �eld F, as well as
a �nite set of elements of A whose F-linear span includes elements with the properties we
need, and then to select elements uniformly from the S-linear span of these elements of A.
We prove in the sequel that if F is in�nite then the algebra always includes the elements
we require, so that it will be su�cient to choose elements from the S-linear span of a basis
for A. This requires O(nm2) operations in F if A � F

m�m, A has dimension n over F, and a
basis for A is available.

Additional notation and results concerning the structure of separable algebras and their
modules, and necessary computations of matrix normal forms, are included in Section 2.
Section 3 introduces \self-centralizing elements" of algebras and the properties that we will
need to decompose these algebras. Useful pairs of these elements, which we call \centering
pairs," are introduced in Section 4, and are used in new algorithms to compute the centre
of A. Finally, the Wedderburn decomposition of separable algebras is considered in Section 5.

2 Preliminaries

2.1 The Structure of a Semi-Simple Matrix Algebra

Suppose henceforth that A is a separable algebra of dimension n over a �eld F, and that
there exists a faithful A-module of dimension m. By the Wedderburn Structure Theorem
(Wedderburn, 1907)

A = A1 � A2 � � � � � Ak

for simple algebras A1;A2; : : : ;Ak � A, and each simple component Ai is isomorphic to a
full matrix ring over a division ring Di over F, so that

Ai
�= D

ti�ti
i

for some positive integer ti, for 1 � i � k. Furthermore as shown, for example, by Pierce
(1982), the dimension of each simple algebra (such as Ai, or Di) over its centre is a perfect
square. Let Ei be the centre of Ai (isomorphic to the centre of Di as well and, consequently, a
�eld extension of F); let ei = [Ei : F], let d

2
i be the dimension of Di over Ei, and let ni = diti,

so that Ai has dimension eid
2
i t

2
i = ein

2
i over F for all i and

n = e1n
2
1 + e2n

2
2 + � � �+ ekn

2
k: (2.1)

Suppose in addition that A is a matrix algebra, so that A is a subalgebra of Fm�m for
some positive integer m. Now the vector space F

m�1 is an A-module in a natural way: For
any element � of A and vector v 2 F

m�1, the result �v of applying � to v is simply the
matrix-vector product obtained by multiplying the matrix � 2 F

m�m to the vector v.
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Since A is separable, and therefore semi-simple, Fm�1 is a semi-simple A-module. That is,
F
m�1 is the direct sum of a set of simple A-modules, each of which is a faithful Ai-module for

exactly one simple component Ai of A and which annihilates all the other simple components
Aj. Suppose a decomposition of Fm�1 as a direct sum of simple modules includes exactly si
simple modules M

(i)
1 ;M

(i)
2 ; : : : ;M

(i)
si such that AiM

(i)
j = Ai for 1 � j � si and 1 � i � k, so

that si � 1 for all i (since F
m�1 is clearly a faithful A-module), and

F
m�1 =M

(1)
1 �M

(1)
2 � � � � �M (1)

s1 � � � � �M
(k)
1 �M

(k)
2 � � � � �M (k)

sk
: (2.2)

This decomposition is not unique. However, the values s1; s2; : : : ; sk certainly are. Fur-
thermore it is well-known (see, for example, Curtis & Reiner 1962) that all simple modules
that are faithful Ai-modules are isomorphic as A-modules, and as vector spaces over F,

M
(i)
j
�= D

ti�1
i

for 1 � j � si. Consequently M
(i)
j has dimension eid

2
i ti = einidi over F for 1 � j � si and

1 � i � k. Let mi = disi for 1 � i � k; then an inspection of equation (2.2) and comparison
of dimensions of modules con�rms that

m = e1n1d1s1 + e2n2d2s2 + � � �+ eknkdksk = e1n1m1 + e2n2m2 + � � �+ eknkmk: (2.3)

2.2 Distinguishing Elements by Matrix-Vector Products

Since A � F
m�m it is clear that one can check whether a given element � of A is zero

by inspecting the m2 entries of the matrix �. It will be useful in the sequel to check this
condition by computing and inspecting matrix-vector products instead. Therefore, let

N = NA = max
1�i�k

l
ni
mi

m
= max

1�i�k

l
ti
si

m
: (2.4)

De�nition 2.1. A set of vectors v1; v2; : : : ; vN 2 F
m�1 is a distinguishing set for A if there

exists at least one vector vi in this set such that �vi 6= 0, for every nonzero element � of A.

Clearly, if a distinguishing set v1; v2; : : : ; vN of vectors is available, then we can check
whether � = 0 for a given element � of A by computing and inspecting the N matrix-vector
products �v1; �v2; : : : ; �vN . We can also check whether two elements � and � are equal in A
by using these vectors to decide whether the di�erence �� � is nonzero.

Theorem 2.2. If A � F
m�m is a semi-simple algebra and N is as de�ned in equation (2.4),

above, then a distinguishing set of vectors v1; v2; : : : ; vN 2 F
m�1 for A exists.

Proof. Suppose �rst that A is simple and that s1 = 1, so that F
m�1 is a simple A-module.

In this case, k = 1, n = e1n
2
1 for n1 = d1t1, m = e1n1m1 for m1 = d1, and N = n1=m1 = t1.

Furthermore the centralizer of A in F
m�m (that is, the set of matrices commuting with all

the elements of A) is a division algebra D with dimension e1d
2
1 over F, and F

m�1 may be
regarded as a module with dimension t1 over this division algebra.
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Now it su�ces to choose v1; v2; : : : ; vN to be any basis for F
m�1 over the centralizer D

to ensure that v1; v2; : : : ; vN is an isolating set for A. For if 
1; 
2; : : : ; 
e1d21 is a basis for D

over F then the set of vectors 
ivj such that 1 � i � e1d
2
1 and 1 � j � N = t1 forms a basis

for F
m�1 over F, and if � 2 A such that �vj = 0 for 1 � j � N then, since 
i commutes

with �,

�(
ivj) = �
ivj = 
i�vj = 
i(�vj) = 
i0 = 0

for all i and j, implying that � = 0 as well.
Suppose next that A is simple and s1 > 1, so that F

m�1 = M1�M2� � � � � Ms1 is
a direct sum of simple A-modules M1;M2; : : : ;Ms1. The above argument can be applied
to M1 instead of Fm�1 to prove the existence of elements u1; u2; : : : ; ut1 of M1 such that
�uj is nonzero for at least one element uj of this set whenever � is a nonzero element of A.
Now, since A is simple, the modules M1;M2; : : :Ms1 are isomorphic as modules over A,
so that there exist A-module isomorphisms �j : M1 ! Mj for 2 � j � s1. Set ui = 0 for
t1 + 1 � i � Ns1 = dt1=s1es1 and let

vi = u(i�1)s1+1 +

s1X
j=2

�j(u(i�1)s1+j) 2 F
m�1

for 1 � i � N . Since F
m�1 is a direct sum of the A-modules M1;M2; : : : ;Ms1, and since

the above maps �2; �3; : : : ; �s1 are A-module isomorphisms, if � 2 A such that �vi = 0 then

�u(i�1)s1+1 = �u(i�1)s1+2 = � � � = �uis1 = 0

as well. Thus if � 2 A such that �vi = 0 for 1 � i � N , then �uj = 0 for 1 � j � Ns1,
implying that � = 0 by the choice of u1; u2; : : : ; ut1. Thus v1; v2; : : : ; vN is also a distinguishing
set in this case.

Finally, suppose that A is semi-simple over F with simple components A1;A2; : : : ;Ak.
Let !1; !2; : : : ; !k 2 A be the identity elements of A1;A2; : : : ;Ak, respectively, so that these
are orthogonal central idempotents in A, and so that

F
m�1 = !1F

m�1 � !2F
m�1 � � � � � !kF

m�1:

Now !iF
m�1 has a structure as an Ai-module and the above argument can be used to

prove the existence of elements vi;1; vi;2; : : : ; vi;dti=sie of !iF
m�1 such that at least one of

�ivi;1; �ivi;2; : : : ; �ivi;dti=sie is nonzero whenever �i is a nonzero element of Ai.
For 1 � j � N , set

vj =
X

dsi=tie�j

vi;j 2 F
m�1;

and recall that each element � of A has a unique representation as a sum � = �1+�2+� � �+�k
where �i 2 Ai for 1 � i � k. Furthermore, � = 0 in A if and only if �i = 0 in Ai for all i,
and this can be used to establish that the above elements v1; v2; : : : ; vN form a distinguishing
set for A.
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A consideration of the case that A is simple and isomorphic to a full matrix ring over F
suggests that this is the best we can hope for: In this case, if one chooses any set of fewer
than N vectors, then there will exist a nonzero element of A that annihilates all of them.

On the other hand, the news is not all bad. Suppose that A is given by a set of structure
constants that can be used to de�ne a regular matrix representation of the algebra. In this
case we have m = n and, indeed, si = ti for 1 � i � k, so that N = 1. One can then check
whether � = � in A by checking whether �v = �v for a single (well-chosen) vector. The Las
Vegas algorithms given later in the paper will therefore perform quite well in this case (see
in particular Theorems 3.14 and 4.7 below).

2.3 Minimal Polynomials of Elements

Let

d = dA = e1n1 + e2n2 + � � �+ eknk (2.5)

for the values k, e1; e2; : : : ; ek and n1; n2 : : : ; nk as de�ned in Section 2.1. A comparison of
equations (2.1), (2.3) and (2.5) con�rms that d � min(m;n).

The following result is well-known (or, easily deducible), but it is important enough to
this work be be mentioned here.

Lemma 2.3. Let A � F
m�m be semi-simple algebra over F, and let d be de�ned as above.

Then the minimal polynomial of any element of A has degree at most d over F.

Proof. It will be useful to consider four successively more general cases, namely, that A is
isomorphic to a full matrix ring over F, central simple over F, simple and, �nally, an arbitrary
semi-simple algebra over F.

In the �rst case k = e1 = 1, n = n21 and, since elements of A may be identi�ed with
n1 � n1 matrices over F, the result follows from the fact that the minimal polynomial of a
matrix is always a divisor of a polynomial in F[x] with degree n1, namely, its characteristic
polynomial.

In the second case k = e1 = 1 and n = n21 as above. Let E be an algebraic closure of F
and consider the algebra AE = A 
F E over E obtained from A by extension of scalars. It
is easy to show that the dimension of the vector space spanned by the elements 1; �; �2; : : :
of A over F is the same as the dimension of the vector space spanned by the elements
1 
F 1; � 
F 1; �

2 
F 1; : : : of AE over E, for any element � of A, so that the minimal
polynomial of � over F is the same as that of � 
F 1 over E. It is well-known that AE is
isomorphic to E

n1�n1 as an algebra over E so that, once again, this minimal polynomial must
have degree at most n1.

Next suppose that A is simple over F, so that k = 1 and A = A1. In this case A can
be regarded as a central simple algebra of dimension n21 over its centre E1. Now, as argued
above, the minimal polynomial of any element � of A over E1 has degree at most n1, and
the elements 1; �; �2; : : : ; �n1�1 span E1[�] over E1. Since [E1 : F] = e1 there exists a basis
�1; �2; : : : ; �e1 of E1 over F, and it is easy to see that the elements �i�

j such that 1 � i � e1
and 0 � j < n1 span E1[�] over F. Consequently E1[�] has dimension at most e1n1, and
since F[�] is a subspace of E1[�], F[�] has dimension at most e1n1 over F as well. Since the
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degree of the minimal polynomial of � over F is the same as the dimension of F[�] over F,
the result follows for the case that A is simple.

Finally, suppose that A is semi-simple over F, and let � 2 F. Since A is a direct sum of its
simple components � can be written (uniquely) as a sum � = �1+�2+� � �+�k where �i 2 Ai
for 1 � i � k. Now, since Ai is a simple algebra with dimension ein

2
i over F and has a centre

with dimension ei over F, the above argument implies that the minimal polynomial fi of �i
has degree at most eini over F, for all i. However, the minimal polynomial of � is clearly just
the least common multiple of f1; f2; : : : ; fk and is a divisor of the product of f1; f2; : : : ; fk. It
follows immediately that f has degree at most d = e1n1 + e2n2 + � � �+ eknk, as desired.

2.4 Matrix Normal Forms

Consider the Frobenius decomposition of a matrix � 2 F
m�m:

� = U�1SU for S =

26664
Cg1 0

Cg2
. . .

0 Cgl

37775 ; (2.6)

where U 2 F
m�m is a nonsingular matrix, S is a block diagonal matrix with matrices

Cg1; Cg2; : : : ; Cgl on the diagonal, and where Cgi is the companion matrix of a polynomial
gi 2 F[x] of positive degree such that gi+1 divides gi for 1 � i � l. While the transition
matrix U is not unique, the matrix S is, and is called the Frobenius form of the matrix �.
We will call a matrix U a Frobenius transition matrix for � if it satis�es equation (2.6) above.

Since the Frobenius form S is unique the polynomials g1; g2; : : : ; gl are unique as well, and
are called the elementary divisors of �. As equation (2.6) should suggest, g1 is the minimal
polynomial of � and the characteristic polynomial of � is the product g1g2 : : : gl.

Giesbrecht (1995) has provided a Las Vegas algorithm for computation of the Frobenius
form and a Frobenius transition matrix for an arbitrary matrix � 2 F

m�m over a su�ciently
large �eld, and contributes an analysis of the algorithm for the case that �eld elements are
chosen uniformly and independently from a �nite subset of the ground �eld of size m2 when
computing the Frobenius form of an m�m matrix. It will be useful to apply this algorithm
when elements are chosen from a larger set.

Lemma 2.4. Let � be a constant such that 0 < � < 1 and let F be any �eld with at least
m2=� elements. Given a matrix T 2 F

m�m, a Las Vegas algorithm can be used to �nd the
Frobenius form and a Frobenius transition matrix for T or to report failure | the latter with
probability at most �. The algorithm requires O(MM(m) logm) operations in F, or O(m3)
operations using standard arithmetic.

Proof. See the presentation of Giesbrecht's algorithm and the proof of Theorem 4.1 given
by Giesbrecht (1995); the complexity analysis does not need to be changed. The algorithm
can fail at only one point | an application of the subroutine \FindModCycl" | and the fact
that this fails with probability at most � follows by an application of the Schwartz-Zippel
lemma (Schwartz 1980, Zippel 1979).
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Recall that a polynomial in F[x] is separable over F if all its roots in any �eld extension
of F are simple. Equivalently, a polynomial is separable over F if and only if the polynomial
and its �rst derivative are relatively prime. If a polynomial is separable over a �eld then it
is also separable over every extension of the �eld.

A di�erent matrix normal form for a matrix � 2 F
m�m will be of use when the minimal

polynomial g1 of � is separable over F. Consider polynomials h1; h2; : : : ; hl 2 F[x] such that

hl = gl and hi = gi=gi+1 for 1 � i � l � 1; (2.7)

then g1 = h1h2; : : : ; hl, so that h1; h2; : : : ; hl are pairwise relatively prime and separable
over F. We will call these polynomials (which are clearly well de�ned from �, since the
elementary divisors are) the distinct power divisors of �. It is easily checked that

gi = hihi+1 : : : hl for 1 � i � l,

and that the characteristic polynomial of � is f1f
2
2 : : : f

l
l . Let �i = deg(hi) for 1 � i � l and,

when �i > 0, let

�(i) =

26664
Chi 0

Chi
. . .

0 Chi

37775
be a block matrix with i matrices of order �i on the diagonal, so that �(i) 2 F

i�i�i�i whenever
this matrix is de�ned. Finally, let

�̂ =

26664
�(1) 0

�(2)

. . .

0 �(l)

37775 2 F
m�m

be a block diagonal matrix whose diagonal blocks are all the matrices �(i) such that �i > 0.
It is easily checked that � and �̂ have the same elementary divisors and hence the same
Frobenius form T . Consequently, if U is a Frobenius transition matrix for � and Û is a
Frobenius transition matrix for �̂ then

U�1�U = Û�1�̂Û = T;

so that

� = V �1�̂V for V = ÛU�1: (2.8)

The matrix �̂ is clearly uniquely determined from � whenever the minimal polynomial of �
is separable. Kaltofen et al. (1990) call this the \rational Jordan form" and investigate its
properties in a more general setting. However, since this name has been used for several
di�erent matrix forms in the literature, we shall call this the distinct power form of �. Any
nonsingular matrix V 2 F

m�m such that � = V �1�̂V as above will be called a distinct power
transition matrix for �. We de�ne a distinct power decomposition of � to include a distinct
power transition matrix for �, the distinct power form of �, and the orders of the matrices
on the diagonal of the distinct power form.
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Theorem 2.5. Let � be a constant such that 0 < � < 1 and let F be any �eld with at least
2m2=� elements. Given a matrix � 2 F

m�m whose minimal polynomial is separable over F,
a Las Vegas algorithm can be used to �nd a distinct power decomposition of � or to report
failure | the latter with probability at most �. The algorithm requires O(MM(m) logm)
operations over F, or O(m3) operations using standard arithmetic.

Proof. The desired Las Vegas algorithm and its analysis are easily described as follows.
One �rst computes the Frobenius form and a Frobenius transition matrix U for �, at

the cost stated in Lemma 2.4. Since F includes at least 2m2=� = m2=(�=2) elements, this
computation can be implemented to fail with probability at most �=2.

Since the elementary divisors of � are now available, the distinct power divisors are
easily computed using equation (2.7). Since exact division of polynomials can be performed
at asymptotically the same cost as polynomial multiplication, hi can be computed from gi
and gi+1 using O(M(deg(gi))) operations over F for 1 � i � l� 1 and, since g1g2 : : : gl is the
characteristic polynomial of � and has degree m, all of the distinct power divisors can be
computed from the elementary divisors using O(M(m)) operations in total.

At this point one can simply write down the distinct power form of � by inspecting
the distinct power divisors, using O(m2) operations. The Frobenius form of this matrix and,
more importantly, a Frobenius transition matrix Û for it, can be computed at the cost stated
in Lemma 2.4, failing again with probability at most �=2.

Finally, a distinct power transition matrix V = ÛU�1 can be generated from the above
transition matrices U and Û using O(M(m)) additional operations.

3 Self-Centralizing Elements and Their Properties

Once again let d be as de�ned in equation (2.5).

De�nition 3.1. An element � of A is a self-centralizing element of A if the minimal poly-
nomial of � is separable with (maximal) degree d over F.

3.1 Centralizers of Self-Centralizing Elements

Recall that CA(�) is the centralizer of � in A. Clearly F[�] � CA(�) for all �. The next
result therefore explains the choice of name for \self-centralizing elements."

Theorem 3.2. If � is a self-centralizing element of A then CA(�) = F[�].

Proof. As in the proof of Lemma 2.3 it will be useful to consider the cases that A is isomorphic
to a full matrix ring over F, central simple over F, simple, and an arbitrary semi-simple
algebra.

In the �rst case A is isomorphic to F
n1�n1 = F

d�d. Let  : A ! F
d�d be an algebra

isomorphism; then  (�) is a d � d matrix whose minimal polynomial over F (the same as
the minimal polynomial of �) is separable with degree d. Consequently,  (�) is similar to a
diagonal matrix with distinct entries on its diagonal and it is easily proved that F[ (�)] =
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 (F[�]) and C (A)( (�)) =  (CA(�)) are both equal to the set of diagonal matrices in F
d�d.

Since  (F[�]) =  (CA(�)) and  is an isomorphism, F[�] = CA(�).
In the case that A is central simple over F it is useful (again, as in the proof of Lemma 2.3)

to consider the algebra AE over E, where E is an algebraic closure of F. Once again, AE is
isomorphic to E

n1�n1 = E
d�d as an algebra over E.

If � is self-centralizing in A then, by de�nition, the minimal polynomial of � is separable
with degree d. Since this is also the minimal polynomial of � 
F 1 2 A

E over E, and since
this polynomial is separable over E as well as over F, � 
F 1 is self-centralizing in AE. The
centralizer of �
F 1 is therefore equal to E[�
F 1] in A

E by the argument given above.
Now, since � has the same minimal polynomial over F as �
F 1 has over E, the dimension

of F[�] over F is the same as that of E[� 
F 1] over E. The dimension of CA(�) over F is
the same as the dimension of CAE(� 
F 1) over E as well, since the elements of either set
can be obtained as linear combinations of elements of a basis by solving essentially the same
homogeneous system of linear equations. Therefore F[�] has the same dimension as CA(�)
over F and, since F[�] � CA(�), F[�] = CA(�).

In the third case, that A is simple, A may regarded as a central simple algebra over its
centre E1. If � is self-centralizing in A then F[�] � E1[�] and F[�] has dimension e1n1 over F.
E1[�] therefore has dimension at least e1n1 over F as well. On the other hand, Lemma 2.3
implies that the minimal polynomial of � over E1 has degree at most n1. Suppose therefore
that the degree is r � n1. Then E1[�] has dimension r over E1 and, since [E1 : F] = e1,
E1[�] has dimension at most e1r � e1n1 over F. Consequently E1[�] has dimension exactly
e1r = e1n1 over F, so r = n1. Therefore F[�] = E1[�], again since one of these is a subspace
of the other and both have the same dimension over F.

Now, the minimal polynomial of � over E1 has full degree n1 and is separable, since it is
a divisor of the minimal polynomial of � over F. The element � is therefore self-centralizing
in A when A is regarded as a central simple algebra over E1. Since the centralizer CA(�) is
the same regardless of whether A is considered as an algebra over F or over E1, we now have
that CA(�) = E1[�] = F[�] as desired.

In the �nal case it su�ces to observe, again, that an element � 2 A can be written
uniquely as � = �1 + �2 + � � � + �k, where �i 2 Ai for 1 � i � k. Let f be the minimal
polynomial of � over F, let fi be the minimal polynomial of �i over F, and let �i be the
degree of fi over F for all i. Then, since f is the least common multiple of f1; f2; : : : ; fk and
has degree d = e1n1 + e2n2 + � � �+ eknk (if � is self-centralizing in A),

�1 + �2 + � � �+ �k = deg (f1f2 � � � fk) � deg(f) = e1n1 + e2n2 + � � �+ eknk:

On the other hand, it follows by Lemma 2.3 that �i � eini as well for all i, so clearly
deg(fi) = �i = eini for each i. Since fi is a divisor of f and f is separable, fi is separable as
well. Thus �i is self-centralizing in Ai and, since Ai is simple,

CAi
(�i) = F[�i] (3.1)

for 1 � i � k.
The above inequalities imply that the product and least common multiple of f1; f2; : : : ; fk

have the same degree. Since the latter polynomial is always a factor of the former, this implies
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that these are the same. Therefore f1; f2; : : : ; fk are pairwise relatively prime and

F [�] = F[�1]� F[�2]� � � � � F[�k]: (3.2)

On the other hand, since A is the direct sum of its simple components,

CA(�) = CA1(�)� CA2(�)� � � � � CAk
(�) = CA1(�1)� CA2(�2)� � � � � CAk

(�k): (3.3)

Equations (3.1), (3.2), and (3.3) clearly imply that F[�] = CA(�) as desired.

The next result follows from the above discussion.

Theorem 3.3. Let � = �1 + �2 + � � � + �k, where �i 2 Ai for 1 � i � k. Then � is
self-centralizing in A if and only if �i is self-centralizing in Ai for all i and the minimal
polynomials of �1; �2; : : : ; �k over F are pairwise relatively prime.

Proof. As argued above, if � is self-centralizing then, by inspection of the degrees of the
minimal polynomials of � and of �1; �2; : : : ; �k, the minimal polynomials of �1; �2; : : : ; �k
must be pairwise relatively prime and of maximal degree. They are also separable since
they each divide the minimal polynomial of �. Conversely, if the minimal polynomials of
�1; �2; : : : ; �k are pairwise relatively prime and separable then the least common multiple of
these polynomials is also their product, so that if each of these polynomials also has maximal
degree then the minimal polynomial of � is separable with maximal degree as well.

Suppose next that � is self-centralizing in A � F
m�m and consider the distinct power

divisors h1; h2; : : : ; hl of � as de�ned in Section 2.4. Let fi be the minimal polynomial of �i
for 1 � i � k.

Lemma 3.4. If � is self-centralizing in A and f1; f2; : : : ; fk are as above then each polyno-
mial fi is a divisor of exactly one of the distinct power divisors of � and is relatively prime
with each of the rest. In particular,

hi =
Y
mj=i

fj: (3.4)

Proof. Since � is self-centralizing, the polynomials f1; f2; : : : ; fk are separable and pairwise
relatively prime. It therefore su�ces to prove that every irreducible factor of fj is a divisor
with the same multiplicity mj of the characteristic polynomial of �, for equation (3.4) then
follows from the de�nition of h1; h2; : : : ; hl as the distinct power divisors of �.

Since F
m�1 is a direct sum of simple A-modules, as shown in equation (2.2), and all

simple A-modules that are faithful Ai-modules are isomorphic, there exists a nonsingular
matrix X, whose columns are elements of carefully chosen bases for the simple modules
M

(1)
1 ;M

(1)
2 ; : : : ;M

(k)
sk shown in equation (2.2), such that

X�1�X =

26664
�
(1)
1 0

�
(1)
2

. . .

0 �
(k)
sk

37775 ;
11



where

�
(i)
1 = �

(i)
2 = � � � = �(i)

si
2 F

einidi�einidi

is a matrix that expresses the action of � on the simple moduleM
(i)
j with respect to the basis

of this module that is included as columns of X. Consequently, since each M
(i)
j is a faithful

and simple Ai-module, the minimal polynomial of �
(i)
j is the polynomial fi, for 1 � i � k

and 1 � j � si. Now it is necessary and su�cient to establish that each matrix �
(i)
j has

Frobenius form 26664
Cfi 0

Cfi
. . .

0 Cfi

37775
with di elementary divisors that are all equal to fi. Indeed, it will be su�cient to prove that
�(i)
j is similar to a matrix 26664

Ci;j 0
Ci;j

. . .

0 Ci;j

37775 2 F
einidi�einidi (3.5)

for any matrix Ci;j 2 F
eini�eini at all | for then it will be clear (by a comparison of degrees

and taking advantage of the fact that fi is separable) that Ci;j has minimal polynomial fi
and is similar to Cfi as needed.

With this in mind, let us consider Ai as a central simple algebra over its centre, Ei, and
consider M

(i)
j as a simple module of dimension dini over this extension of F. Recall that the

minimal polynomial of �i over Ei is a separable polynomial gi of degree ni over Ei such that
fi is divisible by gi in Ei[x] | this was established and exploited in the proof of Theorem 3.2,
above.

Now let Ki be an algebraic closure of Ei and consider the simple algebra AKi

i = Ai
Ei
Ki
�=

K
ni�ni
i , and its module M

(i)
j 
Ei

Ki, over Ki. The latter module is a direct sum of di simple

A
Ki

i -modules that each have dimension ni over Ki and these modules are isomorphic, since
they are simple modules over the same simple algebra. Consequently there exists a basis

vKi

1;1; v
Ki

1;2; : : : ; v
Ki

1;ni
; : : : ; vKi

di;1
; vKi

di;2
; : : : ; vKi

di;ni
2M

(i)
j 
Ei

Ki

for M
(i)
j 
Ei

Ki, consisting of carefully chosen bases for each of the above di simple modules,

such that the action of �i
Ei
1 2 AKi

i with respect to this basis is given by a block diagonal
matrix 26664

CK

i;j 0
CK

i;j
. . .

0 CK

i;j

37775 2 K
dini�dini
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with di copies of a matrix CK

i;j 2 K
ni�ni on its diagonal. Since the minimal polynomial of

�i
Ei
Ki over Ki is the same as that of �i over Ei, namely gi 2 Ei[x], and this polynomial has

degree ni, the matrix CK

i;j is similar to the companion matrix Cgi in K
ni�ni . Therefore there

is also a basis for M
(i)
j 
Ei

Ki such that the action of �i
Ei
1 on this module with respect to

this basis is given by the matrix

cM =

26664
Cgi 0

Cgi
. . .

0 Cgi

37775 2 E
nidi�nidi
i � K

nidi�nidi
i : (3.6)

Happily, this implies that there exists a basis

v1;1; v1;2; : : : ; v1;ni; : : : ; vdi;1; vdi;2; : : : ; vdi;ni 2M
(i)
j (3.7)

for the module M
(i)
j over Ei such that the action on �i over M

(i)
j with respect to this basis

is given by the matrix cM as well: The action of �i on M
(i)
j over Ei with respect to an

arbitrary basis is necessarily represented by some matrixM in E
nidi�nidi that is similar to cM

in K
nidi�nidi . Since cM and M both belong to E

nidi�nidi
i they must be similar as matrices in

this ring as well, so that a change of basis for M
(i)
j over Ei will bring the matrix into the

desired form.
Now consider the Ei-linear map �i :M

(i)
j !M

(i)
j such that

�i(vr;s) =

(
vr+1;s if 1 � r < ni and 1 � s � di,

v1;s if r = ni and 1 � s � di:

Since the action of this map with respect to basis in equation (3.7) is given by the (permu-
tation) matrix 2666664

0ni Ini
Ini 0ni

Ini
. . .

0ni Ini 0ni

3777775 2 E
nidi�nidi
i

where 0ni and Ini are the zero and identity matrices in E
ni�ni
i respectively, it is clear that

the actions of �i and �i on M
(i)
j commute.

Now let u1; u2; : : : ; uei 2 Ei � Ai be a basis for Ei over F and consider the action of �i on

M
(i)
j , as a module over F, with respect to the basis

u1v1;1; u2v1;1; : : : ; ueiv1;1; u1v1;2; u2v1;2; : : : ; ueiv1;2; : : : ; u1vdi;ni; u2vdi;ni; : : : ; ueivdi;ni (3.8)

obtained by replacing each element vi;j of the basis in equation (3.7), above, by the block of

vectors u1vi;j; u2vi;j; : : : ; ueivi;j. Since the subspace of M
(i)
j over Ei spanned by the vectors
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vh;1; vh;2; : : : ; vh;ni is invariant under �i for 1 � h � di (see, again, the matrix form in

equation (3.6)), the subspace of M
(i)
j over F spanned by the vectors

u1vh;1; u2vh;1; : : : ; ueivh;1; : : : ; u1vh;ni; u2vh;ni; : : : ; ueivh;ni

is invariant under �i as well. Thus, the action of �i on M
(i)
j with respect to the basis in

equation (3.8) is given by a block-diagonal matrix266664
C

(1)
i;j 0

C
(2)
i;j

. . .

0 C
(di)
i;j

377775
for matrices C

(1)
i;j ; C

(2)
i;j ; : : : ; C

(di)
i;j 2 F

eini�eini. Furthermore, the above map �i commutes with
�i as an F-linear map. Since the action of this map with respect to the above basis is given
by a (permutation) matrix

M� =

2666664
0eini Ieini
Ieini 0eini

Ieini
. . .

0eini Ieini 0eini

3777775 2 F
eidini�eidini ;

where 0eini and Ieini are the zero and identity matrices in F
eini�eini respectively, it follows

that266664
C

(1)
i;j 0

C
(2)
i;j

. . .

0 C
(di)
i;j

377775 =M�1
�

266664
C

(1)
i;j 0

C
(2)
i;j

. . .

0 C
(di)
i;j

377775M� =

266664
C

(2)
i;j 0

C
(3)
i;j

. . .

0 C
(1)
i;j

377775 ;

so that C
(1)
i;j = C

(2)
i;j = � � � = C

(di)
i;j = Ci;j for some matrix Ci;j 2 F

eini�eini.

Since the matrix �(i)
j also expresses the action of �i on the module M (i)

j with respect

to a basis over F, it now follows that �
(i)
j is similar to a matrix with the form given in

equation (3.5) above, as desired to complete the proof.

Suppose yet again that � is self-centralizing in A with distinct power divisors h1; h2; : : : ; hl
and that the distinct power form �̂ of � is as shown in Section 2.4,

�̂ =

26664
�(1) 0

�(2)

. . .

0 �(l)

37775 ;
14



where each matrix �(j) 2 F
j�j�j�j for �j = deg(hj) and �

(j) has minimal polynomial hj. Let
V be any distinct power transition matrix for �, so that � = V �1�̂V , and let

�i = V �1

26664
�i;1 0

�i;2

. . .

0 �i;l

37775V 2 F
m�m; (3.9)

where �i;j 2 F
j�j�j�j is the identity matrix if i = j and is the zero matrix otherwise, for

1 � i; j � l. Clearly �1; �2; : : : ; �l are pairwise orthogonal idempotents in F
m�m whose sum

is the identity matrix.

Theorem 3.5. If � is self-centralizing in A � F
m�m and the idempotents �1; �2; : : : ; �l are

formed from � as above, then these are central idempotents in A.

Proof. Since the polynomials h1; h2; : : : ; hl are pairwise relatively prime there exist polyno-
mials g1; g2; : : : ; gl such that

gi �

(
1 (mod hj) if j = i,

0 (mod hj) if j 6= i,

for 1 � i; j � l. If �(1); �(2); : : : ; �(l) are on the diagonal of the distinct power form �̂ of �,
as above, then �(i) has minimal polynomial hi for all i, and gi(�

(j)) = �i;j for 1 � i; j � l.
Thus

gi(�̂) =

26664
�i;1 0

�i;2

. . .

0 �i;l

37775
and gi(�) = gi(V

�1�̂V ) = V �1gi(�̂)V = �i: On the other hand, it follows by Lemma 3.4 that

gi �

(
1 (mod fj) if 1 � j � k and mj = i,

0 (mod fj) if 1 � j � k and mj 6= i.

Since � = �1 + �2 + � � � + �k, where �j 2 Aj with minimal polynomial fj for 1 � j � k,
gi(�j) is the identity element of Aj (and a central primitive idempotent in A) if mj = i, and
gi(�j) = 0 otherwise. Now since

gi(�) = gi(�1) + gi(�2) + � � �+ gi(�k);

it follows that �i = gi(�) is the sum of (distinct) central primitive idempotents in A, so that
�i is a central idempotent of A as claimed.

This implies that if !1; !2; : : : ; !k are the central primitive idempotents of A, and the
identity elements of A1;A2; : : : ;Ak, respectively, then

�i =
X
mj=i

!j: (3.10)

Thus �1; �2; : : : ; �l do not depend on the choice of the self-centralizing element � or the
distinct power transition matrix V used to de�ne them.
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3.2 Existence and Density of Self-Centralizing Elements

Theorem 3.6. If A is a separable matrix algebra over an in�nite �eld F then A contains a
self-centralizing element.

Proof. It will be useful once again to consider several cases.
Suppose �rst that A is simple, so that k = 1. In this case A = A1

�= D
t1�t1
1 , where D1

is a division algebra that is central simple over the centre E1 of A and where the dimension
of D1 over E1 is a perfect square. Once again let this dimension be d21, so that n1 = d1t1 and
n = e1n

2
1 = e1d

2
1t

2
1.

As shown, for example, by Pierce (1982), D includes a sub�eld K that is separable over E1

such that [K : E1] = d1. Since A is a separable algebra, the �eld E1 is separable over F. It
follows, for example, by Proposition 2.5.8 of Bastida (1984) that K is also separable over F.
Furthermore, [K : F] = [K : E1][E1 : F] = e1d1. Consequently there exists an element a of
K � D such that F[a] = K and such that the minimal polynomial of a is separable with
degree e1d1 over F.

Now let  : A! D
t1�t1
1 be an isomorphism of algebras over F. It su�ces to choose � as

� =  �1

0BBB@
26664
a1 0

a2
. . .

0 at1

37775
1CCCA (3.11)

where a1; a2; : : : ; at1 2 K � D1 such that F[a1] = F[a2] = � � � = F[at1 ] = K and the minimal
polynomials of a1; a2; : : : ; at over F are distinct. Then, since K is a separable extension
of F these minimal polynomials will be separable and irreducible over F, and the minimal
polynomial of � over F will be their product, a separable polynomial with degree e1d1t1 =
e1n1.

If K = F then it su�ces to choose a1; a2; : : : ; at1 as distinct elements from F. On the
other hand, if K 6= F, then we can set a1 = a for the element a described above such that
F[a] = K. If b 2 F then F[a+b] = F[a], since clearly a+b 2 F[a] and a = (a+b)�b 2 F[a+b].
Furthermore, if g(x) 2 F[x] is the minimal polynomial of a over F and g has distinct roots
c1; c2; : : : ; ce1d1 in an extension of F, then the minimal polynomial of a+ b over F is g(x� b)
and this polynomial has distinct roots c1 + b; c2 + b; : : : ; ce1d1 + b in the same extension.
Thus the minimal polynomial of a + b is also separable over F. It is therefore su�cient to
set ai = a + bi, for 2 � i � t1, where b2; b3; : : : ; bt1 are chosen from F in such a way that
the minimal polynomials of a1; a2; : : : ; at1 over F are pairwise relatively prime. Since these
polynomials are each irreducible in F[x], this will be the case as long as each polynomial has
a root in an extension of F that is not also a root of any of the rest. Now, since F is in�nite,
it is clear that suitable elements b2; b3; : : : ; bt1 of F can be found. Thus a self-centralizing
element of A exists if A is simple.

Suppose that A is separable but not simple over an in�nite �eld F. The above argument
implies that a self-centralizing element �i of Ai exists for each of the simple components
A1;A2; : : : ;Ak. It now su�ces to set �1 = �1 and to set �i = �i+ bi1Ai

, for 2 � i � k, where
b2; b3; : : : ; bk are chosen from F to ensure that the minimal polynomials of �1; �2; : : : ; �k are
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pairwise relatively prime. Each element �i will be self-centralizing in Ai by essentially the
argument used in the construction of � in the case that A is simple above, and Theorem
3.3 will then be applicable. Since F is in�nite it is easy to prove that suitable elements
b2; b3; : : : ; bk can be found.

The next result establishes that self-centralizing elements of separable algebras are also
easy to �nd. Once again, let d be as given in equation (2.5).

Theorem 3.7. Let A � F
m�m be a separable algebra of dimension n over a �eld F, and

suppose a self-centralizing element is included in the F-linear span of elements 
1; 
2; : : : ; 
h
of F. Let S be a �nite subset of F with size at least 3d3=2�, for � > 0. If the elements
s1; s2; : : : ; sh are chosen uniformly and independently from S then the element

s1
1 + s2
2 + � � �+ sh
h

is self-centralizing in A with probability at least 1� �.

Proof. A polynomial f 2 F[x1; x2; : : : ; xh]nf0g with total degree at most 3
2
d3 will be produced

such that, for all elements s1; s2; : : : ; sh of F, if f(s1; s2; : : : ; sh) 6= 0 then s1
1+s2
2+� � �+sh
h
is a self-centralizing element of A. The result will then follow by an application of the
Schwartz-Zippel lemma (see Schwartz 1980, Zippel 1979).

Since the F-linear span of 
1; 
2; : : : ; 
h includes a self-centralizing element, there exist
elements ŝ1; ŝ2; : : : ; ŝh of F such that the element

ŝ = ŝ1
1 + ŝ2
2 + � � �+ ŝh
h

is self-centralizing in A. Let y1; y2; : : : ; yh be indeterminates over F and let

� = 
1y1 + 
2y2 + � � �+ 
hyh 2 F[y1; y2; : : : ; yh]
m�m;

so that ŝ = �(ŝ1; ŝ2; : : : ; ŝh). Now consider the system of polynomial equations

�d + zd�1�
d�1 + � � �+ z1� + z01 = 0 (3.12)

in the indeterminates y1; y2; : : : ; yh; z0; z1; : : : ; zd�1. This system includes m2 equations (since
�i is an m � m matrix) which are linear in the indeterminates z0; z1; : : : ; zd�1. Replacing
each indeterminate yi by the �eld element ŝi, for 1 � i � h, we obtain a system of linear
equations

ŝd + zd�1ŝ
d�1 + � � �+ z1ŝ+ z01 = 0 (3.13)

in the indeterminates z0; z1; : : : ; zd�1. This system has a unique solution whose entries (and
the leading term, 1) are the coe�cients of the minimal polynomial of ŝ over F. Therefore
there is a subset of d of these equations with full rank d. The corresponding equations in
the system (3.12) form a system

M

26664
z0
z1
...

zd�1

37775 = v (3.14)
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where M 2 F[y1; y2; : : : ; yh]
d�d and v 2 F[y1; y2; : : : ; yh]

d�1.
Let g = detM 2 F[y1; y2; : : : ; yh]; then g is not identically zero, since a nonsingu-

lar matrix in F
d�d is obtained from M by replacing yi with ŝi for all i. Furthermore if

s1; s2; : : : ; sh 2 F such that g(s1; s2; : : : ; sh) 6= 0 then it follows by the de�nition of g that
the elements 1; �(s1; s2; : : : ; sh); �(s1; s2; : : : ; sh)

2; : : : ; �(s1; s2; : : : ; sh)
d�1 of A are linearly in-

dependent over F. In this case, Lemma 2.3 implies that the the minimal polynomial of
�(s1; s2; : : : ; sh) = s1
1 + s2
2 + : : : sh
h over F has degree exactly d.

Cramer's rule can now be applied to the system shown in (3.14) to obtain polynomials
h0; h1; : : : ; hd�1 2 F[y1; y2; : : : ; yh] such that the minimal polynomial of s1y1+s2y2+� � �+shyh
over F is

xd +
hd�1(s1; s2; : : : ; sh)

g(s1; s2; : : : ; sh)
xd�1 + � � �+

h1(s1; s2; : : : ; sh)

g(s1; s2; : : : ; sh)
x+

h0(s1; s2; : : : ; sh)

g(s1; s2; : : : ; sh)

whenever s1; s2; : : : ; sh 2 F such that g(s1; s2; : : : ; sh) 6= 0. Consider the polynomials

h = gxd + hd�1x
d�1 + � � �+ h1x + h0 2 F[x; y1; y2; : : : ; yh]

and

f =

(
Resx

�
h; @h

@x

�
2 F[y1; y2; : : : ; yh] if d 6= 0 in F;

g � Resx
�
h; @h

@x

�
2 F[y1; y2; : : : ; yh] otherwise.

Since h(ŝ1; ŝ2; : : : ; ŝh) 2 F[x] is the product of g(ŝ1; ŝ2; : : : ; ŝh) and the minimal polynomial
of ŝ1
1 + ŝ2
2 + � � � + ŝh
h, h(ŝ1; ŝ2; : : : ; ŝh) is a separable polynomial in F[x]. Therefore
f(ŝ1; ŝ2; : : : ; ŝh) 6= 0.

Conversely, let s1; s2; : : : ; sh 2 F such that f(s1; s2; : : : ; sh) is nonzero. Since g divides f
(because f is the determinant of a Sylvester matrix of polynomials whose entries in one
row are all divisible by g when d 6= 0, and by de�nition otherwise), g(s1; s2; : : : ; sh) is
nonzero as well, so the minimal polynomial of s1
1+ s2
2+ � � �+ sh
h has maximal degree d,
and h(s1; s2; : : : ; sh) is the product of this minimal polynomial and g(s1; s2; : : : ; sh). Since
f(s1; s2; : : : ; sh) 6= 0, h(s1; s2; : : : ; sh) is a separable polynomial in F[x] and the minimal
polynomial of s1
1+s2
2+� � �+sh
h is therefore separable as well. Thus, s1
1+s2
2+� � �+sh
h
is self-centralizing in A, as desired.

It remains only to bound the total degree of f . The entries of the matrix �i each have
total degree at most i in y1; y2; : : : ; yh, for 0 � i � d. Therefore each entry in the ith

column of the matrix M shown in equation (3.14) has total degree at most i � 1 in these
indeterminates, and the entries of the vector v have total degree at most d. The determinant g
of M , and the polynomials h0; h1; : : : ; hd�1 obtained by an application of Cramer's rule to
this system, therefore each have total degree at most

�
d
2

�
in y1; y2; : : : ; yh. Since f is a factor

of the determinant of a (2d� 1)� (2d� 1) Sylvester matrix whose nonzero entries are scalar
multiples of these polynomials�, it follows as required that f has total degree at most

(2d� 1)

�
d

2

�
=

2d3 + d2 � d

2
�

3d3

2
:

�Indeed, if the characteristic of F does not divide d, so that @h=@x has degree d � 1, then f is equal to
this determinant. Otherwise this matrix is block triangular and its determinant is the product of f and a
nonnegative power of g.
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3.3 Certi�cation of Self-Centralizing Elements

Theorem 3.7 yields a simple Monte Carlo algorithm to generate a self-centralizing element:
Choose a random linear combination of a set of elements of A whose F-linear span is known
to include such an element.

In this section we describe a method to either certify that a given element � of A is
self-centralizing or reject the element, assuming that a basis for A over F is available. This
method is also randomized and may only fail by rejecting an element that is, indeed, self-
centralizing. Another method that is somewhat slower, but guaranteed never to give an
incorrect answer, is mentioned at the end of the section.

Once again consider an element � of A. The minimal polynomial f of � over F is easily
computed by generating the Frobenius form of � and, since f is separable if and only if f
and f 0 are relatively prime, one can e�ciently detect and reject any element whose minimal
polynomial is not separable over F.

If �'s minimal polynomial is separable, and the degree bound d is known, then it is easy
to complete our procedure | we simply compare the degree of f to d, accepting � if the
degree equals d and rejecting � otherwise. We will therefore continue by giving a method
that can be used when d is unknown, noting that it is never necessary to use this again after
a self-centralizing element of A has been found and certi�ed, since d is available after that.

The following (partial) converse of Theorem 3.2 will serve as the basis for our test.

Theorem 3.8. If � is an element of A whose minimal polynomial over F is separable but
has degree less than d then F[�] is a proper subset of CA(�).

Proof. Suppose the centre of A is contained in F[�] (the result is trivial otherwise). As usual,
let � = �1 + �2 + � � �+ �k, where �i is a member of the simple component Ai of A, and let
fi be the minimal polynomial of �i over F for 1 � i � k.

Suppose f1; f2; : : : ; fk are not pairwise relatively prime; then there exist distinct integers i
and j between 1 and k such that the greatest common divisor gi;j of fi and fj has positive
degree. However, since the identity element !i of Ai is in the centre of A, and this is
contained in F[�] by assumption, !i = h(�) for some polynomial h 2 F[x]. Since i 6= j and
h(�) 2 Ai, h(�j) = 0 in Aj, implying that h is divisible by fj and therefore by its factor gi;j.
On the other hand, since h(�i) = !i in Ai, h � 1 (mod fi), implying that h is relatively
prime with fi and therefore with its factor gi;j. This clearly contradicts the fact that gi;j has
positive degree. Thus f1; f2; : : : ; fk are pairwise relatively prime, the minimal polynomial
of � over F is their product, and

F[�] = F[�1]� F[�2]� � � � � F[�k]:

Since the centre Ei of Ai is contained in F[�i] (within Ai), F[�i] = Ei[�i]. Suppose the
minimal polynomial of �i over Ei has degree bni; then this is also the dimension of Ei[�i]
over Ei. Since Ei is a �eld extension with degree ei over F, F[�i] clearly has dimension eibni
over F, so that the minimal polynomial fi of �i over F has degree eibni. Since the minimal
polynomial of � over F is the product of f1; f2; : : : ; fk, this minimal polynomial has degree

e1bn1 + e2bn2 + � � �+ ekbnk < d = e1n1 + e2n2 + : : : eknk:
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It follows that bni < ni for at least one integer i; �x any such i.
It now remains only to prove that there is an element �i of Ai such that �i�i = �i�i but

�i =2 F[�i]. For the remainder of the proof, let us consider Ai as a central simple algebra over
its centre Ei; it now su�ces to show that the dimension of the centralizer of �i in Ai over Ei
is strictly greater than bni. We will show that the dimension is greater than or equal to ni.

Since the dimensions are invariant under extension of scalars, it su�ces to show that the
dimension of the centralizer of �i 
Ei

1 in AKi = Ai 
Ei
K over K is at least ni, for some �eld

extension K of Ei. In particular, it is su�cient to prove this when K is an algebraic closure
of Ei, so that

A
K

i = Ai 
Ei
K �= K

ni�ni:

Let

 : AKi ! K
ni�ni

be an isomorphism of algebras over K and consider the matrix  (�i 
Ei
1) 2 K

ni�ni . The
minimal polynomial of this matrix over K is the same as the minimal polynomial of �i
over Ei and, since this is a factor of the minimal polynomial fi of �i over F, this polynomial
is separable over both Ei and K. Since its degree is strictly less than ni, the matrix  (�i
Ei

1)
is diagonalizable in K

ni�ni but is similar to a diagonal matrix Di whose diagonal entries are
not distinct. Now

Di = X�1 (�i 
Ei
1)X

for some nonsingular matrix X 2 K
ni�ni. The matrix Di commutes with all diagonal ma-

trices, so that its centralizer has dimension at least ni over K. Since a matrix � commutes
with Di if and only X�X�1 commutes with  (�i 
Ei

1), and  is an algebra isomorphism,
the dimension of the centralizer of �i 
Ei

1 over K is also at least ni, and the dimension of
the centralizer of �i over Ei is at least ni as well.

If a basis 
1; 
2; : : : ; 
n for A over F is available, then we may complete the process of
deciding whether � is self-centralizing by checking whether the dimension of the space of
solutions of the homogeneous system of linear equations

�

 
nX
i=1

xi
i

!
�

 
nX
i=1

xi
i

!
� = 0;

in unknowns x1; x2; : : : ; xn, is the same as the degree of the minimal polynomial of � over F.
It therefore su�ces to consider a system with m2 equations in n unknowns. However, as
suggested in Section 2.2, it may be possible to improve on this by inspecting matrix-vector
products instead of the entries of matrices in A. Consider the algorithm shown in Figure 1
on page 21.

Lemma 3.9. If � 2 A is not self-centralizing, and the algorithm in Figure 1 is executed
with � and a basis for A as input, then the algorithm returns the answer No.
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Input: An element � of a separable algebra A � F
m�m whose minimal polynomial f

has degree bd over the �eld F, and a basis 
1; 
2; : : : ; 
n for A over F

Question: Is � self-centralizing in A?

1. if gcd(f; f 0) = 1 then
2. i := 0; �i := n

loop

3. i := i+ 1
4. Randomly choose a vector vi 2 F

m�1

5. Compute the dimension �i over F of the space of solutions for the
homogeneous system of linear equations

nX
j=1

xj(�
jvl � 
j�vl) = 0 for 1 � l � i

in the n unknowns x1; x2; : : : ; xn

6. if �i = bd then
7. answer Yes

else

8. if (�i = �i�1 or i > m) then
9. answer No

end if

end if

end loop

else

10. answer No

end if

Figure 1: Certi�cation of a Self-Centralizing Element

Proof. Since � is not self-centralizing, either its minimal polynomial f is not separable, or
it is separable but the degree bd of f is less than d. In the former case gcd(f; f 0) has positive
degree, so the test in step 1 will fail and step 10 will be executed to reject �. In the latter case
Theorem 3.8 implies that F[�] is a proper subset of the centralizer of � in A. It follows that
the dimension of the solution space of the homogeneous system of linear equations considered
at line 5 will never be less than bd + 1, and the test at line 6 will always fail. Therefore the
test at line 8 will eventually succeed, either because two dimensions �i�1 and �i coincide, or
because m + 1 vectors have been considered (so that i = m + 1 > m). Thus the algorithm
will eventually return the answer No (by executing line 9) in this case as well.

For i � 1, let Ri be the maximum (over all choices of the vectors v1; v2; : : : ; vi 2 F
m�1)

of the rank of the coe�cient matrix of the system of linear equations shown at line 5 on the
ith execution of the loop body. Clearly Ri � Ri+1 for i � 1. Furthermore, since the vector
[s1; s2; : : : ; sn]

t is a solution for this system whenever s1
1 + s2
2 + � � �+ sn
n belongs to the
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centralizer of � 2 A, Ri � n� � for all i � 1 where � is the dimension of this centralizer.
Let N be as de�ned in equation (2.4) on page 4.

Lemma 3.10. RN = RN+1 = n� �.

Proof. Since RN � RN+1 � n� �, it su�ces to show that RN � n� �.
Consider the given system when i = N and suppose v1; v2; : : : ; vN is a distinguishing set

for A. In this case, for every element � of A, (�� � ��)vi for 1 � i � N if and only if �
commutes with �, so that [s1; s2; : : : ; sn]

t is a solution for the given system if and only if
s1
1 + s2
2 + � � �+ sn
n is in the centralizer. Thus the rank of the coe�cient matrix of the
system is n� �. This clearly implies that RN � n� �, as needed.

Lemma 3.11. If � is not in the centre of A then R1 > 0 and, in general, if 1 � i < N such
that Ri < n� � then Ri+1 � Ri + 1.

Proof. Consider the second claim �rst, suppose to the contrary that Ri = Ri+1 < n� �, and
let v1; v2; : : : ; vi be vectors such that the system given in line 5 (on the ith execution of the
loop body) has rank Ri when these vectors are used. Then, since Ri+1 = Ri, the additional
equations obtained by considering any other vector v must be linear combinations of the
equations that have already been obtained, implying that Ri = Ri+1 = Ri+2 = � � � = RN ,
and contradicting Lemma 3.10.

The �rst claim follows by essentially the same argument, since it can be used to show
that if R1 = 0 then Ri = 0 as well for all i � 1, contradicting Lemma 3.10 and the fact that
� < n when � is not in the centre of A.

Now let N� be the smallest positive integer such that RN�
= n� �, so that N� � N by

Lemma 3.10.

Lemma 3.12. Let � be a real number such that 0 < � < 1, and suppose S is a �nite subset
of F that includes at least n=� distinct elements. If the algorithm shown in Figure 1 is
executed with inputs � and a basis for A, and the entries of the vectors v1; v2; : : : used by this
algorithm are selected uniformly and independently from S, then all three of the following
conditions are satis�ed with probability at least 1� �.

� If � is self-centralizing in A then the loop body of the algorithm is executed exactly
` = N� times, and the algorithm returns the answer Yes.

� If � is not self-centralizing in A then the loop body of the algorithm is executed exactly
` = 1 +N� times, and the algorithm returns the answer No.

� If ` is de�ned as in the above two statements, then the linear system considered on the
ith execution of the loop body has rank Ri, for 1 � i � `.

Proof. The claim is trivial if � is in the centre of A, because the coe�cient matrix of every
system that can be considered has rank zero in this case. If � is also self-centralizing thenbd = d = n = �1, regardless of the choice of v1, and the test at line 6 will succeed on the �rst
execution of the loop body. If � is not self-centralizing then �2 = �1 = n = d 6= bd, so that
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the test at line 8 will succeed on the second execution. All three conditions are satis�ed in
either case. Suppose, therefore, that � is not in the centre.

Now, � 6= n and R1 > 0. Since the centralizer of � in A has dimension �, the set of
elements ����� such that � 2 A has dimension n� � over F. Let �1; �2; : : : ; �n�� 2 F such
that �1����1; �2����2; : : : ; �n������n�� are linearly independent and therefore form a
basis for this set.

Let v be an m-dimensional vector whose entries are distinct indeterminates over F. To
prove that the coe�cient matrix for the system considered on the �rst execution of the loop
body has rank R1 with high probability, consider the m� (n� �) matrix of polynomials�

(�1�� ��1)v (�2�� ��2)v : : : (�n���� ��n��)v
�
:

The de�nition of R1 implies that there is a vector v 2 F
m�1 such that, if v were replaced

by v in the above matrix, then the resulting matrix would have rank R1. This matrix
would therefore have a nonsingular R1 � R1 submatrix. The corresponding submatrix of
the above matrix of polynomials is thus an R1 �R1 matrix whose determinant is a nonzero
polynomial g1 with total degree at most R1 in the entries of v. Furthermore, it is clear by the
de�nitions of g1 and R1 that if bv 2 F

m�1 such that g1(bv) 6= 0, then the matrix obtained from
the above by replacing v with bv has rank R1, as does the coe�cient matrix of the system
obtained on the �rst execution of the loop body if bv is the �rst vector selected. It follows by
an application of the Schwartz-Zippel lemma that if v1 is randomly selected as described in
the claim, then the probability that the �rst system has rank less than R1 is at most �R1=n.

Suppose next that 1 � i < N� and that vectors v1; v2; : : : ; vi have been chosen so that the
coe�cient matrix of the system considered at line 5 on the jth execution of the loop body
(involving vectors v1; v2; : : : ; vj) has rank Rj for 1 � j � i. Now, the tests at lines 6 and 8
will both fail on the ith execution of the loop body since �0 = n, 1 � R1 < R2 < � � � < Ri <
RN = �, and �j = n � Rj for 1 � j � i. An i + 1st execution will therefore be performed.
Let v be a vector of indeterminates as before, and consider the matrix2666664

(�1�� ��1)v1 (�2�� ��2)v1 : : : (�n���� ��n��)v1
(�1�� ��1)v2 (�2�� ��2)v2 : : : (�n���� ��n��)v2

...
...

. . .
...

(�1�� ��1)vi (�2�� ��2)vi : : : (�n���� ��n��)vi
(�1�� ��1)v (�2�� ��2)v : : : (�n���� ��n��)v

3777775 :
The submatrix including all columns and the top mi rows has rank Ri by the choice
of v1; v2; : : : ; vi, and it follows by the de�nition of Ri+1 that there exists a vector vi+1 such
that the matrix obtained from the above by replacing v with vi+1 has rank Ri+1. This
matrix would have a nonsingular Ri+1 � Ri+1 submatrix such that the top Ri rows of this
submatrix are selected from the top mi rows of the entire matrix. A consideration of the
corresponding submatrix of the above matrix of polynomials and another application of the
Schwartz-Zippel lemma establish that if a matrix bvi+1 is randomly selected as described in
the claim, and bvi+1 replaces v, then the resulting matrix has rank less than Ri+1 with prob-
ability at most �(Ri+1 �Ri)=n. This also bounds the probability that the system generated
on the i+ 1st execution of the loop body has rank less than Ri+1 if the system obtained on
the ith execution had full rank Ri.
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It follows by induction on i that if 1 � i � N� and v1; v2; : : : ; vi are chosen as described
then the probability that the jth coe�cient matrix has rank Rj for all j between 1 and i is
at least 1� �(Ri=n). In particular, the system obtained after N� executions of the loop body
has maximal rank RN�

= n� � with probability at least 1� �(RN�
=n) � 1� �. Suppose for

the remainder of the argument that this system does have maximal rank.
Now, if � is self-centralizing then the algorithm will terminate on the N th

� execution of
the loop body, returning the answer Yes, because the test at line 6 will succeed. If � is not
self-centralizing, then it will terminate on the N� + 1st execution of the loop body instead,
returning the answer No, because the ranks of the last two systems considered must be the
same, but must also be less than n� �.

Therefore all three conditions are satis�ed with probability at least 1� �, as claimed.

A �nal lemma concerns the cost of implementing this algorithm.

Lemma 3.13. The algorithm shown in Figure 1 can be implemented in such a way that
each execution of the loop body can be performed using O(nm2+ n2

m2MM(m)) operations, or
O(nm2 + n2m) operations if standard arithmetic is used.

Proof. Consider the ith execution of the loop body. If i = 1 this requires that a homoge-
neous system of m equations in n unknowns x1; x2; : : : ; xn be formed and examined, while
if i > 1 then it involves the addition of another m equations in these unknowns to a system
that has been constructed in previous executions of the loop body. The loop body can be
implemented to have the above complexity, provided that information about the previous
system is maintained and used.

Suppose, in particular, that the coe�cient matrix of this system has rank r. It will be
assumed that r linearly independent rows of the coe�cient matrix, the indices of r linearly
independent columns specifying a nonsingular r � r submatrix X, and the inverse of this
submatrix are maintained.

Since r = 0 before the �rst execution of the loop body, this information can be initialized
in constant time before this �rst execution begins.

The beginning of the ith execution of the loop body involves the incrementing of a variable
and the selection of a vector vi from F

m�1, and this can clearly be performed at the stated
cost. The equations to be added to the system at this point have the form

nX
j=1

xj(�
jvi � 
j�vi) = 0;

where 
1; 
2; : : : ; 
n is a basis for A, and these can be formed using at most 4n multiplications
of m�m matrices (in A) by the vector vi, at cost O(nm

2).
Now it remains only to compute the rank �i of the current system and to generate the

data that will be needed for the next execution of the loop | for, once �i is known (and �i�1
is recalled), the remaining steps of the loop body can be executed using a constant number
of operations.

Suppose m � n; then the new equations can be split into dm=ne sets of at most n equa-
tions each and added to the previous system in dm=ne stages, one set at a time. Since each
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intermediate system has rank at most n, the system will include at most 2n equations in n
unknowns at each stage. Therefore the process of computing the rank of each intermediate
system, and selecting and inverting a nonsingular submatrix of maximal size, can be imple-
mented using O(MM(n)) operations. Since O(m=n) stages are required, the entire process
can be completed using O(m

n
MM(n)) = O(mn2) operations.

Suppose instead that m < n. In this case, one should begin if i > 1 by eliminating the
entries in the new rows of the current system's coe�cient matrix that lie in the columns that
were used to form the nonsingular matrix X currently in use. Since X�1 is available, this
elimination can be performed using O(m

n
MM(n)) operations. The resulting m equations

can be inspected to determine which new equations should be added to the set that will be
used in the next execution of the loop, as well as the rows and columns that should be added
to the nonsingular submatrix X.

Suppose that a matrix

bX =

�
X C
R Y

�
has been selected. Since X is a nonsingular �i�1� �i�1 matrix and bX is a nonsingular �i� �i
matrix, C 2 F

�i�1�(�i��i�1), R 2 F
(�i��i�1)��i�1 , and Y 2 F

(�i��i�1)�(�i��i�1). Furthermore
�i�1 � n and �i � �i�1 � m, because the entire system has rank at most n and the new
system has been obtained by adding only m new equations to the previous one. It is well
known (and easily veri�ed) that

bX =

�
I�i�1 0
RX�1 I(�i��i�1)

� �
X 0
0 S

� �
I�i�1 X�1C
0 I(�i��i�1)

�
and

bX�1 =

�
I�i�1 �X�1C
0 I(�i��i�1)

� �
X�1 0
0 S�1

� �
I�i�1 0

�RX�1 I(�i��i�1)

�
=

�
X�1 +X�1CS�1RX�1 �X�1CS�1

�S�1RX�1 S�1

�
for S = Y � RX�1C 2 F

(�i��i�1)�(�i��i�1). A careful scheduling of operations will permitbX�1 to be computed from X 0 and X�1 using O( n
2

m2MM(m)) = O(n2m) operations, as
required.

Now we can bound the cost to certify a self-centralizing element.

Theorem 3.14. Suppose as usual that A � F
m�m is a separable algebra with dimension n

over a �eld F, and let 
1; 
2; : : : ; 
n be a basis for A over F. Suppose as well that � is a real
number such that 0 < � < 1 and that S is a �nite subset of F including at least n=� distinct
elements.

Let � 2 A, and suppose that the algorithm shown in Figure 1 is executed on inputs � and

1; 
2; : : : ; 
n, in such a way that the entries of the vectors v1; v2; : : : used by this algorithm
are chosen uniformly and independently from S. Then each of the following conditions is
satis�ed.
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� The algorithm always terminates and returns either Yes or No as output, after per-
forming O(nm3+ n2

m
MM(m)) operations, or O(nm3+n2m2) operations using standard

arithmetic.

� If � is not self-centralizing in A then the algorithm's output is always No.

� If � is self-centralizing in A then the algorithm's output is Yes with probability at least
1� �.

� The algorithm will terminate after O(Nnm2+N n2

m2MM(m)) operations, or O(Nnm2+
Nn2m) operations using standard arithmetic, with probability at least 1� �.

Proof. It is clear by inspection of the algorithm that, if it terminates at all, then it does so by
returning either Yes or No (but not both). Furthermore, since the parameter i is incremented
on each execution of the loop, a glance at line 8 will con�rm that the loop is never executed
more than m+ 1 times. This, and Lemma 3.13, are su�cient to establish the �rst claim |
for the cost of executing the loop clearly dominates the cost of executing the other steps.

The second claim is a consequence of Lemma 3.9, and the third is a consequence of
Lemma 3.12.

Finally, the last claim follows from Lemma 3.12, which implies that with high probability
the loop body will be executed at most N�+1 � N+1 times, and Lemma 3.13, which bounds
the cost of each execution of this loop.

As noted above, the algorithm may return No with small probability when its input � is
self-centralizing in A. This behaviour can be eliminated by checking the system of equations

nX
i=1

(xi
i�� xi�
i) = 0

at any point in the loop body when the original algorithm would return No; if the dimension
of the solution space for this system equals the degree of the minimal polynomial of �
then (since it has already been con�rmed that this minimal polynomial is separable), the
algorithm should return the answer Yes. On the other hand, No should be returned if the
dimension and degree are di�erent.

With this change, the worst case complexity of the algorithm will clearly increase, since
a system with m2 equations and n unknowns may be considered. However, Theorems 3.2
and 3.8 imply that this more expensive algorithm will always return a correct output, as
desired.

4 Centering Pairs and Their Properties

4.1 De�nitions

It turns out that certain pairs of self-centralizing elements are more useful in combination
than any one such element.
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De�nition 4.1. A pair of elements � and � of A is a centering pair if � and � are both
self-centralizing in A and

Centre(A) = CA(�) \ CA(�) = F[�] \ F[�]: (4.1)

Having a centering pair � and � for A is clearly of great advantage in computing the
centre of A, since a basis for the centre over F could be obtained by solving the homogeneous
system of linear equations

(y0 + y1� + � � �+ yd�1�
d�1)� � �(y0 + y1�+ � � �+ yd�1�

d�1) = 0

for the unknowns y0; y1; : : : ; yd�1 in F: Every solution [s0; s1; : : : ; sd�1]
t 2 F

d determines an
element

s0 + s1� + � � �+ sd�1�
d�1

of F[�] that commutes with �. Since � is self-centralizing in A, this implies that the
above element belongs to F[�] as well. It therefore belongs to F[�] \ F[�] which is the
centre of A by de�nition. Conversely, every element of the centre belongs to the set
fs0 + s1� + � � �+ sd�1�d�1 : s0; s1; : : : ; sd�1 2 Fg and speci�es a solution for this system.

While it is plausible that this method is faster than previous general methods for com-
putation of the centre, it requires that we form and solve a system of m2 linear equations
in d unknowns. We can do considerably better than this by projecting from the space of
matrices to the space of vectors. It will be shown in the sequel that with high probability
the desired relationships still hold, and this motivates the following de�nition.

De�nition 4.2. A pair � and � of elements of a separable matrix algebra A � F
m�m is a

complemented centering pair for A if this pair is a centering pair for A and, furthermore,
there exists a pair of vectors u and v in F

m�1 such that

(�u = �u and �v = �v) =) � = � 2 F[�] \ F[�] (4.2)

for all � 2 F[�] and all � 2 F[�]. Any pair of vectors u and v satisfying condition (4.2),
above, is said to complement the centering pair � and �.

4.2 Existence and Density of Centering Pairs

Once again let d be as given in equation (2.5).

Theorem 4.3. Let A � F
m�m be a separable matrix algebra over a �eld F. If F is in�nite

then A includes a complemented centering pair of elements � and �.

Theorem 4.4, below, will be used to prove Theorem 4.3 and will therefore be proved �rst.

Theorem 4.4. Let A be as above, and suppose 
1; 
2; : : : ; 
h 2 A such that there is a com-
plemented centering pair � and � in the F-linear span of 
1; 
2; : : : ; 
h. Let � be a real number
such that 0 < � < 1 and suppose S is a �nite subset of F that includes at least 5d3=� dis-
tinct elements. Then, if elements a1; a2; : : : ; ah; b1; b2; : : : ; bh; c1; c2; : : : ; cm; d1; d2; : : : ; dm are
chosen uniformly and independently from S, then the elements a1
1 + a2
2 + � � �+ ah
h and
b1
1+b2
2+� � �+bh
h form a complemented centering pair in A, complemented by the vectors
[c1; c2; : : : ; cm]

t and [d1; d2; : : : ; dm]
t in F

m�1, with probability at least 1� �.
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Proof of Theorem 4.4. Let s1; s2; : : : ; sh, t1; t2; : : : ; th, u1; u2; : : : ; um, and v1; v2; : : : ; vm be in-
determinates over the �eld F. It is given that there exist elements ŝ1; ŝ2; : : : ; ŝh, t̂1; t̂2; : : : ; t̂h 2
F such that the elements

ŝ = ŝ1
1 + ŝ2
2 + : : : ŝh
h and t̂ = t̂1
1 + t̂2
2 + : : : t̂h
h

of A form a complemented centering pair. Consider matrices of polynomials

� = 
1s1 + 
2s2 + � � �+ 
hsh and � = 
1t1 + 
2t2 + � � �+ 
hth;

so that ŝ = �(ŝ1; ŝ2; : : : ; ŝh) and t̂ = �(t̂1; t̂2; : : : ; t̂h). Clearly

�(r1; r2; : : : ; rh) = �(r1; r2; : : : ; rh) = r1
1 + r2
2 + � � �+ rh
h 2 A

for all r1; r2; : : : ; rh 2 F.
It can be established as in the proof of Theorem 3.7 that there exist nonzero polynomials

f� 2 F[s1; s2; : : : ; sh] and f� 2 F[t1; t2; : : : ; th] (formed using ŝ and t̂ respectively) such that

f�(ŝ1; ŝ2; : : : ; ŝh) 6= 0, f�(t̂1; t̂2; : : : ; t̂h) 6= 0, each polynomial has total degree at most 2d3+d2�d
2

in its indeterminates, and such that for all r1; r2; : : : ; rh 2 F, if either f�(r1; r2; : : : ; rh) or
f�(r1; r2; : : : ; rh) is nonzero then r1
1 + r2
2 + � � �+ rh
h is self-centralizing in A.

Since ŝ and t̂ form a complemented centering pair, there also exist vectors

û =

26664
û1
û2
...
ûm

37775 2 F
m and v̂ =

26664
v̂1
v̂2
...
v̂m

37775 2 F
m

that complement ŝ and t̂. Thus there exists a homogeneous system of 2m linear equations

(x01 + x1ŝ+ x2ŝ
2 + � � �+ xd�1ŝ

d�1)û� (y01 + y1t̂ + y2t̂
2 + � � �+ yd�1t̂

d�1)û = 0;

(x01 + x1ŝ+ x2ŝ
2 + � � �+ xd�1ŝ

d�1)v̂ � (y01 + y1t̂ + y2t̂
2 + � � �+ yd�1t̂

d�1)v̂ = 0
(4.3)

in 2d indeterminates x0; x1; : : : ; xd�1; y0; y1; : : : ; yd�1, such that

a01 + a1ŝ+ � � �+ ad�1ŝ
d�1 = b01 + b1t̂+ � � �+ bd�1 t̂

d�1

for each solution [a0; a1; : : : ; ad�1; b0; b1; : : : ; bd�1]
t 2 F

2d of this system, with the above ele-
ment a01 + a1ŝ + � � � + ad�1ŝ

d�1 of A in the centre of A. Conversely, every element of the
centre is equal to both a01 + a1ŝ + � � � + ad�1ŝ

d�1 and b01 + b1t̂ + � � � + bd�1t̂
d�1 for some

solution [a0; a1; : : : ; ad�1; b0; b1; : : : ; bd�1]
t. Writing

~x =

26664
x0
x1
...

xd�1

37775 and ~y =

26664
y0
y1
...

yd�1

37775 ;
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the system of linear equations shown in (4.3), above, can be expressed as

Â

�
~x
~y

�
= 0

where Â 2 F
2m�2d. Since the space of solutions of this system has the same dimension e as

the centre of A, Â has rank 2d� e and has a nonsingular (2d� e)� (2d� e) submatrix B̂.
Now set

� =

26664
u1
u2
...
um

37775 2 F[u1; u2; : : : ; um]
m�1 and  =

26664
v1
v2
...
vm

37775 2 F[v1; v2; : : : ; vm]
m�1;

so that û = �(û1; û2; : : : ; ûm) and v̂ =  (v̂1; v̂2; : : : ; v̂m), and consider the system of equations

(x01 + x1� + x2�
2 + � � �+ xd�1�

d�1)�� (y01 + y1� + y2�
2 + � � �+ yd�1�

d�1)� = 0;

(x01 + x1� + x2�
2 + � � �+ xd�1�

d�1) � (y01 + y1� + y2�
2 + � � �+ yd�1�

d�1) = 0;
(4.4)

this can be written as

A

�
~x
~y

�
where A 2 F[s1; s2; : : : ; sh; t1; t2; : : : ; th; u1; u2; : : : ; um; v1; v2; : : : ; vm]

2m�2d such that

A(ŝ1; ŝ2; : : : ; ŝh; t̂1; t̂2; : : : ; t̂h; û1; û2; : : : ; ûm; v̂1; v̂2; : : : ; v̂m) = Â 2 F
2m�2d:

Choosing the same rows and columns as were used to de�ne B̂ from Â, one can also de�ne
a matrix B 2 F[s1; s2; : : : ; sh; t1; t2; : : : ; th; u1; u2; : : : ; um; v1; v2; : : : ; vm]

(2d�e)�(2d�e) such that

B(ŝ1; ŝ2; : : : ; ŝh; t̂1; t̂2; : : : ; t̂h; û1; û2; : : : ; ûm; v̂1; v̂2; : : : ; v̂m) = B̂ 2 F
d�d:

Consider now the polynomial

f = f�f� detB 2 F[s1; s2; : : : ; sh; t1; t2; : : : ; th; u1; u2; : : : ; um; v1; v2; : : : ; vm]:

By construction, f(ŝ1; ŝ2; : : : ; ŝh; t̂1; t̂2; : : : ; t̂h; û1; û2; : : : ; ûm; v̂1; v̂2; : : : ; v̂m) 6= 0, so this poly-
nomial is nonzero. On the other hand, if s1; s2; : : : ; sh, t1; t2; : : : ; th, u1; u2; : : : ; um, and
v1; v2; : : : ; vm are elements of F such that

f(s1; s2; : : : ; sh; t1; t2; : : : ; th; u1; u2; : : : ; um; v1; v2; : : : ; vm) 6= 0; (4.5)

then clearly f�(s1; s2; : : : ; sh) and f�(t1; t2; : : : ; th) are both nonzero, so that the elements

� = s1
1 + s2
2 + � � �+ sh
h and � = t1
1 + t2
2 + � � �+ th
h

of A are both self-centralizing. Furthermore, the determinant of the matrix

B(s1; s2; : : : ; sh; t1; t2; : : : ; th; u1; u2; : : : ; um; v1; v2; : : : ; vm)
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is nonzero. If we set

u =

26664
u1
u2
...
um

37775 and v =

26664
v1
v2
...
vm

37775 ;
then this implies that the coe�cient matrix of the homogeneous system of 2m linear equations

"
u � u : : : �d�1u �u ��u : : : ��

d�1
u

v � v : : : �d�1v �v ��v : : : ��
d�1

v

#
266666664

x0
...

xd�1
y0
...

yd�1

377777775
=

26664
0
0
...
0

37775

in 2d unknowns x0; x1; : : : ; xd�1; y0; y1; : : : ; yd�1 has (maximal) rank 2d � e, and that the
space of solutions for this system has dimension e over F.

It now follows that � and � form a centering pair in A: Since � and � are both self-
centralizing, the centre of A is contained in F[�] \ F[�], and is only a proper subset of this
vector space if the dimension of F[�] \ F[�] exceeds e. However, for every element

a01 + a1� + � � �+ ad�1�
d�1 = b01 + b1� + � � �+ bd�1�

d�1

of F[�] \ F[�] there is a (distinct) solution [a0; : : : ; ad�1; b0; : : : ; bd�1]
t for the above system,

so the fact that the space of solutions for the system has dimension e implies that F[�]\F[�]
also has dimension at most e. Thus F[�] \ F[�] = Centre(A) as needed.

The fact that the solution space for the system has dimension e also implies that, for all
� 2 F[�] and � 2 F[�],

(�u = �u and �v = �v) =) � = � 2 F[�] \ F[�];

for, otherwise, the dimension of the solution space would exceed that of F[�] \ F[�]. Thus
the vectors u and v complement the centering pair � and �.

It remains only to bound the degree of the above polynomial f and to apply the Schwartz-
Zippel lemma (Schwartz 1980, Zippel 1979) in order to establish the result. An inspection
of the above system con�rms that each entry of the matrix A, and its submatrix B, has
total degree at most d in the indeterminates s0; : : : ; sh, t0; : : : ; th, u1; : : : ; um, and v1; : : : ; vm.
Since B is a matrix with order 2d� e < d, its determinant is a polynomial with total degree
at most (2d � e)d < 2d2 in these indeterminates. Since f = f�f� detB, the degree bounds
given above for f� and f� imply that f has total degree less than 5d3, as required.

It remains for us to prove Theorem 4.3.
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Lemma 4.5. Let A � F
m�m be a separable algebra with simple components A1;A2; : : : ;Ak

over F, and let !1; !2; : : : ; !k be the central primitive idempotents of A and the identity
elements of algebras A1;A2; : : : ;Ak respectively. Suppose

� = �1 + �2 + � � �+ �k and � = �1 + �2 + � � �+ �k

where as usual �i; �i 2 Ai for all i, and suppose � and � are both self-centralizing in A.
Consider �i and �i as elements of Ai (so that F[�i] has spanning set !i; �i; �

2
i ; : : : and

F[�i] is spanned by !i; �i; �
2
i ; : : : ). If

F[�i] \ F[�i] = Centre(Ai)

for all i, so that �i and �i form a centering pair in Ai for all i, then � and � form a centering
pair in A.

Furthermore, if for all i there exist vectors ~ui and ~vi such that, for all �i 2 F[�i] � Ai

and for all �i 2 F[�i] � Ai,

(�i!i~ui = �i!i~ui and �i!i~vi = �i!i~vi) =) �i = �i 2 F[�i] \ F[�i];

then � and � form a complemented centering pair that is complemented by the vectors

u = !1~u1 + !2~u2 + � � �+ !k~uk and v = !1~v1 + !2~v2 + � � �+ !k~vk:

Proof. Since � and � are self-centralizing,

F[�] = F[�1]� F[�2]� � � � � F[�k] and F[�] = F[�1]� F[�2]� � � � � F[�k]:

Since A has simple components A1;A2; : : : ;Ak,

Centre(A) = Centre(A1)� Centre(A2)� � � � � Centre(Ak)

as well. It follows immediately that, if F[�i] \ F[�i] = Centre(Ai) in Ai for all i, then (in A)

F[�] \ F[�] = (F[�1]� F[�2]� � � � � F[�k]) \ (F[�1]� F[�2]� � � � � F[�k])
= (F[�1] \ F[�1])� (F[�2]� F[�2])� � � � � (F[�k]� F[�k])
= Centre(A1)� Centre(A2)� � � � � Centre(Ak) = Centre(A);

establishing the �rst part of the claim.
Suppose next that there exist vectors ~ui and ~vi for all i with the stated property, and let

u and v be as above. Suppose as well that � 2 F[�] and � 2 F[�], and write

� = �1 + �2 + � � �+ �k and � = �1 + �2 + � � �+ �k

where as usual �i; �i 2 Ai for all i. If �u = �u and �v = �v then !i�u = !i�u and !i�v =
!i�v for all i and, since !i�j = !i�j = 0 whenever i 6= j, this implies that !i�i!i~ui = !i�i!i~ui
and !i�i!i~vi = !i�i!i~vi. Now, since !i is central in A and is an idempotent, it follows that
�i!i~ui = �i!i~ui and �i!i~vi = �i!i~vi, so that �i = �i 2 F[�i] \ F[�i] = Centre(Ai) in Ai for
each i. Therefore

� = � 2 Centre(A1)� Centre(A2)� � � � � Centre(Ak) = Centre(A) = F[�] \ F[�];

as required.
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Proof of Theorem 4.3. Suppose �rst that A is simple and isomorphic to F
n1�n1 over F. Then

there exist distinct elements �1; �2; : : : ; �n1 of F and an element � of A whose minimal
polynomial is

f =
n1Y
i=1

(x� �i) 2 F[x]:

Furthermore any simple A-module contains elements x1; x2; : : : ; xn1 such that �xi = �ixi for
1 � i � n1. These elements are linearly independent since they are eigenvectors correspond-
ing to distinct eigenvalues of � and, since any simple A-module has dimension n1 over F,
they form a basis for the module containing them. The action of � on the module with
respect to the basis x1; x2; : : : ; xn1 is clearly given by the matrix

�(�) =

26664
�1 0

�2
. . .

0 �n1

37775 2 F
n1�n1:

Suppose f = xn1 + fn1�1x
n1�1+ � � �+ f1x+ f0, so that 1; fn1�1; : : : ; f1; f0 are the coe�cients

of f . Since A �= F
n1�n1 , there exists an element � of A whose action on the module with

respect to the basis x1; x2; : : : ; xn1 is given by the companion matrix of f :

�(�) = Cf =

266666664

0 �f0
1 0 �f1

1 �f2
. . .

...
1 0 �fn�2

0 1 �fn�1

377777775
:

In this case, �xi = xi+1 for 1 � i � n�1, so that if 0 � j � n�1 then �jx1 = xj+1. Now let
u = x1 and v = x1+x2+ � � �+ xn1 , and suppose f1; f2 2 F[x] such that f1(�)u = f2(�)u and
f1(�)v = f2(�)v. It su�ces to consider the case that f1 and f2 both have degree less than n1,

since f1(�) = bf1(�) and f2(�) = bf2(�) for bf1 � f1 mod f and bf2 � f2 mod f . Therefore, let

f1 = f1;n1�1x
n1�1 + f1;n1�2x

n1�2 + � � �+ f1;1x+ f1;0

and let

f2 = f2;n1�1x
n1�1 + f2;n1�2x

n1�2 + � � �+ f2;1x + f2;0:

Since u = x1 is an eigenvector of � for eigenvalue �1, f1(�)u = f1(�1)x1. On the other hand,
it follows by the above equations that

f2(�)u =
n1�1X
i=0

f2;i�
ix1 =

n1�1X
i=0

f2;ixi+1:
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Since f1(�)u = f2(�)u and x1; x2; : : : ; xn1 are linearly independent over F, this implies that
f1(�1) = f2;0 and that f2;i = 0 for 1 � i � n1�1, so f2(x) = f1(�1) 2 F and f2(�) = f1(�1)In1
is in the centre of A.

On the other hand, since v = x1 + x2 + � � �+ xn1 ,

f1(�)v = f1(�1)x1 + f1(�2)x2 + � � �+ f1(�n1)xn1 ;

by the choice of x1; x2; : : : ; xn1, while

f2(�)v = f1(�1)Inv = f1(�1)x1 + f1(�1)x2 + � � �+ f1(�1)xn1 :

The linear independence of x1; x2; : : : ; xn1 and the condition that f1(�)v = f2(�)v imply (by
a comparison of the coe�cients of x1; x2; : : : ; xn1 in the above expressions) that

f1(�1) = f1(�2) = � � � = f1(�n1):

Since f1 has degree less than n1 and �1; �2; : : : ; �n1 are distinct, it follows that f1;0 = f1(�1)
and f1;i = 0 for 1 � i � n1 � 1 as well, so that f1(x) = f1(�1) = f2(x), and

f1(�) = f1(�1)In = f2(�)

with both in the centre of A. Thus � and � form a complemented centering pair that is
complemented by the vectors u and v in this case.

Lemma 4.5 can now be applied to establish the result for the case that A is separable
over an in�nite �eld F, such that each simple component is isomorphic to a full matrix ring
over F. In particular, this can be used to prove the result for the case that A is separable
over F and F is algebraically closed.

It remains to consider the case that A is separable over an arbitrary in�nite �eld F. Let
K be an algebraic closure of F and consider the algebra AK = A 
F K obtained from A

by extension of scalars. Let 
1; 
2; : : : ; 
n be a basis for A over F, so that the elements

1 
F 1; 
2 
F 1; : : : ; 
n 
F 1 form a basis for AK over K. Let S be a �nite subset of F with
size at least 10d3; since F is in�nite some such set exists.

Now, suppose elements s1; s2; : : : ; sn, t1; t2; : : : ; tn, u1; u2; : : : ; um, and v1; v2; : : : ; vm are
chosen uniformly and independently from S. Let

� = s1
1 + s2
2 + � � �+ sn
n and � = t1
1 + t2
2 + � � �+ tn
n;

and note that

�
F 1 = s1(
1 
F 1) + s2(
2 
F 1) + � � �+ sn(
n 
F 1)

and

� 
F 1 = t1(
1 
F 1) + t2(
2 
F 1) + � � �+ tn(
n 
F 1)

as well.
Since A is separable over F and F is in�nite, Theorem 3.6 implies that A contains a

self-centralizing element, so there must be such an element in the F-linear span of the basis
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1; 
2; : : : ; 
n. It therefore follows by Theorem 3.7 that the probability that � (respectively,
�) is not self-centralizing in A is at most 3

20
, so that the probability that � and � are not

both self-centralizing in A is at most 3
10
.

It follows by the argument given above that AK has a complemented centering pair.
Theorem 4.4 therefore implies that � 
F 1 and � 
F 1 form a complemented centering pair
of AK, that is complemented by the vectors

~u
F 1 =

26664
u1 
F 1
u2 
F 1

...
um 
F 1

37775 and ~v 
F 1 =

26664
v1 
F 1
v2 
F 1

...
vm 
F 1

37775 2 K
m�1;

with probability at least 1
2
. Now, if ~u = [u1; u2; : : : ; um]

t and ~v = [v1; v2; : : : ; vm]
t in F

m�1,
then F[�] \ F[�] = Centre(A) and furthermore that, for all f; g 2 F[x],

(f(�)~u = g(�)~u and f(�)~v = g(�)~v) =) (f(�) = g(�) 2 F[�] \ F[�])

with probability at least 1
2
as well. Thus the probability that � and � do not form a

complemented centering pair, complemented by the vectors ~u and ~v, is at most 3
10
+ 1

2
= 4

5
< 1.

Since a complemented centering pair can be randomly chosen with positive probability,
a complemented centering pair must clearly exist.

4.3 AMonte Carlo Algorithm for a Complemented Centering Pair

and Generator for the Centre

A randomized (Monte Carlo) algorithm to compute a complemented centering pair � and �,
vectors u and v that complement this pair, and a generator 
 for the centre of a separable
algebra A over F is shown in Figure 2 on page 35. Its analysis yields the following result.

Theorem 4.6. Let A � F
m�m be a separable algebra with dimension n over an in�nite

�eld F, let � be a real number such that 0 < � < 1, and suppose S is a �nite subset of F
that includes at least 8m3=� distinct elements. Then a randomized (Monte Carlo) algorithm
can be used to compute elements �, � and 
 of A and vectors u; v 2 F

m�1 such that �
and � form a complemented centering pair for A complemented by the vectors u and v, and

 generates the centre of A, with probability at least 1� �, using O(MM(m) logm+R(A))
operations, or O(m3+R(A)) operations if standard arithmetic is used. Here R(A) is the cost
to compute an S-linear combination of a set of elements of A whose F-linear span includes
a complemented centering pair.

Recall that Theorem 4.3 implies that a complemented centering pair exists. Thus if a
basis for A is available we can set R(A) = nm2.

Proof of Theorem 4.6. Consider the algorithm shown in Figure 2. Theorem 4.3 implies that
a complemented centering pair for A exists. Theorem 4.4 implies that the elements � and �
chosen in step 1 form a complemented centering pair for A, complemented by the vectors u
and v chosen in step 3, with probability at least 1� 5�

8
, when � and � are chosen as S-linear
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Input: A separable matrix algebra A � F
m�m over an in�nite �eld F

Output: Elements �, � and 
 of A, vectors u and v in F
m�1, and a positive integer e

such that � and � form a complemented centering pair for A complemented
by the vectors u and v, 
 is a generator for the centre of A, and e is the
dimension of the centre with high probability.

1. Randomly choose elements � and � from A.

2. Compute the degree d of the minimal polynomial of � over F.

3. Randomly choose vectors u; v 2 F
m�1.

4. Compute the dimension e and a basis266666664

a1;0
...

a1;d�1
b1;0
...

b1;d�1

377777775
;

266666664

a2;0
...

a2;d�1
b2;0
...

b2;d�1

377777775
; : : : ;

266666664

ae;0
...

ae;d�1
be;0
...

be;d�1

377777775
2 F

2d�1

for the set of solutions of the homogeneous system of linear equations

�
u �u : : : �d�1u �u ��u : : : ��d�1u
v �v : : : �d�1v �v ��v : : : ��d�1v

�
266666664

y0
...

yd�1
z0
...

zd�1

377777775
=

26664
0
0
...
0

37775
in the indeterminates y0; : : : ; yd�1; z0; : : : ; zd�1.

5. Randomly choose elements c1; c2; : : : ; ce from (a �nite subset of) F.

6. Set si =
eX
j=1

cjaj;i for 0 � i � d� 1 and set 
 =
d�1X
i=0

si�
i.

7. Return the above elements �, � and 
 of A, vectors u and v, and integer e.

Figure 2: A Monte Carlo Algorithm for a Centering Pair and the Centre

combinations of elements of A as described above and the entries of the vectors u and v
are chosen uniformly and independently from S. Thus the probability of failure to �nd a
complemented centering pair and complementing vectors is at most 5�=8. The cost of steps 1
and 3 is clearly at most O(R(A) +m).

The degree d of the minimal polynomial of � is readily available if the Frobenius form
of � can be computed. It therefore follows by Lemma 2.4 that step 2 of the algorithm can
be performed using O(MM(m) logm) operations in F, or O(m3) operations using standard
arithmetic, by a Las Vegas algorithm that fails with probability at most �=8m � �=8.

Now consider the homogeneous system of linear equations that is formed and solved in
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step 4. The cost of forming this system is dominated by the cost of computing matrix-vector
products v; �v; �2v; : : : ; �d�1v for a given element � of A � F

m�m and a given vector v 2
F
m�1, and thus the system can be formed using O(M(m) logm) operations (see, for example,

Keller-Gehrig 1985), or at cost O(m3) using standard arithmetic by forming fewer than m
matrix-vector products. The system includes 2m equations in 2d unknowns and, sincem � d,
this system can be solved using O(MM(m)) operations. It follows by the de�nition of a
complemented centering pair that if � and � form such a pair that is complemented by the
vectors u and v, and if the set of vectors266666664

a1;0
...

a1;d�1
b1;0
...

b1;d�1

377777775
;

266666664

a2;0
...

a2;d�1
b2;0
...

b2;d�1

377777775
; : : : ;

266666664

ae;0
...

ae;d�1
be;0
...

be;d�1

377777775
is a basis for the set of solutions for this system (as in step 4), then the set

d�1X
j=0

a1;j�
j;

d�1X
j=0

a2;j�
j; : : : ;

d�1X
j=0

ae;j�
j

of elements of A forms a basis for the centre of A over F. In this case, the element 
 that is
generated in step 6 is a random linear combination of the elements of such a basis, so that

 2 Centre(A) and, furthermore, 
 is a self-centralizing element in Centre(A) with probability
at least 1 � 3�=16 > 1 � �=4. That is, the probability that 
 is not self-centralizing in the
centre is less than �=4. Now, since any self-centralizing element of a commutative algebra
is a generator for the algebra, this implies that the probability that F[
] 6= Centre(A) is at
most �=4, if steps 1{4 of the algorithm succeeded.

Finally, note that 
 = g(�) where g(x) = sd�1x
d�1 + sd�2x

d�2 + � � �+ s0 and where the
coe�cients sd�1; sd�2; : : : ; s0 are as computed in step 6 of the algorithm. These coe�cients
can be computed from the values generated in earlier steps using O(ed) = O(m2) operations.
Since a Frobenius form and transition matrix for � have been computed in earlier steps, 

can be computed by evaluating the polynomial g at the matrix � deterministically using
O(MM(m) logm) steps, or O(m3) operations using standard arithmetic, if the earlier steps
succeeded (see Section 6 of Giesbrecht 1995).

Thus the entire algorithm can be implemented at the cost that has been claimed, and
the probability of failure is at most 5�=8 + �=8 + �=4 = �, as required.

4.4 A Las Vegas Algorithm for a Complemented Centering Pair

and Generator for the Centre

A Las Vegas algorithm to compute these values is shown in Figure 3 on page 37. In this
case, both a basis and a set of generators for the algebra A are speci�ed as input. Of course,
one could use the elements of the basis as the generators and execute the algorithm using
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Input: A basis 
1; 
2; : : : ; 
n for a separable matrix algebra A � F
m�m over an

in�nite �eld F, and a set of generators �1; �2; : : : ; �s for A over F

Output: Either
� Elements �, �, and 
 of A and vectors u and v in F

m�1

such that � and � form a complemented centering pair for A
complemented by the vectors u and v, and such that the
centre of A is F[
]

or
� failure

1. Apply the algorithm shown in Figure 2, choosing elements of A by forming
linear combinations of 
1; 
2; : : : ; 
n, to generate �, �, 
, u, v, and an estimate e
for the dimension of the centre of A.

2. Apply the algorithm shown in Figure 1 on inputs � and 
1; 
2; : : : ; 
n to try to
certify � as self-centralizing in A.

3. Return �, �, 
, u and v as output if all �ve of the following conditions are satis�ed;
return failure otherwise.

(a) The executions of algorithms in steps 1 and 2 completed successfully
(that is, no application of a Las Vegas algorithm failed).

(b) The execution of the algorithm in step 2 resulted in the answer Yes.

(c) The minimal polynomial of � is separable over F and has the same
degree as the minimal polynomial of � over F.

(d) The minimal polynomial of 
 is separable with degree e over F.

(e) �i
 = 
�i for 1 � i � s.

Figure 3: A Las Vegas Algorithm for a Centering Pair and the Centre

the basis alone as input. However, the complexity of the algorithm improves substantially
if a smaller set of generators is supplied. The analysis of the algorithm yields the following
result.

Theorem 4.7. Let A � F
m�m be a separable algebra with dimension n over an in�nite

�eld F. Let � be a real number such that 0 < � < 1, and suppose that S is a �nite subset
of F with size at least 10m3=�. Then a complemented centering pair for A, complementing
vectors, and a single generator 
 of the centre of A can be computed from a basis and a set
of s generators for A, by a Las Vegas algorithm that samples the algebra A by computing
S-linear combinations of the given basis, and that either returns the desired values or with
probability at most � reports failure.

This computation can be performed using O(nm3+ n2

m
MM(m)) operations, or O(nm3+

n2m2) operations using standard arithmetic, in the worst case. However, with probability at
least 1 � �, the number of operations used is O(Nnm2 + (N n2

m2 + s + logm)MM(m)), or
O(N(nm2 + n2m) + sm3) using standard arithmetic.

Proof. Consider the above algorithm, and suppose that all �ve of the conditions listed in
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step 3 are satis�ed, so that values �, �, and 
 of A and vectors u and v are returned.
Since conditions 3(a) and 3(b) are satis�ed, it follows by Theorem 3.14 that � is self-

centralizing in A.
Since condition 3(c) is satis�ed, � is self-centralizing in A as well, so that the centre of A

is contained in F[�] \ F[�].
Condition 3(d) implies that F[�] \ F[�] � F[
], so that F[
] includes the centre of the

algebra.
Finally, condition 3(e) con�rms that 
 is in the centre, so that F[
] = Centre(A). Since

the vectors u and v were used with � and � to compute 
 in step 1, this con�rms that �
and � form a complemented centering pair complemented by the vectors u and v. Thus,
either the algorithm reports failure or its outputs are correct.

Since condition 3(e) can be checked deterministically using O(s) matrix multiplica-
tions, the error probability and complexity results stated in the claim are consequences of
Lemma 2.4 and Theorems 3.14 and 4.6, which can be used to bound the failure probability
and complexity of each of the remaining steps.

5 Wedderburn Decomposition of Separable Algebras

Suppose once again that A � F
m�m is a separable algebra over F, with simple components

A1;A2; : : : ;Ak, and that 
 is a generator for the centre of A. Then 
 is a \splitting element"
for the algebra A, as de�ned by Eberly (1991), and the simple components of A can be
generated from 
 in polynomial time if a factorization of the minimal polynomial of 
 in F[x]
is available. Indeed, the algorithm for the Wedderburn decomposition of semi-simple algebras
over large perfect �elds in Section 3 of Eberly (1991) can also be applied to separable algebras
over arbitrary large �elds, since the centre of the algebra is a direct sum of simple extensions
of F in this case. Using this process one can obtain bases for each of the simple components.

A rather di�erent data structure to identify the simple components of a matrix algebra
is discussed by Eberly & Giesbrecht (1999). In particular a semi-simple transition matrix
is considered, that is, a matrix X 2 F

m�m whose columns include the elements of bases
for A1F

m�1;A2F
m�1; : : : ;AkF

m�1, and a semi-simple transition, which includes this matrix
and the dimensions of the above subspaces A1F

m�1;A2F
m�1; : : : ;AkF

m�1 of Fm�1 (see De�-
nition 3.1 of Eberly & Giesbrecht 1999). This can be computed quite e�ciently if 
 and a
factorization of the minimal polynomial of 
 are available.

Theorem 5.1. Suppose � is a real number such that 0 < � < 1 and that F is a �eld including
at least 2m2=� distinct elements. Given a generator 
 for the centre of a separable algebra A �
F
m�m and a factorization of the minimal polynomial of 
 in F[x], a semi-simple transition

for A can be computed using a Las Vegas algorithm that fails with probability less than �,
using O(MM(m) logm) operations, or O(m3) operations using standard arithmetic.

Proof. By Lemma 2.4, a Frobenius decomposition for 
 can be generated at the above cost
using a Las Vegas algorithm that fails with probability at most �=2. The characteristic
polynomial of 
 can computed from the Frobenius form of this matrix using O(mM(m))
operations, and since the factorization of the minimal polynomial of 
 is available, a factor-
ization of the characteristic polynomial of 
 can be computed using a divide and conquer
strategy with O(mM(m)) � O(MM(m)) operations as well.
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Now, since 
 generates the centre of A, 
 = 
1+
2+ � � �+
k where 
i 2 Ai for 1 � i � k
and where the minimal polynomials of 
1; 
2; : : : ; 
k are each irreducible in F[x] and are
pairwise relatively prime. Thus, these are the irreducible factors of the minimal polynomials
of 
, and 
 is similar to a matrix

b
 =
26664
b
1 0b
2

. . .

0 b
k

37775 ;
where b
i is a block diagonal matrix whose diagonal blocks are copies of the companion
matrix of the minimal polynomial of 
i. The order of the matrix b
i can be deduced from the
factorization of the characteristic polynomial of 
.

A Frobenius decomposition of b
 can now be computed by a Las Vegas algorithm failing
with probability �=2. At this point, matrices X1 and X2 are known such that X1
X

�1
1 and

X2b
X�1
2 are both equal to the common Frobenius form of 
 and b
, and it is easily con�rmed

that X�1
2 X1 is a semi-simple transition matrix for A, and that the orders of the matricesb
1; b
2; : : : ; b
k are the dimensions of A1F

m�1;A2F
m�1; : : : ;AkF

m�1 as needed.

Of course, the factorization of the minimal polynomial of 
 is required above, and the
cost to factor this polynomial may dominate the cost of the other operations. However, a
self-centralizing element may help to reduce the cost of this factorization as well.

Suppose in particular that gi is the minimal polynomial of 
i for 1 � i � k, for

1; 
2; : : : 
k as above, so that the minimal polynomial g of 
 is the product of g1; g2; : : : ; gk.
Let n1; n2; : : : ; nk and m1; m2; : : : ; mk be as de�ned in Section 2, and let

bgi;j = Y
nh=i
mh=j

gh (5.1)

for i; j � 1. Clearly,

g =
Y
i;j�1

bgi;j:
Theorem 5.2. Let � be a real number such that 0 < � < 1 and suppose F is a �eld including
at most 4m2=� distinct elements. If A, �, 
, and g are as above, then the above factors cgi;j
of g of positive degree can be computed by a Las Vegas algorithm that fails with probability at
most �, using (MM(m) logm) operations over F, or using O(m3) operations using standard
arithmetic.

Proof. Let X be a distinct power transition matrix for the self-centralizing element �. Then,
as noted in Section 3.1,

X�1
X =

26664

(1) 0


(2)

. . .

0 
(l)

37775
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for matrices 
(1); 
(2); : : : ; 
(l) | for, otherwise, the idempotents �1; �2; : : : ; �l considered in
Theorem 3.5 would not be central in A. Furthermore, a comparison of the above equation
with equation (3.9) con�rms that 
(j) has minimal polynomialY

mh=j

gh;

order j�j (for �j as de�ned in Section 3.1), and characteristic polynomialY
mh=j

gjnhh =
Y
i�1

bg iji;j:
Since the polynomials bgi;j are separable and pairwise relatively prime, it is clear that the
distinct power divisors of 
(j) with positive degree are exactly the polynomials bgi;j with
positive degree.

These polynomials can therefore be obtained by computing a distinct power decompo-
sition for �, applying the distinct power transition matrix X to 
 to generate the matrices

(1); 
(2); : : : ; 
(l), and then computing the distinct power decompositions of each of these
matrices. Since the sum of the orders of the matrices 
(1); 
(2); : : : ; 
(l) is m and F contains
at least 4m2=� elements, the complexity and failure bounds in the claim now follow from
Theorem 2.5.
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